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Abstract: The aim of this research was to design a physically consistent model for the forced torsional
vibrations of automotive driveshafts that considered aspects of the following phenomena: excitation
due to the transmission of the combustion engine through the gearbox, excitation due to the road
geometry, the quasi-isometry of the automotive driveshaft, the effect of nonuniformity of the inertial
moment with respect to the longitudinal axis of the tulip–tripod joint and of the bowl–balls–inner
race joint, the torsional rigidity, and the torsional damping of each joint. To resolve the equations of
motion describing the forced torsional nonlinear parametric vibrations of automotive driveshafts,
a variational approach that involves Hamilton’s principle was used, which considers the isometric
nonuniformity, where it is known that the joints of automotive driveshafts are quasi-isometric in
terms of the twist angle, even if, in general, they are considered CVJs (constant velocity joints).
This effect realizes the link between the terms for the torsional vibrations between the elements
of the driveshaft: tripode–tulip, midshaft, and bowl–balls–inner race joint elements. The induced
torsional loads (as gearbox torsional moments that enter the driveshaft through the tulip axis) can
be of harmonic type, while the reactive torsional loads (as reactive torsional moments that enter
the driveshaft through the bowl axis) are impulsive. These effects induce the resulting nonlinear
dynamic behavior. Also considered was the effect of nonuniformity on the axial moment of inertia
of the tripod–tulip element as well as on the axial moment of inertia of the bowl–balls–inner race
joint element, that vary with the twist angle of each element. This effect induces parametric dynamic
behavior. Moreover, the torsional rigidity was taken into consideration, as was the torsional damping
for each joint of the driveshaft: tripod–joint and bowl–balls–inner race joint. This approach was
used to obtain a system of equations of nonlinear partial derivatives that describes the torsional
vibrations of the driveshaft as nonlinear parametric dynamic behavior. This model was used to
compute variation in the natural frequencies of torsion in the global tulip (a given imposed geometry)
using the angle between the tulip–midshaft for an automotive driveshaft designed for heavy-duty
SUVs as well as the characteristic amplitude frequency in the region of principal parametric resonance
together the method of harmonic balance for the steady-state forced torsional nonlinear vibration
of the driveshaft. This model of dynamic behavior for the driveshaft can be used during the early
stages of design as well in predicting the durability of automotive driveshafts. In addition, it is
important that this model be added in the design algorithm for predicting the comfort elements of
the automotive environment to adequately account for this kind of dynamic behavior that induces
excitations in the car structure.

Keywords: homokinetic transmission; automotive driveshaft; quasi-isometry of driveshaft; nonlinear
parametric torsional vibration; method of harmonic balance; nonlinear parametric dynamic behavior
of automotive driveshaft; principal parametric resonance
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1. Introduction

The present work presents a consistent model to describe the forced torsional vi-
brations of an automotive driveshaft considering the following aspects: the joints of the
driveshaft are quasi-isometric in terms of angular velocity [1] even if they are generally
considered to be CVJs (constant velocity joints); the effect of induced torsional loads such
as the harmonic entry moment from the gearbox [2] (p. 360) and the impulsive reaction
moment from the wheels [3]; the effect of nonuniformity on the axial moment of inertia of
the joints that varies with the angle of twist of each element of the driveshaft, and the effect
of the torsional rigidity as well as the torsional damping for each joint of the driveshaft,
which varies with the angle of twist of each element of the driveshaft. In the literature [4],
the nonuniformity in the isometric properties of automotive driveshafts is already a fact
recognized for more than half a century whose reality was demonstrated in experiments
performed by Steinwede for his Ph.D. thesis [5] (pp. 68–97). This nonuniformity in drive-
shaft isometric properties is undoubtedly the main cause of nonlinear parametric vibrations
of driveshafts in the range 0.1–12 kHz as established by experimental results documented
in the literature [5] (pp. 98–123). The first researchers who considered the special dynamic
phenomena of driveshafts were Mazzei and Scott, who enhanced the nonlinear parametric
dynamic behavior of a universal joint in their paper [6]. The experimental evidence for
nonuniformity of CVJ driveshaft transmission is presented and highlighted by Browne
and Palazzolo in [7]. Moreover, in Feng, Rakheja, and Shangguan [8], optimization of
the generated axial force (GAF) of a driveshaft system with the interval of uncertainty
was treated without considering the CVJ isometry of the driveshaft, which is no longer
isometric, and this aspect has been certified by experiments using the vertex method
for analysis of the upper and lower bond (ULB) variation in parameters. In [9], Tiberiu-
Petrescu mentioned the angular velocity variation for a double-cardan transmission, while
paper [10] deals with the use of six sigma methodology for optimization of the cardan
shaft transmission of light truck driveshafts because, in the exploitation, it is necessary
to mitigate the vibration noise harshness. In [10], the authors mention the presence of
vibration noise harshness due to the driveshaft but did not research why these phenomena
were present. In a master’s degree thesis [11], the author developed a software based on
MATLAB’s Simulink to realize the modeling and simulation of vehicle kinematics and
dynamics, but the models of vehicle transmission were very simple and did not touch
upon special phenomena of vehicle transmission. The design and stress analysis for an
automobile driveshaft made of composite material is presented in [12], whereby the trans-
mission is designed in such a way that the researchers’ special phenomena that are not
well explained are avoided. In the literature, it is highlighted that an active steering control
strategy can be used to prevent vehicle rollover [13], or a hierarchical synchronization
control strategy can be used for the ARIS system to overcome the synchronization errors
induced by the wheels [14]. As can be seen, none of these examples addresses the nonuni-
formity from the geometric and kinematic isometry of the automotive driveshaft. In the
literature [15], some studies were conducted on optimizing the high-frequency torsional
vibration of vehicle driveline systems using genetic algorithms, meaning that the designers
and fabricants already found strange dynamic phenomena and tried to overcome these
problems. Other researchers tried to diagnose defects of the drive system based on the
vibration signal reference model [16]. Alugongo, in [17], continued the investigation of
Mazzei and Scott [6] and Browne and Palazzolo [7] but only for a cardan shaft, which has
already been demonstrated, by theory and experiments, to induce parametric vibrations.
Xu, Zhu, and Xia analyzed the amplitude-frequency characteristics of torsional vibration
for an entire automotive powertrain [18] using a model with 29 degrees of freedom. An
approach for the nonlinear torsional vibrations of the automotive drivetrain using a model
with three degrees of freedom is presented in [19], where the torsional stiffness and friction
moment of a clutch system were measured and used to calibrate the model. This model
in [19] is not a nonlinear parametric model of torsional vibration that depends on the mass
moments of inertia; the geometrical moments of inertia; the geometrical positions of the
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tulip mass center, tulip axis mass center, bowl mass center, and bowl axis mass center; and
nonuniformity in the geometric axial moments of inertia, mass axial moments of inertia for
the driveshaft elements, and geometric and kinematic isometry of the driveshaft. As can be
seen from the literature survey, the information concerning the details of CVJ driveshaft
investigation of nonlinear parametric dynamic behavior, especially the MDPI journals, is
unfortunately very poor in presenting such subjects, not because it is less important for
the design area and automotive industry but because it involves a huge investment in
experimental research, most of which involves intellectual property, through patents, of
the biggest corporations in the car industry such as Renault, Daimler-Benz, BMW, GMC,
Chrysler, Audi-VW Group, etc.

