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Abstract: For the inverse problem in physical models, one measures the solution and infers the model
parameters using information from the collected data. Oftentimes, these data are inadequate and
render the inverse problem ill-posed. We study the ill-posedness in the context of optical imaging,
which is a medical imaging technique that uses light to probe (bio-)tissue structure. Depending
on the intensity of the light, the forward problem can be described by different types of equations.
High-energy light scatters very little, and one uses the radiative transfer equation (RTE) as the
model; low-energy light scatters frequently, so the diffusion equation (DE) suffices to be a good
approximation. A multiscale approximation links the hyperbolic-type RTE with the parabolic-type
DE. The inverse problems for the two equations have a multiscale passage as well, so one expects
that as the energy of the photons diminishes, the inverse problem changes from well- to ill-posed. We
study this stability deterioration using the Bayesian inference. In particular, we use the Kullback–
Leibler divergence between the prior distribution and the posterior distribution based on the RTE
to prove that the information gain from the measurement vanishes as the energy of the photons
decreases, so that the inverse problem is ill-posed in the diffusive regime. In the linearized setting,
we also show that the mean square error of the posterior distribution increases as we approach the
diffusive regime.

Keywords: inverse problems; Bayesian approach; stability deterioration; multiscale modeling; asymp-
totic analysis

1. Introduction

Optical tomography is a well-defined inverse problem. In the lab, laser beams with
high-energy photons are injected into bio-tissues to detect the interior optical property [1].
This helps identify unhealthy bio-tissues for treatment. Mathematically, this amounts to
reconstructing the optical coefficients, such as the scattering and the absorption coefficients
in the radiative transfer equation (RTE), which is a model equation that describes the
propagation of photon particles [2]. The equation, in its simplest form, reads

∂t f +
1
ε

v · ∇x f =
1
ε2Q[ f ] . (1)

The unknown f (t, x, v) describes the number of photon particles at time t ∈ R+, location
x ∈ Ω ⊆ Rd, and traveling with velocity v ∈ Sd−1. The dimension of the problem is d = 2, 3.
v is the travel direction of the particles and therefore belongs to a unit ball. The two terms
in the equation represent the transport and the scattering effect, respectively. The transport
term characterizes ẋ = v, while the scattering term Q[ f ] describes the way the photon
particles interact with the media. When the temperature is fixed, this operator is a linear
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operator, whereas if the laser beam heats up the tissue,Q reflects the nonlinear dependence
on the temperature. This is the term that encodes the optical property of the media.

In the steady state, the ∂t f term is dropped, and the equation balances the transport
term and the scattering term. The equation is well-posed if equipped with Dirichlet-type
boundary condition [3–6]:

f |Γ− = φ , (2)

where Γ± collects the coordinates on the physical boundary ∂Ω with the velocity either
pointing in or out of the domain:

Γ± = {(x, v) : x ∈ ∂Ω ,±v ·nx > 0} = ∪x∈∂ΩΓ±(x) , where Γ±(x) = {v : ±v ·nx > 0} .

In practice, the laser light is shined into the domain, meaning that φ is prescribed.
Then, one detects the number of photons scattered out of the domain by measuring f |Γ+ .
We term this operator the albedo operator:

AQ : f |Γ− → f |Γ+ ,

where the subindex Q reflects the influence of Q. Therefore, optical tomography amounts
to reconstructing the coefficients in Q using the information in the operator AQ. The
general well-posedness theory of such an inverse problem was addressed in the pioneering
papers [7,8]. The result on the stability was established in [9–11], and see [12] for a review.

One key parameter in Equation (1) is ε, which is the Knudsen number. It describes the
regime the system is in. By definition, the Knudsen number is the ratio of the mean-free
path and the domain length. Physically, if a photon has low energy (visible or near-infrared
light), it travels only a short distance before being scattered, and the mean-free path is short
compared to the domain length, leading to a small ε. When this happens, one typically
observes a diffused light phenomenon, and the received images are blurred. The situation
is termed the diffusion effect, and in this regime, RTE, either linear or nonlinear, can
be asymptotically approximated by a diffusive equation that characterizes macroscopic
quantities such as the density ρ(x) =

∫
f (x, v)dv. Depending on the form of Q, this

limiting equation for ρ is accordingly adjusted. Details regarding the diffusion limit can be
found in [13,14].

Intuitively, as one decreases the photon energy, the received picture loses its crisp, and
the reconstruction becomes more unstable. The perturbation observed in the measurement
is enlarged in the reconstructed coefficients. This phenomenon has been been numerically
observed in [1,15,16] and proved rigorously in [17], in which the authors investigate the
stability deterioration of the inverse problem as ε→ 0. However, all these results heavily
depend on the theoretical framework where it is assumed that one has the access to the
full map A. This amounts to sending in all kinds of incoming data φ and taking the
measurement over the entire Γ+.

These theoretical results are helpful in building the foundation for understanding
the stability deterioration, but the setup is infeasible numerically or practically. In the lab,
a finite number of incoming configurations can be taken, and the detectors can measure
outgoing photons in a finite number of locations. Therefore, new theory needs to be
developed to account for this real situation [18,19]. To put the problem in a mathematical
framework, we denote {φj}J

j=1 as the incoming data and {xk}K
k=1 as the location of the

detectors; then, the measurements are

G = {Gjk}J,K
j=1,k=1 , with Gjk =

∫
v∈Γ+(xk)

AQ[φj]|v · nxk |dv .

Equivalently, denoting f j as the solution to (1) with the boundary condition in (2) being φj,
then:

Gjk =
∫

v∈Γ+(xk)
f j(xk, v)|v · nxk |dv .



Computation 2022, 10, 15 3 of 24

With the finite amount of data points, to find the coefficients inQ, one can either adopt the
PDE-constrained minimization algorithms [20–22] or employ the Bayesian inference [23–25].
While this finite setting greatly affects the well-posedness argument [26–28], the physical
intuition still holds true in the sense that the reconstruction is expected to become more and
more unstable as ε diminishes.

In this paper, we quantify the stability deterioration in the Bayesian inference frame-
work with a finite number of data points. To quantify “stability”, we propose two measures:
one is a global measure that evaluates the information gain by comparing the posterior and
prior distributions, and the other is a local measure that characterizes the “flatness” of the
posterior distribution around the MAP (maximum a posteriori) point. More particularly, at
the global level, we measure the difference between the posterior and prior distributions
using the KL (Kullback–Leibler) divergence. Since the posterior distribution of the coeffi-
cients takes both the prior knowledge and the measured data into account, this divergence
essentially characterizes by how much the data are driving the final guess away from the
prior guess. At the local level, we estimate the Hessian of the posterior distribution around
the MAP point, which essentially describes the uncertainty level of the optimizer. For both
measures, we analyze their dependence on ε, and we reveal the stability relation between
two regimes, the transport regime and diffusive regime, in a more rigorous way. We will
present our theory through the lens of both linear and nonlinear RTEs, but we shall mention
that other multiscale kinetic models may have such a relation in the inverse setting; see for
instance in [29–31].

The rest of the paper is organized as follows. In the next section, we recall some
formulation in the Bayesian inference problem and demonstrate a general relation in the KL
divergence between prior and posterior distribution, through which we will address the
stability deterioration from the global point of view. In Section 3, we consider the inverse
problem for the linear radiative transfer equation, and we show that the KL divergence is of
order ε, which diminishes as we approach the diffusive regime. We extend the investigation
to the nonlinear RTE in Section 4 and obtain similar results. In Section 5, we focus on the
local viewpoint by estimating the second derivative of the parameter-to-measurement map,
and we show that it decreases at the order of ε, indicating that the posterior distribution
becomes flatter near the diffusive regime and therefore is less sensitive to the measurement
data, rendering the inverse problem more unstable. We summarize our theoretical results
and provide some numerical evidence in Section 6. A final conclusion of the paper is drawn
in Section 7.