The goal of this study was to establish a complete dynamic model for an automotive
CVJ quasi-homokinetic driveshaft model that includes elements describing the nonlinear
forced parametric dynamic behavior. It is envisaged that this model can be used in the
early stages of design as well as in predicting the durability of automotive driveshafts.

A driveshaft is a mechanism that transmits a torque load from the gearbox to the
wheel, as can be seen in Figure 1. For a better geometrical understanding, let us look inside
the components of such a mechanism, shown in Figure 2, that consists of (a) the bowl-balls
joint fixed assembled with the car wheel, (b) the midshaft axis, (c) the tulip-tripode joint that
allows axial plunging of the tripode in the tulip and plunging assembled in the gear box.
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Figure 2. Driveshaft in general detail.

Presented in Figure 3 is the schematical representation of an automotive driveshaft in
the three axes of Cartesian coordinates X1Y1Z1 attached to the tulip, X2Y2Z2 attached to the
midshaft, and X3Y3Z3 attached to the bowl, which having the following rigid movements:

- rotation with the angle ϕ1 of the tulip with respect to the axis X1, ϕ1 = 0 . . . n1π;
- rotation with the angle ϕ2 of the mid shaft with respect to the axis X2, ϕ2 = 0 . . . n1π;
- rotation with the angle ϕ3 of the bowl with respect to the axis X3, ϕ3 = 0 . . . n1π;
- relative rotation of the longitudinal axe of the midshaft (given by the direction of the

axis X2) with respect to the longitudinal direction of the tulip (given by the direction
of the axis X1), with β1 (spatial angle between axis X1 and X2) with respect to the axis
Z1, β1 being the angle between longitudinal direction of the tulip and the longitudinal
direction of the midshaft, β1 = 0◦ . . . 15◦;

- relative rotation of the longitudinal axis of the bowl (given by the direction of the axis
X3) with respect to the longitudinal direction of the midshaft (given by the direction
of the axis X2), with β2 (spatial angle between axis X2 and X3) with respect to the axe
Y2, β2 being the angle between the longitudinal direction of the midshaft and the
longitudinal direction of the bowl, β2 = 0◦ . . . 47◦.
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Figure 3. Schematic representation of an automotive driveshaft.

In Figure 3, it is considered that the axes (X1, Y1), (X2, Y2), and (X3, Y3) are in the
same plane and, therefore, the axes Z1, Z2, Z3 are parallel, and this supposition does not
restrain generality.

The geometrical details of the tulip–tripod joint is presented in Figure 4, and the
geometrical details of the bowl–balls joint are presented in Figure 5.
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Figure 5. Details of bowl–balls (inner race of the midshaft) joint.

As can be seen from Figure 4, the tripod is fixed to the midshaft, the inner race is fixed
to the midshaft (see Figure 5) and the car wheel is fixed to the bowl (see Figure 5).
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2. Computation of the Mass Moments and Geometric Moments of Driveshaft Inertia

In order to compute the equations of motions for the driveshaft using the variational
approach of Hamilton’s principle, it is necessary to reduce the axial mass moment of inertia
of the cross section IX1GT and the geometric moment of inertia of the cross section JX1GT for
the global tulip (tulip axis and tulip) with respect to the longitudinal axis of the midshaft
X2 in the centroid of the cross section of the tripod fixed on the midshaft (see Figure 4) as
well as the axial mass moment of inertia of the cross section IX3GB and the axial geometric
moment of inertia of the cross section JX3GB for the global bowl (bowl axis and bowl) with
respect to the longitudinal axis of the midshaft X2 in the centroid of the cross section of
the inner race fixed on the midshaft (see Figure 5). The computations of these axial mass
moments of inertia of the cross section and axial geometric moments of inertia of the cross
section take the following into account: the angle β1 between X1 and X2 (see Figure 3,
rotation with respect to Z1 parallel with Z2), the distance from the mass center of the tulip
axis to the centroid of the cross section of the tripod fixed on the midshaft, the distance from
the mass center of the tulip to the centroid of the cross section of the tripod fixed on the
midshaft (see Figure 4), the angle β2 between X2 and X3 (see Figure 3, rotation with respect
to Z3 parallel with Z2), the distance from the mass center of the bowl axis to the centroid
of the cross section of inner race fixed on the midshaft, and the distance from the mass
center of the bowl to the centroid of the cross section of inner race fixed on the midshaft
(see Figure 5). In its design, the global tulip consists of two major parts, the tulip and tulip
axis, as can be seen in Figure 4, which have different geometry and therefore different mass
and geometric moments of inertia. Thus, it is obtained that the axial geometric moment
of inertia of the cross section for the global tulip JX2GT can be reduced to the longitudinal
axis of the midshaft in the centroid of the cross section of the tripod fixed on the midshaft,
and the axial mass moment of inertia of the cross section for the global tulip IX2GT can be
reduced to the longitudinal axis of the midshaft in the centroid of the cross section of the
tripod fixed on the midshaft, given by the following equations:

JX2GT = JX2T + JX2AT, (1)

JX2T = 0.5(J1T + J2T)
[
1 + cos2 β1 + χnT cos(2ϕ1) sin2 β1

]
+ ST(dCT)

2, (2)

χnT =
J1T − J2T
J1T + J2T

, (3)

JX2AT =
πd4

AT
64

(
1 + cos2 β1

)
+
πd2

AT
4

(LT + 0.5LAT)
2, (4)

IX2GT = JX2TρLT + JX2ATρLAT, (5)

where J1T, J2T are the principal geometric moments of inertia with respect to the cross
section of the tulip in the center mass of the tulip, JX2T, JX2AT are the geometric moment
of inertia of the tulip and the geometric moment of inertia of the tulip axis reduced to the
longitudinal axis of the midshaft in the centroid of the cross section of the tripod fixed
on the midshaft, ρ is the volume mass density of the material of the driveshaft, dCT is the
distance between the center mass of the tulip and the centroid of the tripod, ST is the area
cross section of the tulip, χnT is the nonuniformity of the geometric moments of inertia in
the cross section of the tulip (see Figure 4), LT is the length of the tulip, LAT is the length
of the tulip axis, dAT is the diameter of the tulip axis and ϕ1 is the angle of rotation of
the tulip with respect to the axis X1. In its design, the global bowl consists of two major
parts, the bowl and bowl axis (wheel axis), as can be seen in Figure 5, which have different
geometry and therefore different mass and geometric moments of inertia. In the same
mathematical manner, JX2GB is obtained, which is the axial geometric moment of inertia
of the cross section for the global bowl reduced to the longitudinal axis of the midshaft in
the centroid of the cross section of the inner race fixed on the midshaft (see Figure 5), as is
IX2GB, the axial mass moment of inertia of the cross section for the global bowl reduced to
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the longitudinal axis of the midshaft in the centroid of the cross section of the inner race
fixed on the midshaft, given by these equations:

JX2GB = JX2B + JX2AB, (6)

JX2B = 0.5(J1B + J2B)
[
1 + cos2 β2 + χnB cos(2ϕ3) sin2 β2

]
+ SB(dCB)

2, (7)

χnB =
J1B − J2B
J1B + J2B

, (8)

JX2AB =
πd4

AB
64

(
1 + cos2 β1

)
+
πd2

AB
4

(LB + 0.5LAB)
2, (9)

IX2GB = JX2BρLB + JX2ABρLAB, (10)

where J1B, J2B are the principal geometric moments of inertia with respect to the cross
section of the bowl in the center mass of the bowl; JX2B, JX2AB are the geometric moment of
inertia of the bowl and the geometric moment of inertia of the bowl axis reduced to the
longitudinal axis of the midshaft in the centroid of the cross section of the inner race fixed
on the midshaft, respectively; ρ is the volume mass density of the driveshaft material; dCB is
the distance between the center mass of the bowl and the centroid of the inner race; SB is the
area cross section of the bowl; χnB is the nonuniformity of the geometric moments of inertia
in the cross section of the bowl (see Figure 4); LB is the length of the bowl; LAB is the length
of the bowl axis; dAB is the diameter of the bowl axis; and ϕ3 is the angle of rotation of the
tulip with respect to the axis X3. As can be seen analyzing Equations (1)–(10), the geometric
axial moment of inertia of the cross section JX2GT, for the global tulip, and the geometric
axial moment of inertia of the cross section JX2GB, for the global bowl, both reduced to the
longitudinal midshaft axis X2, are functions that contains the effects o: twisting angle of
tulip ϕ1 as well as the twisting angle of bowl ϕ3, nonuniformity of the geometric moments
of inertia of the cross section for both tulip and bowl χnT and χnB, the angle between
longitudinal direction of the tulip and the longitudinal direction of the midshaft β1, the
angle between the longitudinal direction of the midshaft and the longitudinal direction of
the bowl β2, the length of the tulip and the length of the bowl, the position of the mass
center of the tulip axis and tulip with respect to the centroid of the tripod, the position of
the mass center of the bowl axis and bowl with respect to the centroid of the inner race,
the principal geometric moments of inertia of the cross section for the tulip J1T, J2T, the
principal geometric moments of inertia of the cross section for the bowl J1B, J2B, dAT the
diameter of the tulip axis, and dAB the diameter of the bowl axis.

3. The Physical Model of the Driveshaft in Torsion

The physical model for torsional vibrations of the driveshaft is presented in Figure 6.
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Figure 6. The physical model for torsional vibrations of the automotive driveshaft.
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The present model (see Figure 6) considers that the tulip (see Figure 4) and the bowl
(see Figure 5) have rigid body torsion movements, through the twist angles ϕ1 and ϕ3,
that are functions of time ϕ1 = ϕ1(t) and ϕ3 = ϕ3(t), while the midshaft has a twist
angle ϕ2 that is a function ϕ2 = ϕ2(x, t) of position (space) in the longitudinal direction of
the midshaft, where x ∈ [0, LMs], LMs being the length of the midshaft of the automotive
driveshaft (see Figure 2), and the time t. The effect of nonuniformity for the geometric and
kinematic isometry of the driveshaft [1,4] is given by the equations:

ϕ2(0, t) = ϕ1(t) +
RTTr

2LMs
tanβ1 tan2 β1

2
cos(3ϕ1), (11)

ϕ3(t) = ϕ2(LMs, t) +
RIrB

2LMs
tanβ2 tan2 β2

2
cos(3ϕ2(LMs, t)), (12)

where RTTr is the tulip–tripod joint radius (see Figure 4) and RIrB is the inner race-bowl
joint radius (see Figure 5). Deriving the Equations (11) and (12) with respect to time yields:

∂ϕ2(0, t)
∂t

− •ϕ1(t) = −1.51
•
ϕ1(t)

RTTr

LMs
tanβ1 tan2 β1

2
sin(3ϕ1), (13)

•
ϕ3(t)−

∂ϕ2(LMs, t)
∂t

= −1.51
∂ϕ2(LMs, t)

∂t
RTTr

LMs
tanβ2 tan2 β2

2
sin(3ϕ2(LMs, t)). (14)

Equations (11)–(14) introduce, in this model, the effect of nonuniformity for the geo-
metric and kinematic isometry of the automotive driveshaft [1,4]. The model presented
consists of three different elements, tulip–midshaft–bowl, linked through two links the joint
tulip–tripod (mounted on the midshaft, see Figure 4), and the joint bowl–balls–inner race
(mounted at the other edge of the midshaft, see Figure 5), described in terms of dynamic
torsion as follows:

1. the tulip in torsional rigid body movement reduced to the torsional longitudinal axis
of the midshaft, having a global torsional stiffness ktGT, a global torsional damping
coefficient ctGT, an axial geometric moment of inertia of the cross section for the global
tulip JX2GT reduced to the longitudinal axis of the midshaft in the centroid of the cross
section of tripode fixed on the midshaft (see Equation (1)), an axial mass moment of
inertia of the cross section for the global tulip IX2GT reduced to the longitudinal axis
of the midshaft in the centroid of the cross section of tripode fixed on the midshaft
(see Equation (5)), where ktGT and ctGT are given by the equations:

ktGT = ktATktT
ktAT+ktT

, ktAT =
GJX2AT

LAT
, ktT =

GJX2T
LT

, ctGT = 2∆GT√
4π2+∆2

GT

√
ktGTIX2GT, (15)

where ktAT is the stiffness/rigidity of the tulip axis reduced to the longitudinal axis of
the midshaft in the centroid of the cross section of the tripod fixed on the midshaft, ktT
is the stiffness/rigidity of the tulip reduced to the longitudinal axis of the midshaft
in the centroid of the cross section of the tripod fixed on the midshaft, LT is the
length of the tulip, LAT is the length of the tulip axis, G is the shear modulus, and
∆GT is the logarithmic decrement of the free torsional vibrations of the global tulip
(∆GT = 0.001 . . . 0.2) [20,21];

2. The joint tulip–tripod in torsion realizes the link between the tulip and the midshaft
through the torsional stiffness ktTT and the damping torsional coefficient ctTT;

3. The uniform midshaft (see Figures 2, 4, and 5) in torsion having, at x = 0, a tripod
(see Figure 4) fixed on the midshaft with the axial mass moment of inertia of the cross
section I01Ms (midshaft axis included on the thickness of the tripod) and the geometric
axial moment of inertia of the cross section of the tripod JX2Tr (midshaft axis included
on the thickness of the tripod), and at x = LMs, an inner race (see Figure 5) fixed on
the midshaft with the axial mass moment of inertia of the cross section I02Ms (midshaft
axis included on the thickness of the inner race) and the geometric axial moment of
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inertia of the cross section JX2Ir (midshaft axis included on the thickness of the inner
race), given by the equations:

I01Ms = JX2TrρLTr = (J1Tr + J2Tr)ρLTr, (16)

I02Ms = JX2IrρLIr = (J1Ir + J2Ir)ρLIr, (17)

where J1Tr, J2Tr are the principal geometric moments of inertia in the cross section of the
tripod, midshaft axis included on the thickness of the tripod, J1Ir, J2Ir are the principal
geometric moments of inertia in the cross section of the inner race, midshaft axis
included on the thickness of the inner race, JX2Tr is the geometric axial moment of
inertia of the tripod (midshaft axis included on the thickness of the tripod), JX2Ir is the
geometric axial moment of inertia of the inner race (midshaft axis included on the
thickness of the inner race), LTr is the thickness of the tripod, LIr is the thickness of
the inner race;

4. The joint bowl–balls–inner race in torsion realizes the link between the bowl and the
midshaft through the torsional stiffness ktBIr and the damping torsional coefficient ctBIr;

5. The bowl in torsional rigid body movement is reduced to the torsional longitudinal
axis of the midshaft, having a global torsional stiffness ktGB, a global torsional damp-
ing coefficient ctGB, an axial geometric moment of inertia of the cross section reduced
to the longitudinal axe of the midshaft JX2GB (see Equation (6), an axial mass moment
of inertia of the cross section reduced to the longitudinal axe of the midshaft IX2GB
(see Equation (10)), where ktGB and ctGB are given by the equations:

ktGB = ktABktB
ktAB+ktB

, ktAT =
GJX2AB

LAB
, ktT =

GJX2B
LB

, ctGB = 2∆GB√
4π2+∆2

GB

√
ktGBIX2GB, (18)

where ktAB is the stiffness/rigidity of the bowl axis reduced to the longitudinal axis of
the midshaft in the centroid of the cross section of the inner race fixed on the midshaft,
ktB is the stiffness/rigidity of the bowl reduced to the longitudinal axis of the midshaft
in the centroid of the cross section of the inner race fixed on the midshaft, LB is the
length of the bowl, LAB is the length of the bowl axis, G is the shear modulus and
∆GB the logarithmic decrement of the free torsional vibrations of the global bowl
(∆GB = 0.001–0.15) [20,21].

From the gearbox, the driveshaft (see Figures 1 and 6) receives torque from the engine
that is given by Equation (2) (p. 361)

MGb = Me[1 + χe cos(nΩet)], n ∈ N, (19)

Ωe =
πne

30
, (20)

where χe is the nonuniformity of the internal engine torque, being in the range
0.980–1.020 [2] (p. 363) and Me is the amplitude of the engine torque in Nm and ne is
the speed rotation (velocity angle) of the crank shaft of the engine in rot/min. The reactive
torque induced by the wheel is a moderate impulsive type and can be considered in the
mathematical form

Mw = MH
[
1 + q3tq1e−q2t], (21)

where MH is the adhesion torque [22] (p. 130), qi, i = 1, 3, q1 � q2, q3 ≥ 1.1 are experimental
constants depending on the type of shock applied at the wheel by the road excitation [3].



Computation 2022, 10, 10 9 of 21

4. The Equations of Forced Torsional Vibrations of the Automotive Driveshaft

For the model of torsional vibrations of the automotive driveshaft presented in Figure 6,
use of the variational approach of the generalized Hamilton’s principle [23] (pp. 272–295) yields

δ

t2∫
t1

(Π− T−W)dt = 0, (22)

where the strain energy Π of the model for the automotive driveshaft (see Figure 6),
including the torsional springs and the torsional dampers, is given by the generalized
Equation (23) (p. 274), [24] (pp. 610–613):

Π = 1
2

LMs∫
0

GJX2Ms

(
∂ϕ2
∂x

)2
dx + 1

2

[
ctGT

( •
ϕ1

)2
+ ctTT

(
∂ϕ2(0,t)

∂x − •
ϕ1

)2
+ ctBIr

( •
ϕ3 − ∂ϕ2(LMs,t)

∂x

)2
+ ctGB

( •
ϕ3

)2
]
+

+ 1
2

[
ktGTϕ

2
1 + ktTT(ϕ2(0, t)−ϕ1)

2 + ktBIr(ϕ3 −ϕ2(LMs, t))2 + ktGBϕ
2
3

]
,

(23)

where LMs is the midshaft length, JX2Ms is the geometric axial moment of inertia of the cross
section of the midshaft with respect to the longitudinal axis X2 given by the equations

JX2Ms =
πd4

Ms
32

, (24)

JX2Ms =
π
(

d4
eMs − d4

iMs

)
32

, (25)

where the midshaft is considered as having a circular or a tubular uniform cross section
with the diameter dMs for the circular cross section or the diameters deMs, diMs for the
tubular cross section. Added to Equation (23) was the generalized Rayleigh’s dissipation
function [24] (p. 611) specific to the mathematical formulations of the Euler–Lagrange
generalized approach, due to the presence in the torsional vibration model of the damper,
giving the equation

Λ
( •
ϕ1, ∂ϕ2(x,t)

∂x ,
•
ϕ3

)
= 1

2

[
ctGT

( •
ϕ1

)2
+ ctTT

(
∂ϕ2(0,t)

∂x − •
ϕ1

)2
+ ctBIr

( •
ϕ3 − ∂ϕ2(LMs,t)

∂x

)2
+ ctGB

( •
ϕ3

)2
]

. (26)

The kinetic energy of the model for the automotive driveshaft, seen in Figure 6, is
given by the generalized Equation (23) (p. 274), [24] (p. 719):

T =
LMs∫
0

1
2ρJX2Ms

(
∂ϕ2

∂t

)2

dx + 1
2 IX2GT

( •
ϕ1

)2
+ 1

2 I01Ms

(
∂ϕ2(0,t)

∂t

)2
+ 1

2 I02Ms

(
∂ϕ2(LMs,t)

∂t

)2
+ 1

2 IX2GB

( •
ϕ1

)2
. (27)