All the discussion in these sections finally achieve the following aim of the paper: to
demonstrate, in the Bayesian inference framework, the stability deterioration of optical
imaging when the impinging light uses low-energy photons.

2. Bayesian Formulation Basics

Bayesian inference is one of the most popular numerical methods for inferring un-
known parameters. In this section, we give a quick overview of definitions to be used in
this paper.

To start, we define the parameter to measurement map G : Bσ 7→ Rq and denote η the
measurement error:

d = G(σ) + η ,

where the measurement d ∈ Rq, the measurement error η ∈ Rd, and σ ∈ B ⊂ Bσ, the
admissible set in a pre-defined Banach space Bσ:

B = {σ ∈ Bσ : ‖G(σ)‖L∞(Ω) < CB} . (3)

Note that Bσ can be a function space specified in (10), and σ is a function in this space.
Throughout the paper, we assume that η is an additive noise generated by a Gaussian
distribution N (0, Γη), and Γη is a q× q dimensional matrix.
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In Bayesian inference, one needs to prepare a prior distribution for σ. Denote F as
the σ-algebra of B and µ0 as the prior probability measure on B. According to the Bayes’
rule, the posterior distribution µpost = µ(σ|d) is given according to its Radon–Nikodym
derivative with respect to dµ0:

dµpost

dµ0
∝

1
Z

exp
(
−1

2
‖G(σ)− d‖2

Γη

)
, (4)

where Z is the normalization constant:

Z =
∫

B
exp

(
−1

2
‖G(σ)− d‖2

Γη

)
dµ0(σ) ,

and the mismatch is weighted by Γη

‖G(σ)− d‖2
Γη

= (G(σ)− d)TΓ−1
η (G(σ)− d) .

Suppose µ1,2 are two distinct probability measures; then, the KL divergence measures
the distance between them:

DKL(µ1|µ2) =
∫
X

log
(

dµ1

dµ2

)
dµ1 .

when this definition is used in Bayesian inference to quantify the relative gain through the
measurement process, one defines the relative entropy, and in the particular setting of (4),
we have the following proposition.

Proposition 1. Assume σ ∈ B; then, the KL divergence between µpost and µ0 has the following
estimate:

DKL(µ0|µpost) ≤ C
∫

B

∫
B

∣∣∣(G(σ′)− G(σ))Γ−1
η (G(σ) + G(σ′)− 2d)

∣∣∣dµ0(σ
′)dµ0(σ) (5)

for some positive constant C independent of B.

Proof. Since µ0 and µpost are mutually absolutely continuous, according to (4), we have

DKL(µ0|µpost) =
∫

B
log
(

dµ0

dµpost

)
dµ0

=
∫

B

(
1
2
‖G(σ)− d‖2

Γη
+ log Z

)
dµ0 .

Denoting B(σ) = 1
2‖G(σ)− d‖2

Γη
, we proceed with:

DKL(µ0|µpost) =
∫

B

[
B(σ) + log

(∫
B

e−B(σ
′)dµ0(σ

′)

)]
dµ0(σ)

=
∫

B

[
− log e−B(σ) + log

(∫
B

e−B(σ
′)dµ0(σ

′)

)]
dµ0(σ)

≤ C
∫

B

[
−e−B(σ) +

(∫
B

e−B(σ
′)dµ0(σ

′)

)]
dµ0(σ)

≤ C
∫

B

∫
B
|e−B(σ) − e−B(σ

′)|dµ0(σ
′)dµ0(σ)

≤ C
∫

B

∫
B
|B(σ)−B(σ′)|dµ0(σ

′)dµ0(σ)



Computation 2022, 10, 15 5 of 24

where we used the Lipschitz continuity of ex in a bounded interval. The constant C depends
on the size of d and the boundedness of G. Since σ ∈ B, according to (3), ‖G(σ)‖∞ < CB,
making C < ∞. The inequality (5) holds if we plug in the expression of B(σ) to get:

B(σ)−B(σ′) = 1
2
[G(σ′)− G(σ)]Γ−1

η [G(σ) + G(σ′)− 2d] .

In view of (5), given that Γ−1
η and G(σ)+G(σ′)− 2d are at least bounded, the difference

between µpost and µ0 is controlled by the difference between G(σ) and G(σ′). This means if
G is a slow-varying map over the whole admissible set B, then µpost only slightly differs
from µ0, indicating that the information gain is small. In the following sections, we justify
this property for RTE in both linear and nonlinear settings in the ε→ 0 regime.

3. Global View Example 1: Linear Radiative Transfer Equation

The first example we consider is the linear radiative transfer equation:{
v · ∇x f (x, v) = −εσa(x) f (x, v) + 1

ε σs(x)L f (x, v) ,
f
∣∣
Γ−

= φ ,
(6)

where x ∈ Ω ⊆ Rd, v ∈ Sd−1, L f = 1
|Sd−1|

∫
Sd−1 f dv− f is the collision operator, σa is the

absorption coefficient, and σs is the scattering coefficient. Both σs and σa here are seen
as functions supported on Ω. The boundary Γ± = {(x, v) ∈ Ω × Sd−1| ± v · nx > 0}
denotes the incoming (Γ−) and outgoing (Γ+) boundaries respectively, and thus, incoming
boundary conditions are considered here.

In the following, we first establish the the parameter-to-measurement map G. Then,
according to Proposition 1, the core of the quantification lies in analyzing how fast G varies
with respect to σ, for which we derive its Fréchet derivative and estimate its dependence
on ε.

3.1. First Derivative of the Parameter-to-Solution Map

Let σ(x) = (σs(x), σa(x)) be the short hand notation, x ∈ Ω, and assume that only a
finite series of incoming data {φj}J

j=1 are generated in the experiments, and the outgoing

data are collected only at K discrete boundary locations {xk}K
k=1; then, G is defined as:

G : σ(x) 7→
{∫

Γ+(xk)
f (xk, v; φj)v · ndv

}
j=1,···J, k=1,··· ,K

. (7)

We also define the parameter-to-solution map S as:

S : σ(x) 7→ { f (xk, v; φj)}j=1,···J, k=1,··· ,K ,

then G and S are related via:

G(σ) =
∫

Γ+

S(σ)v · ndv .

The above relation can be understood more precisely component-wise. We write
G = {Gjk}j=1,···J, k=1,··· ,K and S = {Sjk}j=1,···J, k=1,··· ,K, then

Gjk(σ) =
∫

Γ+(xk)
f (xk, v; φj)v · ndv =

∫
Γ+(xk)

Sjk(σ)v · ndv.

Consequently, finding the derivative of G in the σ̂ direction amounts to finding the deriva-
tive of the map S ,
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G ′jk(σ)σ̂ = lim
t→0

1
t

∫
Γ+(xk)

( fσ+tσ̂(xk, v; φj)− fσ(xk, v; φj))v · ndv =
∫

Γ+(xk)
S ′jk(σ)σ̂v · ndv, (8)

where the subscript in f denotes the parameter used in obtaining the solution f , and σ̂ is
an admissible variation of σ defined below. To abbreviate the notation, we denote

f = fσ(x, v; φ), f̂ = fσ+tσ̂(x, v; φ), w = S ′(σ)σ̂ (9)

and omit the subscripts j, k when the calculations are valid for all j and k.
We now specify the set of σ as follows:

Bσ = {σ ∈ C1(Ω) : σ > 0, max{‖σ‖L∞(Ω), ‖σ−1‖L∞(Ω), ‖∇(σ−1)‖L∞(Ω)} < C1} . (10)

Then, from [32] (see Proposition 3.1), we have that for σ ∈ Bσ, ‖G(σ)‖L∞(Ω) ≤ C. We then
call a parameter σ̂ ∈ Bσ an admissible variation of σ if the perturbed parameter σ + tσ̂ ∈ Bσ

for sufficiently small t.
Hereafter, assume that the boundary condition φ ∈ L∞(Γ−). We cite the following two

results from [4]. The first one indicates that G ′ from (8) is well defined, and the second one
provides an estimate of w defined in (9).

Lemma 1. Let φ ∈ L∞(Γ−); then, the operator S is a Lipschitz continuous mapping from Bσ to
F , where F is defined as

F = { f : f ∈ L∞(Ω× Sd−1), v · ∇ f ∈ L∞(Ω× Sd−1)} .

Proposition 2. Denote

A f = v · ∇x f , Cσ f = εσa(x) f − 1
ε

σs(x)L f .

For σ ∈ Bσ and admissible variation σ̂, w is the unique solution of the following equation:{
Aw + Cσw = −Cσ̂ f ,
w
∣∣
Γ−

= 0 ,
(11)

where f ∈ F is the solution to (6) with parameter σ. Moreover, for ε = 1, there holds

‖w‖L∞(Ω) ≤ C‖σ̂‖L∞(Ω)‖φ‖L∞(Γ−) .

3.2. Dependence on Knudsen Number

We discuss the dependence of the first derivative of the parameter-to-measurement
map G on the Knudsen number ε and use it to build the asymptotic connection in the KL
divergence between µ0 and µpost. The proofs are carried out by asymptotic analysis. First,
we recall the diffusion limit of the RTE.

Theorem 1. Suppose f (x, v) satisfies Equation (6) with a smooth boundary condition

φ(x, v) = ξ(x)− ε

σs
v · ∇xρ f (x) , (12)

where ξ(x) ∈ C2(∂Ω), and ρ f solves{
−Cd∇ ·

(
1
σs
∇ρ f

)
+ σaρ f = 0 ,

ρ f (x)
∣∣
∂Ω = ξ(x) .

(13)
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Then, φ ∈ L∞(Γ−), and f (x, v)→ ρ f (x) as ε→ 0. Moreover, we have

‖ f − ρ f ‖L∞(Ω×Sd−1) ≤ CBσ
ε .

The proof is very similar to that in [32] (see the Appendix therein), but we still include
the details here as it will be used in proving the next proposition.

Proof. We decompose the solution as

f = f0 + ε f1 + ε2 f2 + ε3 fr , (14)

where f0, f1, and f2 are chosen as

f0 = ρ f ,

f1 = − 1
σs

v · ∇xρ f ,

f2 = L−1
[
− v

σs
· ∇x

(
v
σs
· ∇xρ f

)
+

σa

σs
ρ f

]
.

In order for f2 to be well defined above, we need − v
σs
· ∇x

(
v
σs
· ∇xρ f

)
+ σa

σs
ρ f to be in the

range of L, which then leads to〈
v
σs
· ∇x

(
v
σs
· ∇xρ f

)〉
v
=

σa

σs
ρ f .

Equipping it with the boundary condition ρ f |∂Ω = ξ(x)determines ρ f . Note that ξ(x) ∈ C2(∂Ω),
the standard elliptic estimate gives the global boundedness of ρ, ∂xi ρ and ∂xixj ρ. Since L−1

is a bounded operator on Null(L)⊥, f2 is uniformly bounded. Since L−1 and ∇x commute,
similar analysis can be applied to show that ∂xi f2 is uniformly bounded. Plugging the
expansion (14) into (6), we obtain the equation for fr:

v · ∇x fr + εσa fr −
1
ε

σsL fr = −σa f2 −
1
ε

v · ∇x f2 −
1
ε

σa f1

with boundary condition fr
∣∣
Γ−

= −εL−1
[
− v

σs
· ∇x

(
v
σs
· ∇xρ f (x)

)
+ σa

σs
ρ f (x)

]
. Conse-

quently, fr satisfies RTE with O(ε) boundary condition and O(1/ε) source; therefore,
from the maximum principle, ‖ fr‖L∞(Ω×Sd−1) ≤ O(1/ε). Recalling (14), we have

f = ρ f − ε
1
σs

v · ∇xρ f +O(ε2) .

Using the boundedness of ∇xρ f , we conclude the theorem.

Remark 1. In our case, we suppress the boundary layer by proposing a special boundary condition
for f as defined in (12). This result can be extended to more general boundary conditions, in which
case boundary layer analysis is inevitable, see [13] for details.

The proposition below demonstrates the dependence of the first derivative of G on ε.

Proposition 3. For every σ ∈ Bσ and admissible variation σ̂, there holds

G ′(σ)σ̂ = O(ε) .

Proof. Considering (11) with perturbation σ̂ := (σ̂s, σ̂a), we expand w and f as

w = w0 + εw1 + ε2wr, f = f0 + ε f1 + ε2 f2 + ε3 fr . (15)
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Then, at O(1/ε), we have −σsLw0 = σ̂sL f0 = 0, which indicates that

w0(x, v) = w0(x) . (16)

At O(1), we have v · ∇w0 − σsLw1 = σ̂sL f1, then using the form of f1 = − 1
σs

v · ∇ f0, we
obtain σsLw1 = v · ∇w0 − σ̂s

σs
v · ∇ f0, and thus

w1 = − 1
σs

v · ∇w0 +
σ̂s

σ2
s

v · ∇ρ f , (17)

where we have used f0 = ρ f . To get an evolution equation for w0, we look at the O(ε)
level and obtain: v · ∇xw1 + σaw0 − σsLwr = −σ̂a f0 + σ̂sL fr. Substituting (16) and (17),
and taking the average in v leads to〈

v · ∇x

(
v
σs
· ∇xw0

)〉
v
− σaw0 = σ̂aρ f +

〈
v · ∇x

(
σ̂s

σ2
s

v · ∇xρ f

)〉
v

. (18)

From the zero boundary condition of w, we also have

w0
∣∣
∂Ω = 0 . (19)

Substituting (15) into (11), we get

v · ∇xwr + εσawr −
σs

ε
Lwr =− σa

(
1
ε

w0 +
σ̂s

σ2
s

v · ∇xρ f −
v
σs
· ∇xw0

)
− 1

ε
v · ∇x

(
σ̂s

σ2
s

v · ∇xρ f −
v
σs
· ∇xw0

)
− σ̂a

ε
f +

σ̂s

ε
L( f2 + ε fr) , (20)

with boundary condition wr
∣∣
Γ−

= −εw1
∣∣
Γ−

. Again from the maximum principle,
‖wr‖L∞(Ω×Sd−1) ≤ O(1/ε). Here, the boundedness of w0, ∂xi w0 are again from the el-
liptic estimate of (18).

Now, recalling the definition of the first derivative of the forward map, we have

G ′(σ∗)σ̂ =
∫

Γ+

w(x, v; φ)v · ndv

=
∫

Γ+

(
w0(x; φ) + εw1(x, v; φ) + ε2wr(x, v; φ)

)
v · ndv = O(ε),

which concludes the proof. Here, the first term vanishes due to the zero boundary condi-
tion (19).

Theorem 2. For a linear RTE problem, the KL divergence between µpost and µ0 vanishes as ε→ 0,
i.e.,

DKL(µpost|µ0) = O(ε) .

Proof. From (5), we have that

DKL(µ0|µpost) .
∫

B

∫
B

∣∣∣(G(σ′)− G(σ))Γ−1
η (G(σ) + G(σ′)− 2d)

∣∣∣dµ0(σ
′)dµ0(σ)

=
∫

B

∫
B

∫ 1

0

∣∣∣G ′(σ + s(σ′ − σ))(σ′ − σ)Γ−1
η (G(σ) + G(σ′)− 2d)

∣∣∣dsdµ0(σ
′)dµ0(σ) .