The work performed by the external torques can be expressed as

W =
∫ LMs

0 {[MGb]∆(x) + [Mw]∆(x− LMs)}ϕ2(x, t)dx = [MGb]ϕ2(0, t) + [Mw]ϕ2(LMs, t), (28)

where ∆(x) is the Dirac’s function and ϕ2(0, t), ϕ2(LMs, t) are given by the Equations (11)
and (12) as functions of ϕ1(t) and ϕ3(t). After several mathematical manipulations that
include integration by parts, the nonlinear system with partial derivatives of second degree
is yielded:

IX2GT(ϕ1)
..
ϕ1 + [ctGT + 3ctTTATTr sin(3ϕ1)]

.
ϕ1 + [ktGT− ktTTATTr cos(3ϕ1)]ϕ1 = Me[1+ χe cos(nΩet)](1− 3ATTr sin(3ϕ1)), (29)

ρJX2Ms
∂2ϕ2

∂t2 = GJX2Ms
∂2ϕ2

∂x2 , (30)

IX2GB(ϕ3)
..
ϕ3 + [ctGB− 3ctBIrABIr sin(3ϕ3)]

.
ϕ3 + [ktGB + ktBIrABIr cos(3ϕ3)]ϕ3 = −MH

[
1+ q3tq1e−q2t](1− 3ABIr sin(3ϕ3)), (31)

where the constants ATTr and ABIr are given by the equations [1]:

ATTr = 0.5
RTTr

LMs
tanβ1 tan2 β1

2
, (32)
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ABIr = 0.5
RBIr

LMs
tanβ2 tan2 β2

2
, (33)

and the boundary conditions are

I01Ms
∂2ϕ2(0, t)

∂t2 − 3ctTTATTr sin(3ϕ1)
.
ϕ1 + ktTTATTr cos(3ϕ1)ϕ1 −GJX2Ms

∂ϕ2(0, t)
∂x

= 0, atx = 0. (34)

I02Ms
∂2ϕ2(LMs, t)

∂t2 + 3ctBIrABIr sin(3ϕ3)
.
ϕ3 − ktBIrABIr cos(3ϕ3)ϕ3 + GJX2Ms

∂ϕ2(LMs, t)
∂x

= 0, atx = LMs. (35)

The system given by Equations (29)–(31) together with the boundary conditions (34)
and (35) represent the nonlinear dynamic behavior of an automotive driveshaft in torsion
under an input harmonic excitation that occurs due to the modulation of the car engine and
the nonuniformities of torque load transfer from the engine to the driveshaft through the
automotive gearbox, in addition to a reactive torque load of impulsive type induced in the
wheel by road excitations. Analyzing Equations (29)–(35), it can be remarked that Equations
(29)–(31) are the equations of forced parametric vibrations for the tulip and for the bowl
in torsion that are generalized nonlinear forced Mathieu–Hill equations, Equation (30) is
an equation with partial derivatives for the torsional vibrations of a uniform shaft, and
Equations (34) and (35) represent the link between the torsional vibrations of the elements
of the automotive driveshaft tulip–midshaft–bowl through the stiffness and the damping
of the joints tulip–tripod–midshaft and bowl–balls–inner race–midshaft.

5. The Mathematical Procedure Solution

In analyzing the joint tulip–tripod–midshaft and bowl–inner race–midshaft, it becomes
obvious that the midshaft is a fixed-fixed uniform shaft linked to the torsion of the tulip
for x = 0 and at the bowl for x = LMs and, therefore, the general solution of Equation (30)
is [24] (p. 720)

ϕ2(x, t) = ∑
n

Φ2n cos
(
ωnx

c −Θ1n
)

cos(ωnt−Θ2n), c =
√

G
ρ ,ωn = nπc

LMS
, n = 1, 2, 3, . . . (36)

where Φ2n is the amplitude, Θ1n and Θ2n are the phase angles for the general solution
ϕ2(x, t) andωn is the free natural frequency of torsion vibrations of the midshaft. From the
boundary condition (34), using Equation (36) yields

−3ctTTATTr sin(3ϕ1)
.
ϕ1 + ktTTATTr cos(3ϕ1)ϕ1 = −I01Ms

∂2ϕ2(0,t)
∂t2 + GJX2Ms

∂ϕ2(0,t)
∂x =

= ∑
n

Φ2n
[
I01Msω

2
n cos Θ1n + GJX2Ms

ωn
c sin Θ1n

]
cos(ωnt−Θ2n), atx = 0. (37)

In a similar mathematical manner from the boundary condition (35), using Equation (36)
yields

3ctBIrABIr sin(3ϕ3)
.
ϕ3 − ktBIrABIr cos(3ϕ3)ϕ3+ = −I02Ms

∂2ϕ2(LMs,t)
∂t2 −GJX2Ms

∂ϕ2(LMs,t)
∂x =

= ∑
n

Φ2n

[
I02Msω

2
n cos

(
ωnLMs

c −Θ1n

)
−GJX2Ms

ωn
c sin

(
ωnLMs

c −Θ1n

)]
cos(ωnt−Θ2n), atx = LMs.

(38)

Inserting Equation (37) in Equation (29) yields

IX2GT(ϕ1)
..
ϕ1 + ctGT

.
ϕ1 + ktGTϕ1 = Me[1 + χe cos(nΩet)](1− 3ATTr sin(3ϕ1))+

+∑
n

Φ2n
[
I01Msω

2
n cos Θ1n + GJX2Ms

ωn
c sin Θ1n

]
cos(ωnt−Θ2n), (39)

and Equation (39) is divided by the function IX2GT(ϕ1) to obtain

..
ϕ1 + 2ζ1Ω1

√
1+a1 cos 2ϕ1

(1+a2 cos 2ϕ1)(1+χGTn cos 2ϕ1)

.
ϕ1 + Ω2

1
1+a1 cos 2ϕ1

(1+a2 cos 2ϕ1)(1+χGTn cos 2ϕ1)
ϕ1 = Me

IX2GT

1+χe cos(nΩet)
(1+χGTn cos 2ϕ1)

(1− 3ATTr sin 3ϕ1)+

+∑
n

Φ2n

[
I01Ms
IX2GT

ω2
n cos Θ1n +

GJX2Ms

IX2GT

ωn
c sin Θ1n

]
cos(ωnt−Θ2n)

(1+χGTn cos 2ϕ1)
, n = 1, 2, 3, . . . ,

(40)

where IX2GT is the mass moment of inertia of the global tulip with respect to the longitudinal
axis of torsion X2 of the global tulip for the angle β1 = 0◦, χGTn is the global tulip nonuni-
formity (see Appendix A), ζ1 is the damping ratio of the global tulip (see Appendix A), Ω1
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is the natural frequency in torsion of the global tulip as a function of the angle β1, given by
the equation

Ω1 =
c

LT

 1− JX2ATρLAT

IX2GT

1 +
(

LAT
LT

)2
(

IX2GT
JX2ATρLAT

− 1
)


1/2

, (41)

and all the terms on the right-hand side are excitation terms due to the following phe-
nomena: the joint tulip–tripod–midshaft of the driveshaft that is quasi-isometric for the
angular velocity ϕ1 [1,4], the effect of induced torsional loads such as the harmonic entry
moment from the gearbox [2] (p. 360), the effect of nonuniformity on the axial moment of
inertia of the joint tulip–tripod–midshaft of the driveshaft that varies with the angle ϕ1,
the effect of nonuniformity on the axial moment of inertia of the global tulip that varies
with the angle ϕ1, the effect of the angle β1 between the global tulip axis and the midshaft
axis, and the effect of the torsional rigidity as well as the torsional damping on the joint
tulip–tripod–midshaft of the driveshaft that are functions of the angle ϕ1. The coefficients
a1, a2 and the global tulip nonuniformity χGTn are presented in Appendix A.