Then, from Proposition 3 and boundedness of G(σ), the result is immediate.
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4. Global View Example 2: Nonlinear Radiative Transfer Equation

Along the same vein, we extend our investigation to the nonlinear RTE in this section:
εv · ∇x f (x, v) = σ(x)

(
T(x)4 − f (x, v)

)
,

ε2∆T(x) = σ(x)
(
T(x)4 − ρ(x)

)
,

f
∣∣
Γ−

= φ(x, v) ,

T
∣∣
∂Ω = TB(x).

(21)

Here, x ∈ Ω ⊆ Rd, v ∈ Sd−1, f (x, v) is again the radiation intensity and T(x) is the
temperature. ρ = 1

|Sd−1|
∫
Sd−1 f dv is the total intensity. ε is the Knudsen number, which is

defined to be the ratio of the mean free path to a characteristic length of the problem [33].
The boundary conditions for f are on the incoming boundary Γ−.

In the following, we first recall the diffusion limit of (21); then, we analyze the first
derivative of the parameter to the measurement map in the inverse setting and investigate
its dependence on ε so as to build a connection between µpost and µ0.

4.1. First Derivative of the Parameter-to-Solution Map

For the nonlinear RTE problem, the inverse problem is again set up to recover the
scattering coefficient σ by measuring the outgoing intensity flux. Therefore, the parameter-
to-measurement map is defined as

G : σ(x) 7→
∫

Γ+

v · n f dv .

More particularly, assume that only a finite series of incoming data, {φj}J
j=1, are generated

in the experiments and injected into the tissue, and the outgoing data are collected only at
K discrete boundary locations {xk}K

k=1; then

G : σ(x) 7→
{∫

Γ+(xk)
f (xk, v; φj, TB,j)v · ndv

}
j=1,···J, k=1,··· ,K

.

We also define the parameter-to-solution maps S1 and S2

S1 : σ(x) 7→ { f (xk, v; φj, TB,j)}j=1,···J, k=1,··· ,K , (22)

S2 : σ(x) 7→ {T(xk; φj, TB,j)}j=1,···J, k=1,··· ,K ; (23)

then, the forward map G is written

Gjk(σ) =
∫

Γ+(xk)
f (xk, v; φj, TB,j)v · ndv =

∫
Γ+(xk)

S1 jk(σ)v · ndv.

Consequently, finding the derivative of G amounts to finding the derivative of the map S1,
namely,

G ′jk(σ)σ̂ = lim
t→0

1
t

∫
Γ+(xk)

( fσ+tσ̂(xk, v; φj, TB,j)− fσ(xk, v; φj, TB,j))v · ndv

=
∫

Γ+(xk)
S1
′
jk(σ)σ̂v · ndv , (24)

where we use the same notation to index the parameter of f as what we did for the linear
RTE. Since f is nonlinearly coupled to T, we also need to find the derivative of the map S2,
which is defined similarly as

S ′2 jk(σ)σ̂ = lim
t→0

1
t
[Tσ+tσ̂(x; φ, TB)− Tσ(x; φ, TB)] .
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Here, σ ∈ Bσ defined in (10) and σ̂ is an admissible variation of σ.
To abbreviate the notation, we denote

f = fσ(x, v; φ, TB), f̂ = fσ+tσ̂(x, v; φ, TB), w f = S ′1(σ)σ̂ , (25)

T = Tσ(x; φ, TB), T̂ = Tσ+tσ̂(x; φ, TB), wT = S ′2(σ)σ̂ , (26)

and omit the subscript j, k when the calculations are valid for all j and k.

Proposition 4. Let φ ∈ L∞(Γ−). Then, the operators S1 and S2, defined in (22) and (23), are
Lipschitz continuous mappings from L∞(Ω)× L∞(Ω) to F f ×FT , where

F f = { f : f ∈ L∞(Ω× Sd−1), v · ∇ f ∈ L∞(Ω× Sd−1)} , and FT = {T : T ∈ L∞(Ω)} .

Proof. We follow Theorem 3.3 in [4] and extend the proof to the nonlinear RTE. Let σ ∈ Bσ

and σ̂ be admissible, and denote ( f , T), ( f̂ , T̂) be corresponding solutions of (21):
εv · ∇x f = σ(T4 − f ) ,
ε∆T = σ(T4 − ρ) ,
f
∣∣
Γ−

= φ(x, v), T
∣∣
∂Ω = TB(x) ,

and 
εv · ∇x f̂ = (σ + tσ̂)((T̂)4 − f̂ ) .
ε∆T̂ = (σ + tσ̂)((T̂)4 − ρ̂) ,
f̂
∣∣
Γ−

= φ(x, v), T̂
∣∣
∂Ω = TB(x) .

For sufficiently small t, we write the perturbed solutions

f̂ = f + t f̃ , T̂ = T + tT̃ ;

then, it is straightforward to show that ( f̃ , T̃) satisfy
εv · ∇x f̃ = σ[4T3T̃ − t f̃ ] + σ̂(T4 − f ) +O(t2) ,
ε2∆T̃ = σ[4T3T̃ − ρ̃] + σ̂(T4 − ρ) +O(t2) ,
f̃
∣∣
Γ−

= 0, T̃
∣∣
∂Ω = 0 .

(27)

From Theorem 3.1 in [33], for TB ∈ H1/2(∂Ω)∩ L∞(∂Ω), let γ be that ‖TB‖L∞(∂Ω) ≤ γ, there
exists a unique solution ( f̃ , T̃) to (27) that satisfies the following thanks to the maximum
principle:

‖T̃‖L∞(Ω×Sd−1) = ‖ 1
t (T − T̂)‖L∞(Ω×Sd−1) ≤ γ ,

‖ f̃ ‖L∞(Ω×Sd−1) = ‖ 1
t ( f − f̂ )‖L∞(Ω×Sd−1) ≤ B(γ) .

(28)

As an immediate consequence, we have the following control of the first derivative of
the parameter-to-solution map.

Proposition 5. For σ ∈ Bσ and admissible variation σ̂, w f and wT are the unique solutions of the
following system: 

εv · ∇xw f = σ
(

4T3wT − w f

)
+ σ̂(T4 − f ) ,

ε2∆wT = σ(4T3wT − wρ) + σ̂(T4 − ρ) ,
w f
∣∣
Γ−

= 0, wT
∣∣
∂Ω = 0 ,

(29)
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where ( f , T) and ( f̂ , T̂) satisfy (21) with parameter σ and σ+ tσ̂, respectively. Moreover, there holds:

‖w f ‖L∞(Ω) ≤ C f , ‖wT‖L∞(Ω) ≤ CT , (30)

where CT > 0 and C f is a constant depending on CT .

Proof. From the definition of w f and wT , (29) comes directly from (27). Then, the bounds (30)
can be concluded from (28).

4.2. Dependence on Knudsen Number

To analyze the dependence of G ′ on ε, we first recall the asymptotic result in the
forward setting.

Theorem 3. Let ( f (x, v), T(x)) solve (21); then, as ε→ 0, the pair converges to (T0(x)4, T0(x)),
with T0(x) solving the nonlinear diffusion equation,{

Cd∇ ·
(

1
σ(x)∇T0(x)4

)
+ ∆T0 = 0 ,

T0
∣∣
∂Ω = ζ(x),

(31)

where Cd is a constant depending on dimension. ζ(x) is determined from φ(x, v) and TB(x) by
solving a Milne problem.

This result is rigorously proved in [33], and we only sketch the main steps here.

Proof. Consider the asymptotic expansion in ε in the bulk area:

f = f0 + ε f1 + ε2 f2 + · · · , and T = T0 + ε2T2 + · · · .

Then, at the leading order O(ε0), we have

T4
0 = f0 = ρ0 , (32)

which implies that f0 is uniform in v. The next order O(ε) leads to

f1 = − 1
σ

v · ∇ f0 . (33)

At O(ε2), we have {
v · ∇x f1 = σ(4T3

0 T2 − f2) ,
∆T0 = σ(4T3

0 T2 − ρ2) .

Taking the average in v for the first equation and subtracting it from the second one,
we have

1
|Sd−1|

∫
Sd−1

v · ∇x

(
− 1

σ
v · ∇ f0

)
dv + ∆T0 = 0 . (34)

Using (32) in (34) implies that

Cd∇ ·
(

1
σ
∇T4

0

)
+ ∆T0 = 0 , (35)

where Cd depends on the dimension.
To determine the boundary condition for T0, we need to take into account the boundary

layer effect. More precisely, let Ω0 be the interior of the domain so that Ω \ Ω0 is the
boundary area. As before, we let y = x−x̃

ε · n be the stretching variable, where x̃ ∈ ∂Ω
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and n is the unit outer normal direction at x̃; then, y ∈ [0, ∞). For x ∈ Ω \ Ω0, let
fBL(y, v) = f (x, v), TBL(y) = T(x), and they satisfy the Milne problem:

∂y fBL(y, v)v · n = σ
(
TBL(y)4 − fBL(y, v)

)
∂yyTBL(y) = σ

(
TBL(y)4 − ρBL(y)

)
fBL(0, v) = φ(x̃, v)
TBL(0) = TB(x̃)

.

Then, solving the Milne problem, the boundary condition for (35) is given by

T0(x)
∣∣
∂Ω = TBL(∞).

With this theorem in mind, we delve into the dependence of the derivatives of G on ε
in the following proposition.

Proposition 6. For every j, k, σ ∈ Bσ, and admissible variation σ̂, there holds:

G ′jk(σ)σ̂ = O(ε).

Proof. The proof is carried out by asymptotic analysis. We write the expansions:

f = f0 + ε f1 + ε2 f2, T = T0 + ε2T2 (36)

w f = w f ,0 + εw f ,1 + ε2w f ,2, wT = wT,0 + ε2wT,2 . (37)

Plugging (36) into (21), we have as before:

f0 = T4
0 = ρ0 ; (38)

f1 = − v
σ
· ∇ρ0 ; (39)

Cd∇ ·
(

1
σ
∇T4

0

)
+ ∆T0 = 0, T0

∣∣
∂Ω = ζ(x) , (40)

and solving these readily gives f0, f1, and T0. The remaining f2 and T2 are obtained by
solving the rest of the system:{

ε3v · ∇ f2 = σ[(T0 + ε2T2)
4 − 4ε2T3

0 T2 − T4
0 ],

ε4∆T2 = σ[(T0 + ε2T2)
4 − 4ε2T3

0 T2 − T4
0 ] .

(41)

Next, we plug both (36) and (37) into (29), and at leading order O(1):

w f ,0 = wρ,0 = 4T3
0 wT,0 . (42)

At O(ε), we equate
v · ∇xw f ,0 = −σw f ,1 − σ̂ f1 ,

which implies

w f ,1 = − 1
σ

v · ∇xw f ,0 +
σ̂

σ2 v · ∇x f0 . (43)

Then, the next order O(ε2) is:

v · ∇xw f ,1 = σ(12T0T2
2 wT,0 + 4T2

0 wT,2 − w f ,2) + σ̂(4T3
0 T2 − f2) (44)

∆wT,0 = σ(12T2
0 T2wT,0 + 4T3

0 wT,2 − wρ2) + σ̂(4T3
0 T2 − ρ2) , (45)
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taking the average in v of (44) and adding the result to gives the equation for wT,0

Cd∇ ·
(

1
σ
∇(4T3

0 wT,0)

)
+ ∆wT,0 = Cd∇x ·

(
σ̂

σ2∇ρ0

)
, wT,0

∣∣
∂Ω = 0 . (46)

Here, the boundary condition for wT,0 is again determined by the boundary layer asymp-
totic analysis, so we omit the details.

Therefore, from the above, one solves (46) for wT,0 first and then uses (42) and (43)
to get w f ,0 and w f ,1. The remaining w f ,2 and wT,2 can be obtained by solving the rest of
the system:


ε3v · ∇w f ,2 = σ[4(T0 + ε2T2)

3(wT,0 + ε2wT,2)− 4ε2T3
0 wT,2 − 12ε2T2

0 T2wT,0 − 4T3
0 wT,0]

+ σ̂[(T0 + ε2T2)
4 − T4

0 − 4ε2T3
0 T2] ,

ε4∆wT,2 = σ[4(T0 + ε2T2)
3(wT,0 + ε2wT,2)− 4ε2T3

0 wT,2 − 12ε2T2
0 T2wT,0 − 4T3

0 wT,0]

+ σ̂[(T0 + ε2T2)
4 − T4

0 − 4ε2T3
0 T2] .

(47)

This gives the boundedness of w f ,2 by 1
ε . Using the expansion for w f in the form (24) of

G ′(σ)σ̂, we have

G ′jk(σ)σ̂ =
∫

Γ+(xk)
w f (xk, v; φj, TB)v · ndv

=
∫

Γ+(xk)

(
w f ,0(xk; φj, TB) + εw f ,1(xk; φj, TB) + ε2w f ,2(xk; φj, TB)

)
v · ndv

= O(ε) ,

concluding the proposition.

The main theorem for the nonlinear case is now in order.

Theorem 4. For the nonlinear RTE problem, the KL divergence between µpost and µ0 vanishes as
ε→ 0, i.e.,

DKL(µpost|µ0) = O(ε) .

With the result from Proposition 6, the proof is identical to that of Theorem 2.

5. Local Behavior around the MAP Point

The KL divergence between the prior and the posterior distribution is a global quantity:
it characterizes the information gain from the measured data in the whole distribution. We
are also concerned about the local behavior of the posterior distribution, especially around
the maximum a posteriori (MAP) point, which is denoted by σ∗. Suppose the posterior
distribution around the MAP point is rather “flat”; then, the probability is unchanged in
a fairly large area around σ∗, meaning that all the configuration in this flat area can be
approximately taken as the optimal point, and the reconstruction is insensitive to data,
demonstrating the instability.

This behavior can be characterized well if the problem is linear. Suppose G(σ) = Gσ;
then, assuming the prior distribution is a Gaussian centered at σ0 with covariance C0, the
posterior distribution is uniquely determined by σpost and Cpost by:

σpost = C−1
post(G

>Γ−1
η d + C−1

0 σ0) , Cpost = (G>Γ−1
η G + C−1

0 )−1 .

The “flatness” of a Gaussian is characterized by its covariance matrix. Indeed, with a
quick derivation, one can show that:∫

B
‖σpost − σ‖2dµpost = tr(Cpost) .
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Therefore, the less informative the forward map is, the smaller G is, and then the bigger
tr(Cpost) gets, indicating the higher mean-square error. Geometrically, it means the Gaussian
is flatter.

We would like to understand this local behavior around the MAP point. However, the
forward map we have is nonlinear, so the argument above only serves as a guidance. To
start, we denote:

µpost =
1
Z

exp
(
−‖G(σ)− d‖2

Γη
/2
)

µ0 ∝ exp{−A}.

Then, the convexity of the posterior distribution is uniquely determined by the hessian of
A. For that, we quote:

Proposition 7. Let σ∗ be admissible and σ̂ be an admissible variation. The Hessian of the posterior
distribution is expressed in terms of the forward map G as:

A′′(σ∗)[σ̂, σ̂] =
1
2 ∑

i

(
G ′i (σ∗)[σ̂]>Γ−1

η G ′i (σ∗)[σ̂] + Gi(σ)
>Γ−1

η G ′′i (σ∗)[σ̂ , σ̂]− d>i Γ−1
η G ′′i (σ∗)[σ̂, σ̂]

)
.