Inserting Equation (38) in Equation (31) yields:

IX2GB(ϕ3)
..
ϕ3 + ctGB

.
ϕ3 + ktGBϕ3 = −MH

[
1 + q3tq1e−q2t](1− 3ABIr sin(3ϕ3))+

+∑
n

Φ2n

[
I02Msω

2
n cos

(
ωnLMs

c −Θ1n

)
−GJX2Ms

ωn
c sin

(
ωnLMs

c −Θ1n

)]
cos(ωnt−Θ2n),

(42)

and Equation (41) is divided by the function IX2GB(ϕ3) to obtain

..
ϕ3 + 2ζ3Ω3

√
1+a3 cos 2ϕ3

(1+a4 cos 2ϕ3)(1+χGBn cos 2ϕ3)

.
ϕ3 + Ω2

3
1+a3 cos 2ϕ3

(1+a4 cos 2ϕ3)(1+χGBn cos 2ϕ3)
ϕ3 = − MH

IX2GB

[1+q3tq1 e−q2t]
(1+χGBn cos 2ϕ3)

(1− 3ABIr sin 3ϕ3)+

+∑
n
(−1)nΦ2n

[
I02Ms
IX2GB

ω2
n cos Θ1n +

GJX2Ms

IX2GB

ωn
c sin Θ1n

]
cos(ωnt−Θ2n)

(1+χGBn cos 2ϕ3)
, n = 1, 2, 3, . . . ,

(43)

where IX2GB is the mass moment of inertia with respect to the longitudinal axis of torsion
X2 of the global bowl for the angle β2 = 0◦, χGBn is the global bowl nonuniformity (see
Appendix A), ζ3 is the damping ratio of the global bowl (see Appendix A), Ω3 is the natural
frequency in torsion of the global bowl as a function of the angle β2, given by the equation

Ω3 =
c

LB

 1− JX2ABρLAB

IX2GB

1 +
(

LAB
LB

)2
(

IX2GB
JX2ABρLAB

− 1
)


1/2

, (44)

and all the terms on the right-hand side are excitation terms due to the joint bowl–inner race–
midshaft of the driveshaft that is quasi-isometric for the angular velocity ϕ3 [1,4], the effect
of the impulsive reaction moment from the wheels [3], the effect of nonuniformity on the
axial moment of inertia of the joint that varies with the angleϕ3, the effect of nonuniformity
on the axial moment of inertia of the global bowl that varies with the angle ϕ3, the effect
of the angle β2 between the global bowl axis and the midshaft axis, and the effect of the
torsional rigidity as well as the torsional damping for the joint bowl–inner race–midshaft of
the driveshaft that are functions of the angle ϕ3. The coefficients a3, a4 and the global tulip
nonuniformity χGBn are presented in Appendix A. The system of Equations (40) and (43)
is a generalized system form of nonlinear Mathieu–Hill equations that are linked because
of the excitation term cos(ωnt± Θn) and the coupled Equations (11)–(14) generated by
the general solution given by Equation (36) at x = 0 and at x = LMs. The mathematical
expression of the system of Equations (40) and (43) indicates, due to the presence of
nonlinear parametric terms on the left-hand side of equations and the presence of nonlinear
excitation terms on the right-hand side of the equations, the manifestation of:

- primary resonances for excitation frequencies η ' Ω1,η ≈ Ω3 [25] (p. 196),
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- super harmonic resonances for excitation frequencies η ' 1
k1

Ω1,η ≈ 1
k2

Ω3, k1, k2,
positive integers [25] (p. 211),

- subharmonic resonances for excitation frequencies η ' k1Ω1,η ≈ k2Ω3, k1, k2, posi-
tive integers [25] (p. 214),

- principal parametric resonances for excitation frequencies η ' 2Ω1,η ≈ 2Ω3 [25] (p. 425),
- combination resonances for excitation frequencies η ' Ω1 + Ω3,η ≈ Ω3 − Ω1 [25]

(pp. 202, 430),
- simultaneous resonances for excitation frequencies η ' kΩ1,η ≈ 1

k Ω3, with k positive
integer [25] (p. 188),

- internal resonances for k1Ω1 ' k2Ω3, with k1, k2, positive integers [25] (p. 381), η
being the excitation frequency. As can be seen, this model for the torsional forced
vibrations of driveshaft offer a huge possibility of investigation.

6. Case Study Analysis of Principal Parametric Resonance of the Global Tulip

As already mentioned above, one of the most important resonant cases of automotive
driveshafts is the principal parametric resonance [6,7] and [25] (p. 425), and for this
paper, the authors decided to investigate the amplitude of forced torsional nonlinear
parametric vibrations for the principal parametric resonance of the global tulip based on
Equation (40) as a case study. The experimental data for this case study are presented in the
literature by Steinwede [5] (pp. 69–144). The study considered a tulip–tripod joint having
the geometric characteristics of a geometric moment of inertia and nonuniformity of the
geometric moments of inertia, as presented in Table 1, for the driveshaft of a heavy-duty
SUV with tulip, tulip–tripode, midshaft, and bowl–balls–inner race joints. Comparing these
presented geometric characteristics with those considered by Steinwede [5] (p. 111), it can
be concluded that there is agreement. Using AUTOCAD software, J1T, J2T, and χnT were
computed based on the direct geometric characteristics (LT, LAT, LMs, RTTr, dAT, dCT, ST)
and the general geometry of the global tulip.

Table 1. Geometry characteristics of a tulip-tripode joint.

LT
[m]

LAT
[m]

LMs
[m]

RTTR
[m]

dAT
[m]

dCT
[m]

ST
[m2]

0.5(J1T + J2T)
[m4] χnT

0.095 0.065 0.470 0.035 0.027 0.049 0.019 9.1531 × 10−7 0.15

Presented in Table 2 are the physical properties of the material of the tulip–tripode
joint and global tulip as well as the amplitude of the maximum torque transmitted by the
car engine, considering that the material is steel-iron cast. Comparing these presented
material properties with those considered by Steinwede [5] (p. 112), it can be concluded
that they are in very close agreement.