Proof. We begin by expanding out G:

A(σ) =
1
2

JK

∑
i=1

[
−2d>i Γ−1

η Gi(σ) + Gi(σ)
>Γ−1

η Gi(σ)
]
+ remainders ,

where the remainder term has no G dependence. Expand G around σ∗ for small t:

Gi(σ) = Gi(σ∗) + tG ′i (σ∗)[σ̂] +
1
2

t2G ′′i (σ∗)[σ̂, σ̂] + O(t3) ,

where σ = σ∗ + tσ̂. Plug this in the expression of A and collect the second power of t; then,
we have:

A′′(σ∗)[σ̂, σ̂] =
1
2 ∑

i

(
G ′i (σ∗)[σ̂]>Γ−1

η G ′i (σ∗)[σ̂] + Gi(σ)
>Γ−1

η G ′′i (σ∗)[σ̂ , σ̂]− d>i Γ−1
η G ′′i (σ∗)[σ̂, σ̂]

)
,

concluding the proof.

This formula holds true for all σ∗ that is admissible and thus is valid at MAP as
well. According to this proposition, to show the “flatness” of the distribution at MAP, we
essentially need to show the smallness of both G ′i (σ∗) and G ′′i (σ∗) for all i. All derivations
below are to justify this statement for both the linear and nonlinear RTE.

5.1. Linear RTE

We begin with the linear RTE. The following proposition, due to [4], characterizes
the second derivative of the parameter-to-solution map S , which we will compute its
dependence on ε.

Proposition 8. Denote H = S ′′(σ∗)[σ1, σ2], A f = v · ∇x, and Cσ f = εσa(x) f − 1
ε σs(x)L f .

Then, for any admissible σ∗ and admissible variations σ1, σ2, H is the unique solution of the
following equation: {

AH + Cσ∗H = −Cσ1 w(2) − Cσ2 w(1) ,
H
∣∣
Γ−

= 0 ,

where f ∈ F is the solution to (6) with parameter σ∗ and w(1,2) are the solutions to (11) with
parameters σ∗ + tσ1,2, respectively. Moreover, there holds:

‖H‖L∞(Ω) ≤ C(‖σ1‖L∞(Ω) + ‖σ2‖L∞(Ω)) .
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Proof. Considering the second derivative of G in Equation (24), all f i,j satisfy the RTE with
different σ as shown below, and the same incoming boundary condition g,

A f (1,2) + Cσ∗+tσ1+tσ2 f (1,2) = 0

A f (1) + Cσ∗+tσ1 f (1) = 0

A f (2) + Cσ∗+tσ2 f (2) = 0

A f + Cσ∗ f = 0 ,

and combining these equations gives

A( f (1,2) − f (1) − f (2) + f ) + Cσ∗( f (1,2) − f (1) − f (2) + f )

+tCσ1 f (1,2) − tCσ1 f (1) + tCσ2 f (1,2) − tCσ2 f (2) = 0 .

Here, we have used the fact that C is linear in σ. Dividing by t2 and taking the limit as
t→ 0 then gives {

AH + Cσ∗H = −Cσ1 w(2) − Cσ2 w(1) ,
H
∣∣
Γ−

= 0 .
(48)

The boundedness is seen from Theorem 3.7 in [4].

We next determine the dependence of the forward map’s second derivative in terms
of ε.

Proposition 9. For every j, k, admissible σ∗ ∈ Bσ, and admissible variation σ̂, there holds:

G ′′jk(σ∗)[σ̂, σ̂] = O(ε).

Proof. Considering (48) with fixed φj and boundary measurement location xk, we expand

H = H0 + εH1 + ε2H2

w(1) = w(1)
0 + εw(1)

1 + ε2w(1)
2

w(2) = w(2)
0 + εw(2)

1 + ε2w(2)
2 .

Using (48), at O(1/ε), we obtain

−σsLH0 = σs,1Lw(2)
0 + σs,2Lw(1)

0 .

From Proposition 2, w(1)
0 and w(2)

0 have no velocity dependence, which gives LH0 = 0;
thus, H0 has no velocity dependence. Additionally, from the zero boundary condition of H,
we have H0

∣∣
∂Ω = 0.

At O(1),

v · ∇x H0 − σsLH1 = σs,1Lw(2)
1 + σs,2Lw(1)

1 ,

and thus
LH1 =

1
σs

v · ∇x H0 −
σs,1

σs
Lw(2)

1 −
σs,2

σs
Lw(1)

1 .

Since Lw(1)
1 = −w(1)

1 and Lw(2)
1 = −w(2)

1 , we have

H1 = − 1
σs

v · ∇x H0 −
σs,1

σs
w(2)

1 −
σs,2

σs
w(1)

1 .
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Finally at O(ε), we have

v · ∇x H1 + σa H0 − σsLH2 = −σa,1w(2)
0 + σs,1Lw(2)

2 − σa,2w(1)
0 + σs,2Lw(1)

2 .

Integrating over velocity, we obtain an equation for the leading order term H0, which is in
closed form, since w(i)

1 are written in terms of w(i)
0 (see [4])

∇ ·
(

1
σs
∇H0

)
+ σa H0

=− σa,1w(2)
0 − σa,2w(1)

0 −
σs,1

σs

1
|Sd−1|

∫
Sd−1

w(2)
1 dv− σs,2

σs

1
|Sd−1|

∫
Sd−1

w(1)
1 dv.

Upon averaging over velocity, we obtain the second derivative of the operator G with the
[σ̂, σ̂] perturbation,

G ′′jk(σ∗)[σ̂, σ̂] =
∫

Γ+(xk)
H(x, v; φj)v · ndv

=
∫

Γ+(xk)
(H0(x; φj) + εH1(x, v; φj) + ε2H2(x, v; φj))v · ndv

= ε
∫

Γ+(xk)
(H1(x, v; φj) +O(ε2))v · ndv

= O(ε) .

The contribution from the H0 term becomes zero due to its trivial boundary condition, and
H is bounded from [4].

Directly from Propositions 3, 7 and 9, we have the following corollary.

Corollary 1. For σ∗ ∈ Bσ and admissible variation σ̂, the diagonal elements A′′(σ∗)[σ̂, σ̂] of the
Hessian of the posterior distribution satisfies:

A′′(σ∗)[σ̂, σ̂] = O(ε).

5.2. Nonlinear RTE

We repeat the analysis for the nonlinear RTE, for the case when G has been linearized.
Using similar notatinos, we let

H f = S ′′1 (σ∗)[σ1, σ2] , HT = S ′′2 (σ∗)[σ1, σ2]

and have the following proposition regarding the boundedness of H f and HT .

Proposition 10. For σ∗ ∈ Bσ and admissible variations σ1, σ2, (H f , HT) are the unique solution
to the following system:

εv · ∇x H f = −σ∗H f (4T3HT + 12T2w(1)
T w(2)

T )

+ σ1(4T3w(2)
T ) + σ2(4T3w(1)

T )− σ1w(2)
f − σ2w(1)

f

ε2∆HT = −σ∗Hρ + σ∗(4T3HT + 12T2w(1)
T w(2)

T

+ σ1(4T3w(2)
T ) + σ2(4T3w(2)

T )− σ1w(2)
ρ − σ2w(1)

ρ

H f
∣∣
Γ−

= 0, HT
∣∣
∂Ω = 0

,

where w(1,2)
f denotes the first derivative of the parameter-to-solution map for f in the σ1,2 direction,

and similarly for w(1,2)
T , and Hρ = 1

|Sd−1|
∫
Sd−1 H f dv. Moreover, there holds:

‖H f ‖L∞(Ω) ≤ C′f , ‖HT‖L∞(Ω) ≤ C′T ,
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where C′T > 0 and C′f depends on C′T .

Proof. We let H f = 1
t2

(
f (1,2) − f (1) − f (2) + f

)
, and HT = 1

t2 (T(1,2) − T(1) − T(2) + T).

Each ( f (i,j), T(i,j)) satisfies the nonlinear RTE with a variety of σ shown below: v · ∇x f (1,2) = 1
ε (σ∗ + tσ1 + tσ2)

(
(T(1,2))4 − f (1,2)

)
,

∆T(1,2) = 1
ε2 (σ∗ + tσ1 + tσ2)

(
(T(1,2))4 − ρ(1,2)

)
;

(49)

 v · ∇x f (1) = 1
ε (σ∗ + tσ1)

(
(T(1))4 − f (1)

)
,

∆T(1) = 1
ε2 (σ∗ + tσ1)

(
(T(1))4 − ρ(1)

)
;

(50)

 v · ∇x f (2) = 1
ε (σ∗ + tσ2)

(
(T(2))4 − f (2)

)
,

∆T(2) = 1
ε2 (σ∗ + tσ2)

(
(T(2))4 − ρ(2)

)
;

(51)

{
v · ∇x f = 1

ε σ∗
(
T4 − f

)
,

∆T = 1
ε2 σ∗

(
T4 − ρ

)
,

, (52)

where ρ = 1
|Sd−1|

∫
Sd−1 f dv.

We begin by computing various combinations of T(i). First, we recall:

w(1)
T = lim

t→0

1
t
(T(1) − T) ,

w(2)
T = lim

t→0

1
t
(T(2) − T) ,

and expand

(T(1,2))4 = (T(1))4 + (T(1))3(4tw(2)
T + 4t2HT) + (T(1))2(6t2(w(2)

T )2) +O(t3)

= (T + tw(1)
T )4 + (T + tw(1)

T )3(4tw(2)
T + 4t2HT) + (T + tw(1)

T )2(6t2(w(2)
T )2) +O(t3) .

Similarly for σ1 and σ2 respectively,

(T(1))4 = (T + tw(1)
T )4

= T4 + 4tT3w(1)
T + 6t2T2w(1)

T +O(t3) ,

(T(2))4 = T4 + 4tT3w(2)
T + 6t2T2w(2)

T +O(t3) .

Combining these,

(T(1,2))4 − (T(1))4 = 4tT3w(2)
T +O(t2) ,

(T(1,2))4 − (T(2))4 = 4tT3w(1)
T +O(t2) ,

so that

(T(1,2))4 − (T(1))4 − (T(2))4 + T = 4t2T3HT + 12t2T2w(1)
T w(2)

T +O(t3). (53)
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To derive the equations for H f and HT , we take (49), subtract (50) and (51), and add (52).
Using (53), 

εv · ∇x H f = −σ∗H f (4T3HT + 12T2w(1)
T w(2)

T )

+σ1(4T3w(2)
T ) + σ2(4T3w(1)

T )− σ1w(2)
f − σ2w(1)

f

ε2∆HT = −σ∗Hρ + σ∗(4T3HT + 12T2w(1)
T w(2)

T

+σ1(4T3w(2)
T ) + σ2(4T3w(2)

T )− σ1w(2)
ρ − σ2w(1)

ρ

. (54)

To show the boundedness, we note that H f , HT solve the nonlinear RTE with a modified
right-hand side only containing bounded terms, so we again use Theorem 3.1 from [33] to
obtain the boundedness:

‖H f ‖L∞(Ω) ≤ C′f , ‖HT‖L∞(Ω) ≤ C′T .

Proposition 11. For every j, k and functions σ∗, σ̂ in the admissible set, the second derivative of
the forward map is of order ε,

G ′′jk(σ∗)[σ̂, σ̂] = O(ε).

Proof. We start with arbitrary directions σ1 and σ2 and later choose the [σ̂, σ̂] direction. To
find the ε dependence of H f and HT , we expand:

H f = H f ,0 + εH f ,1 + ε2H f ,2

w(1)
f = w(1)

f ,0 + εw(1)
f ,1 + ε2w(1)

f ,2

w(2)
f = w(2)

f ,0 + εw(2)
f ,1 + ε2w(2)

f ,2

T = T0 + ε2T2

w(1)
T = w(1)

T,0 + εw(1)
T,1 + ε2w(1)

T,2

w(2)
T = w(2)

T,0 + εw(2)
T,1 + ε2w(2)

T,2

HT = HT,0 + ε2HT,2,

and plug this in to (54). At order O(1), we obtain 0 = 12σ∗T2
0 w(1)

T,0w(2)
T,0 + 4σ∗T3

0 HT,0 + 4σ1T3
0 w(2)

T,0 + 4σ2T3
0 w(1)

T,0 − σ∗H f ,0 − σ1w(2)
f ,0 − σ2w(1)

f ,0

0 = 12σ∗T2
0 w(1)

T,0w(2)
T,0 + 4σ∗T3

0 HT,0 + 4σ1T3
0 w(2)

T,0 + 4σ2T3
0 w(1)

T,0 − σ∗Hρ,0 − σ1w(2)
ρ,0 − σ2w(1)

ρ,0

,

subtracting these two equations, we obtain

H f ,0 = Hρ,0,

so H f ,0 loses its velocity dependence. At O(ε), we obtain

v · ∇x H f ,0 = −σ∗H f ,1 − σ1w(2)
f ,1 − σ2w(1)

f ,1 ,

so
H f ,1 = − 1

σ∗
v · ∇x H f ,0 −

σ1

σ∗
w(2)

f ,1 −
σ2

σ∗
w(1)

f ,1 .
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Finally, at O(ε2), we obtain

v · ∇x H f =8σ∗HT,0HT,2T3
0 + 12σ∗(HT,0)

2T2
0 T2 + 12σ2T2

0 T2w(1)
T,0

+ 4σ2T3
0 w(1)

T,2 + 12σ1T2
0 T2w(2)

T,0

+ 24σ∗T0T2w(2)
T,0 + 12σ∗T2

0 w(1)
T,2w(2)

T,0 + 4σ1T3
0 w(2)

T,2

+ 12σ∗T2
0 w(1)

T,0w(2)
T,2 − σ∗H f ,2 − σ1w(2)

f ,2σ∗w
(1)
f ,2

(55)

and

∆HT,0 = 8σ∗HT,0HT,2T3
0 + 12σ∗(HT,0)

2T2
0 T2 + 12σ2T2

0 T2w(1)
T,0 + 4σ2T3

0 w(1)
T,2 + 12σ1T2

0 T2w(2)
T,0

+ 24σ∗T0T2w(2)
T,0 + 12σ∗T2

0 w(1)
T,2w(2)

T,0 + 4σ1T3
0 w(2)

T,2 + 12σ∗T2
0 w(1)

T,0w(2)
T,2

− σ∗
1

|Sd−1|

∫
Sd−1

H f ,2dv− σ1
1

|Sd−1|

∫
Sd−1

w(2)
f ,2dv− σ2

1
|Sd−1|

∫
Sd−1

w(1)
f ,2dv .

Integrating equation (55) over velocity, subtracting (56), and using Green’s theorem,
we obtain

∇ ·
(

1
σ∗
∇H f ,0

)
− ∆HT,0 = 1

|Sd−1|

∫
Sd−1

v · ∇x

(
σ1

σ∗
w(2)

f ,1 −
σ2

σ∗
w(1)

f ,1

)
dv.