Table 2. Material properties of a tulip-tripode joint and of the global tulip. Torque load.

ρ

[kg/m3]
G

[GPa]
Torsional Rigidity

[Nm/rad] Damping Ratio ζ1
Engine Torque Me

[Nm]

7850 77.3 1.11 × 104 0.0016–0.0318 580

Using the data presented in Tables 1 and 2 in Equation (41), the variation in Ω1, the
natural frequency in torsion of the global tulip, was computed as a function of the angle β1
using MATLAB software. The data are presented in Figures 7 and 8.
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Comparing these theoretical results with those presented in the literature [5] (pp. 119,
125, 138, 139), it can be concluded that there is agreement of the model with the experimental
data. To compute the amplitude of the forced torsional nonlinear parametric vibrations in
the region of principal parametric resonance, the method of harmonic balance was used [26]
(p. 66) for Equation (40) in seeking a solution given by the equation

ϕ1(t) = a cos
(ηt

2
)
+ b sin

(ηt
2
)
,

Φ1 =
√

a2 + b2,
(45)

where η ' 2Ω1(0) is the excitation frequency and Φ1 is the amplitude of the steady-state
vibration in the region of principal parametric resonance for the global tulip. The method
is very effective and gives good results, as mentioned in [27], being even now, after half
a century, a very convenient method for the analysis of large-scale nonlinear mechanical
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systems [27]. Before inserting Equation (45) in Equation (40), it is necessary to conduct some
mathematical manipulations of Equation (40), such as developing, in Maclaurin series, the
following functions around the value 0:

cos 2ϕ1 ' 1− 2ϕ2
1, (46)

sin 3ϕ1 ' 3ϕ1 − 4.5ϕ3
1, (47)√

1+a1 cos 2ϕ1
(1+a2 cos 2ϕ1)(1+χGTn cos 2ϕ1)

'
√

A1 +
√

B1 − 1
2
(
a2
√

A1 + χGTn
√

B1
)(

1− 2ϕ2
1
)
, (48)

where the terms A1 and B1 are expressed in Appendix A. Inserting now the solution given
by Equation (45) in Equation (40) and balancing the terms in cos

(ηt
2
)

and sin
(ηt

2
)

in the
unknowns a and b yields the system of equations a

[
A1

1+a2y + B1+γ
1+χGTny −

η

2Ω1

]
+ b[α1 − α2y]

[
η

2Ω1

]
= 0,

a[−α1 + α2y]
[
η

2Ω1

]
+ b
[

A1
1+a2y + B1+γ

1+χGTny −
η

2Ω1

]
= 0,

(49)

where y is a changing variable of the unknown amplitude Φ1 expressed by the relation

y = 1− 2Φ2
1, (50)

where the term γ is the participation of the engine excitation given by the equation

γ =
Me

IX2GT
, (51)

and the terms α1 and α2 are presented in Appendix A, while the terms of higher order are
neglected in the first order approximation [25] (pp. 425–426), [26] (pp. 63–68). Ensuring a
nontrivial solution of the system of Equation (49) yields the following equation, given by
setting the determinant of the system (49) to zero:[

A1

1 + a2y
+

B1 + γ

1 + χGTny
− η

2Ω1

]2
+ [α1 − α2y]2

[
η

2Ω1

]2
= 0. (52)

Equation (52) can be transformed into a bi-sextic algebraic equation in the unknown y

Γ1η
2y6 + Γ2η

2y5 + Γ3η
2y4 +

[
Γ4η

2 + Γ5η
]
y3 +

[
Γ6η

2 + Γ7η+ Γ8
]
y2 +

[
Γ9η

2 + Γ10η+ Γ11
]
y + Γ12η

2 + Γ13η+ Γ14 = 0, (53)

where η = η

2Ω1
is the nondimensional excitation frequency in the region of principal

parametric resonance and the terms Γ1 to Γ14 are presented in Appendix A. The amplitude
of the forced torsional nonlinear parametric vibrations in the region of principal parametric
resonance for the global tulip, as a function of nondimensional excitation frequency, is
given by the equation

Φ1(η) =

√
1− y•

2
, (54)

where y• represent the solution of Equation (53). Equations (53) and (54) were used
together with all the terms expressed in Appendix A to developed MATLAB software for
computing the amplitude of the forced torsional nonlinear parametric vibrations in the
region of principal parametric resonance for the global tulip for the steady-state torsional
vibrations of the automotive driveshaft. In the same mathematical manner, the amplitude
Φ3 of the forced torsional nonlinear parametric vibrations for the global bowl can be
computed as a function of nondimensional excitation frequency η = η

2Ω3
in the region of

principal parametric resonance η ≈ 2Ω3 for the steady-state torsional vibrations of the
automotive driveshaft.
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7. Results and Discussions

The first results obtained are represented by the natural frequency in torsion of the
midshaft given by the modified Equation (36).

νn =
ωn

2π
=

n
2LMs

√
G
ρ

, n = 1, 2, 3, . . . (55)

Using this equation, the first three-order natural frequencies for the given midshaft
are presented in Table 3 (see Table 1 for LMs and Table 2 for G and ρ).

Table 3. The first three-order natural frequencies in torsion of the midshaft.

Order 1 2 3

νn [Hz] 3338.31 6676.63 10,014.94

Equation (55) undoubtedly conforms with the experimental data [23] (p. 281). This
is also in accordance with the experiments of Steinwede that impose an investigation
of the forced torsional vibration of a driveshaft in the range 1–15 kHz [5] (p. 119). The
other studies in the literature found, through experiments, that the range of natural free
frequencies in the driveshaft torsion [18] in the range 131–906 Hz are, in effect, subharmonic
frequencies, that result in misunderstanding of the dynamic phenomena of the automotive
driveshaft. From the analyses in Figures 7 and 8, the variation in the natural frequency
in torsion of the global tulip is restricted to natural frequency in torsion of the midshaft
being in the range 3020–3052 Hz (see Figure 7), and the nondimensional natural frequency
in torsion of the global tulip is in the range 1.009–1.0198. Unfortunately, there are no
published experiments that investigate the natural free frequency in torsion only for the
global tulip. In Figures 9–14 is presented the variation of the nondimensional amplitude
for forced torsional nonlinear parametric vibration in the region of principal parametric
resonance for the global tulip, this being around 5.985 kHz. The nondimensional amplitude
presented in the graphs in Figures 9–14 represents the normalized amplitude with respect
to its maximum value for β1 = 5◦, ζ1 = 0.0016, χnT = 0.15. Analyzing Figures 9–14, it can be
remarked that for the cases we have a manifestation of “soft spring” with two branches
for η ≤ 1.8Ω1(0) that indicate the presence of interaction between principal parametric
resonance and the primary resonance, while for η ≥ 1.8Ω1(0), only one “hard spring”
branch exists, which indicates the manifestation of pure principal parametric resonance
for the global tulip [28] (pp. 132–160). The aspect highlighted by Figures 9–11 is that
with the increase in the angle β1, the maximum value of the nondimensional amplitude
decreases from 1 to 0.35. This aspect agrees with the experimental data in the literature [5]
(pp. 130–144). Figures 11–14 indicate that, for an angle β1 = 15◦ = const., the increase
in the damping ratio ζ1 in the range 0.008–0.0318 induces a decrease in the maximum
nondimensional amplitude from 0.35 to 0.22, and, thus, we can conclude that the model is
much more sensitive to the geometric variation in the driveshaft than to the damping effects.
Through experiments, Steinwede demonstrated that the nonlinear parametric dynamic
behavior of automotive driveshafts is like that of geared systems [5] (p. 117), and this is
why we observe similar pitting phenomena inside the tulip and inside the bowl of the CVJ
joints’ tulip–tripod and bowl–balls–inner race [5] (pp. 88–94). Moreover, it can be seen from
Figures 11–14 that the increase in damping ratio ζ1 in the range 0.008–0.0318 induces an
increase between the branches of the amplitude for both areas of “soft spring” and “hard
spring”, being a manifestation of the multiple “jumps” between the amplitude branches,
where it is known that the inferior branch is usually unstable, while the superior branch is
stable [25] (pp. 426–429), [28] (pp. 132–160). This aspect will “conduct” dynamic behavior
through a chaotic dynamic that has, as a practical effect, an accelerating effect on pitting
phenomena, as mentioned by Steinwede [5] (pp. 88–94), or in the worst case, results in
the manifestation of cracks followed by failure (breaking) of the global tulip [5] (p. 89).
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Unfortunately, there are no published studies analyzing, in detail, the dynamic behavior of
each element of the automotive CVJ driveshaft: tulip, global tulip, bowl, global bowl, and
midshaft, apart from [5], where all studies have analyzed the global dynamic behavior of
the automotive driveshaft. Even so, there is huge confusion regarding the interpretation of
experimental data due to the misunderstanding of specific global nonlinear phenomena,
such as in [18].
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Based on the aspects presented above, the direction for future research involves the
investigation of analytical solutions of the system of Equations (40) and (43) using the
multiple scale method for each type of resonance, as mentioned before. Another future
research direction is to investigate stability in the proximity of each possible resonance type
for steady state as well as nonstationary motion.
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8. Conclusions

The present work introduces a complex model for torsional vibrations of the auto-
motive driveshaft, a model that considers most of the phenomena observed in industrial
practice and the exploitation of cars such as:

- nonuniformity in the geometric and kinematic isometry of the driveshaft;
- nonuniformity in the geometric and mass moments of inertia of the cross section for

the tulip, tripod, inner race, and bowl;
- the stiffness and the damping link of the joints of the driveshaft tulip–tripod–midshaft

and midshaft–inner race–balls–bowl;
- harmonic excitation of the driveshaft due to the car engine;
- impulsive excitation of the driveshaft due to road excitation.
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In addition, the model allows the development of future research directions for the
investigation of primary resonances, super harmonic resonances, subharmonic resonances,
principal parametric resonances, combination resonances, internal resonances, and simul-
taneous resonances as well as for investigation of the stability for steady-state as well
as nonstationary motion. Therefore, this model of dynamic torsional behavior for the
automotive driveshaft can be used in the early stages of design as well in predicting the
durability of automotive driveshafts. Moreover, it is important that the model be added
in the design algorithm for predicting the comfort elements of motoring to adequately
account for this kind of dynamic behavior, which induces excitations to the car structure as
mentioned in the literature [15].
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Appendix A. Mathematical Expressions of the Coefficients Used in the
Solution Algorithm

ζ1 =
∆GT√

4π2 + ∆2
GT

, (A1)

χGTn =
0.5(J1T + J2T)ρLT sin2 β1

IX2GT
, (A2)

a1 =
χGTn

1− JX2ATρLAT

IX2GT

, (A3)

a2 =

(
LAT

LT

)2 IX2GT

JX2ATρLAT

χGTn

1 +
(

LAT
LT

)2
[

IX2GT
JX2ATρLAT

− 1
] , (A4)

A1 = 1− a1 − χGTn
a2 − χGTn

, (A5)

B1 =
a1 − χGTn
a2 − χGTn

, (A6)

α1 = 2ζ1

(√
A1 +

√
B1

)
, (A7)

α2 = 2ζ1

(
a1
√

A1 + χGTn
√

B1

)
, (A8)

Γ1 = [α2a2χGTn]
2, (A9)
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Γ2 = −2α1α2a2
2χ

2
GTn + 2α2

2a2χGTn(a2 + χGTn), (A10)

Γ3 = χ2
GTna2

2

(
1 + α2

1

)
− 4α1α2a2χGTn(a2 + χGTn) + α

2
2

[
(a2 + χGTn)

2 + 2a2χGTn

]
, (A11)

Γ4 = 2a2χGTn(a2 + χGTn)
(
1 + α2

1
)
− 2α1α2

[
(a2 + χGTn)

2 + 2a2χGTn

]
+ 2α2

2(a2 + χGTn), (A12)

Γ5 = −2A1a2χ
2
GTn − 2B1χGTna2

2, (A13)

Γ6 =
[
(a2 + χGTn)

2 + 2a2χGTn

](
1 + α2

1

)
− 4α1α2(a2 + χGTn) + α

2
2, (A14)

Γ7 = −2A1

(
χ2

GTn + 2χGTna2

)
− 2B1

(
a2

2 + 2a2χGTn

)
, (A15)

Γ8 = (A1χGTn + B1a2)
2, (A16)

Γ9 = 2(a2 + χGTn)
(

1 + α2
1

)
− 2α1α2, (A17)

Γ10 = −2A1(a2 + 2χGTn)− 2B1(2a2 + χGTn), (A18)

Γ11 = 2A2
1χGTn + 2B2

1a2 + 2A1B1(a2 + χGTn), (A19)

Γ12 = 1 + α2
1, (A20)

Γ13 = −2(A1 + B1), (A21)

Γ14 = (A1 + B1)
2, (A22)

ζ3 =
∆GB√

4π2 + ∆2
GB

, (A23)

χGBn =
0.5(J1B + J2B)ρLB sin2 β2

IX2GB
, (A24)

a3 =
χGBn

1− JX2ABρLAB

IX2GB

, (A25)

a4 =

(
LAB

LB

)2 IX2GB

JX2ABρLAB

χGBn

1 +
(

LAB
LB

)2
[

IX2GB
JX2ABρLAB

− 1
] . (A26)
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