Since H f ,0 has trivial boundary condition, its contribution drops out.

G ′′jk(σ∗)[σ̂, σ̂] =
∫

Γ+(xk)
(H f ,0(x; φj) + εH f ,1(x, v; φj) + ε2H f ,2(x, v; φj))v · ndv

= ε
∫

Γ+(xk)
H f ,1(x, v; φj)v · ndv +O(ε2);

therefore, with the boundedness of H from from Proposition 10, we have G ′′jk(σ∗)[σ̂, σ̂] =

O(ε).

Corollary 2. For σ∗ ∈ Bσ and admissible variation σ̂, the diagonal elements A′′(σ∗)[σ̂, σ̂] of the
Hessian of the posterior distribution based on the nonlinear RTE satisfies:

A′′(σ∗)[σ̂, σ̂] = O(ε).

This is a direct corollary from Propositions 3, 7, and 11.

6. Research Results and Discussion

As is well known, the radiative transfer equation, in the high-energy regime where the
scattering is dominating, is well approximated by the diffusion equation. This asymptotic
relation constitutes a major part in model reduction for the forward setting. On the
contrary, it has an adverse effect for the inverse problem. In particular, the reconstruction
becomes increasingly unstable as we approach the diffusive regime. This relation has
been investigated numerically in [1,15,16] and analytically in [17], where a full data to
measurement map, named the Albedo operator, is assumed to be given.

However, in practice, only partial data are available, and the previously obtained
well-posedness results are no longer feasible. We focus our investigation in this paper
for this scenario, using Bayesian inference as the basic tool. We have proposed two new
measures to characterize the stability and its deterioration in the diffusion regime. One is
the KL divergence between the posterior and prior distribution, which implies the overall
information gain from the data. We show that the information gain is less in the small
Knudsen number regime. The other is the Hessian of the posterior distribution, which
is related to the mean square error of the posterior and quantifies the uncertainty of the
optimizer; therefore, it serves as a local measure around the MAP. We find that the posterior
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distribution is more and more “flat” and thus carries no useful information when the
diffusion effect is strong. Both measures are taken for the linear RTE and are extended to,
for the first time in the literature, treat the nonlinear RTE as well.

Although the paper is completely theoretical, it gives guidance on conducting nu-
merical experiments. The discussion in this paper essentially suggests that the problem
is intrinsically bad in the diffusion regime and thus rules out all possible algorithms that
could potentially deliver a good numerical recovery.

There are some natural follow-up questions that need to be answered in the near
future. One task is to clearly identify the number and the quality of the measurements
for a unique reconstruction. Suppose the reconstructed function is represented by an N
dimensional vector; then, how many experiments and measurements exactly are needed
for a unique reconstruction, and where should the source and detector be located? The
answer to this question for EIT (electrical impedance tomography) was given in [26], but
one needs to tune the process to fit the situation for the radiative transfer equation used in
the current paper. Another question concerns the numerical stability. While it is true that
the information gain deteriorates as ε becomes small, there might be numerical approaches
that gradually incorporate information from high-energy to low-energy photons. One
possible strategy is to use a large number of experimental measurements conducted with
low-energy photons to build a rough initial guess as a “warm start” before adding in
information obtained at a high-energy level. The warm start given by the low-energy level
results serves as a good initial guess toward a final convergence. The process is parallel to
Bayesian tempering, which saw some good developments in the past few years [34,35], and
the inverse scattering problem that combines information from multiple frequencies [36].
Another approach is to use a hybrid image modality, such as photoacoustic tomography.
where acoustic measurement generated by the photoacoustic effect is used to infer the
optimal properties of the media. In this case, an improved stability is anticipated [37,38].

Numerical Evidence

Here, we conduct two numerical tests to further support our theoretical findings. In
particular, we consider the following linear radiative transfer equation:{

εv · ∇x f (x, v) = σs(x)L f (x, v) , x ∈ [0, 0.6]2, v ∈ S1 ,
f
∣∣
Γ−

= φ .
(56)

The data are prepared as follows. For the i-th experiment, we prescribe incoming data φi
and measure the output intensity f at location j on Γ+, which is denoted as di,j. Here, φ and
detect location j are chosen randomly, and NI = 44 number of experiments are conducted
with NJ = 264 number of receivers for each experiment. These data pairs {φi, {di,j}

NJ
j=1}

NI
i=1

are kept fixed for various choices of Knudsen number ε for a fair comparison.
In the first test, we assume σs(x) has the form

σs(x) = 1 + σN ((0.3, 0.3), Σ) , (57)

where N (0, Σ) is a two-dimensional normal distribution with mean zero and a fixed
covariance matrix Σ. The parameter σ is the parameter to be inferred. We assume the
ground-truth σ = 0.5, and the ground-truth medium is plotted on the left of Figure 1. The
inverse problem aims at inferring this ground-truth from the prescribed data pairs. To
illustrate the stability of the inverse problem, we show how, for different choices of σ away
from the truth, the measurements differ from the true measurements. More precisely, we
denote

dp(σ) =

(
∑
i,j
|di,j(σ)− dtrue

i,j |
2

)1/2

(58)
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as the perturbation in the measurement, where di,j is the measurement with a fixed σ for
the i-th experiment and j-th measurement, and dtrue

i,j is the measurement with true σ = 0.5.
In the right panel of Figure 1, we plot the difference in measurement data (58) versus
the perturbation in σ for three different ε. It is clear that with smaller ε, the difference in
measurement becomes more indistinguishable, which means that a smaller perturbation in
measurement can lead to larger deviation in reconstruction. This is in consistent with our
theory on the stability deterioration with decreasing ε.
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Figure 1. Test 1. (Left): ground truth (57) with σ = 0.5. (Right): perturbation in measured data
versus perturbation in σ.

In the second test, we consider a different form of σs(x):

σs(x) = 1 + σ1N ([0.2, 0.2], Σ) + σ2N ([0.45, 0.45], Σ) . (59)

Here, the to-be-reconstructed parameters are σ1 and σ2. We choose σ1 = 0.5 and σ2 = 0.3 to
be the ground-truth and display the medium in Figure 2. Similar to the previous case, we
plot the difference in measurement

dp(σ1, σ2) =

(
∑
i,j
|di,j(σ1, σ2)− dtrue

i,j |
2

)1/2

(60)

with respect to σ1 ∈ (0, 1) and σ2 ∈ (0, 0.6). It is again evident that for smaller ε, dp becomes
flatter, leading to a deterioration in stability, as shown in Figure 2. In addition, we identify
the data that are above 0.05×maxi,j{di,j} in Figure 3. Here, the horizontal axis is the index
for the experiment, and the vertical axis is the index for the receiver. It is seen that a larger
ε gives a sparse dataset, whereas small ε gives a dense dataset, meaning that all receivers
receive some information about the source. This indicates that the data are more spread
out for smaller ε, which makes the inverse problem harder to solve.
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Figure 2. Test 2: The panel on the left shows the ground-truth medium with σ1 = 0.5 and σ2 = 0.3
in (59). The two plots on the right show, for different ε, the perturbation in the measured data versus
the perturbation in σ1,2.

Figure 3. Test 2. Visualization of measured data whose intensity value is above 0.05×maxi,j{di,j}.

7. Conclusions

In this paper, we examine the stability deterioration for the multiscale inverse radiative
transfer equation (RTE) in the Bayesian framework. Even though the instability on the
continuous level was discussed in the literature [31] and the multiscale convergence was
shown in [16,17,32], the instability representation in the Bayesian framework was open.
The current paper constitutes the first result that fills the gap. The results presented suggest
that one should not use Bayesian inference for conducting optical tomography when the
photon energy is low. The numerical algorithm, without fine tuning, would carry very
limited use in reconstructing the ground-truth media.
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