
����������
�������

Citation: Lehmann, M.; Gekle, S.

Analytic Solution to the Piecewise

Linear Interface Construction

Problem and Its Application in

Curvature Calculation for

Volume-of-Fluid Simulation Codes.

Computation 2022, 10, 21. https://

doi.org/10.3390/computation10020021

Academic Editor: Sergey A.

Karabasov

Received: 20 November 2021

Accepted: 20 January 2022

Published: 26 January 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

computation

Article

Analytic Solution to the Piecewise Linear Interface
Construction Problem and Its Application in Curvature
Calculation for Volume-of-Fluid Simulation Codes

Moritz Lehmann * and Stephan Gekle

Biofluid Simulation and Modeling, Theoretische Physik VI, University of Bayreuth, 95448 Bayreuth, Germany;
stephan.gekle@uni-bayreuth.de
* Correspondence: moritz.lehmann@uni-bayreuth.de

Abstract: The plane–cube intersection problem has been discussed in the literature since 1984 and
iterative solutions to it have been used as part of piecewise linear interface construction (PLIC) in
computational fluid dynamics simulation codes ever since. In many cases, PLIC is the bottleneck
of these simulations regarding computing time, so a faster analytic solution to the plane–cube
intersection would greatly reduce the computing time for such simulations. We derive an analytic
solution for all intersection cases and compare it to the previous solution from Scardovelli and Zaleski
(Scardovelli, R.; Zaleski, S. Analytical relations connecting linear interfaces and volume fractions
in rectangular grids. J. Comput. Phys. 2000, 164, 228–237), which we further improve to include
edge cases and micro-optimize to reduce arithmetic operations and branching. We then extend
our comparison regarding computing time and accuracy to include two different iterative solutions
as well. We find that the best choice depends on the employed hardware platform: on the CPU,
Newton–Raphson is fastest with compiler optimization enabled, while analytic solutions perform
better than iterative solutions without. On the GPU, the fastest method is our optimized version of
the analytic SZ solution. We finally provide details on one of the applications of PLIC—curvature
calculation for the Volume-of-Fluid model used for free surface fluid simulations in combination with
the lattice Boltzmann method.

Keywords: PLIC; plane–cube intersection; curvature; Volume-of-Fluid; lattice Boltzmann method; GPU

1. Introduction

Piecewise linear interface construction (PLIC)—first occurring in the literature for 2D
in 1982 [1] and for 3D in 1984 [2]—refers to the problem of calculating the offset along the
given normal vector of a plane intersecting a unit cube for a given truncated volume. There
are five possible intersection cases (cf. Figure 1), of which the numbers (1), (2) and (5) have
been already solved in the original 1984 work by Youngs [2], but the cubic polynomial
cases (3) and (4)—considered impossible to algebraically invert [3]—in the majority of the
literature are approximated by a Newton–Raphson iterative solution. Nevertheless, there
does exist an analytic solution by Scardovelli and Zaleski (SZ) [4] and a single documented
implementation thereof in Fortran [5], which also includes an approximative version
termed APPLIC.

Here, we formulate the PLIC problem from the ground up—first in the inverse
direction—and derive an alternative analytic solution for all intersection cases by inverting
the inverse formulation. We then compare our novel solution with (i) the original SZ
solution, (ii) an improved and micro-optimized version of the SZ solution developed in
the present work, (iii) an iterative solution using Newton–Raphson and (iv) an iterative
solution using nested intervals. Depending on the available microarchitecture (GPU/CPU),
compiler optimization may strongly favor multiplications and additions while not speeding
up trigonometric functions, impacting which of the algorithms is fastest.

Computation 2022, 10, 21. https://doi.org/10.3390/computation10020021 https://www.mdpi.com/journal/computation

https://doi.org/10.3390/computation10020021
https://doi.org/10.3390/computation10020021
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/computation
https://www.mdpi.com
https://orcid.org/0000-0002-4652-8383
https://orcid.org/0000-0001-5597-1160
https://doi.org/10.3390/computation10020021
https://www.mdpi.com/journal/computation
https://www.mdpi.com/article/10.3390/computation10020021?type=check_update&version=3

Computation 2022, 10, 21 2 of 26

Among the applications for PLIC are Volume-of-Fluid simulation codes such as Flu-
idX3D [6–8] and others [9–19], often in conjunction with GPU implementations [6–8,20–26]
of the lattice Boltzmann method [27–29], used for simulating free surface fluid flows. In par-
ticular, these simulations work on a cubic lattice, with every lattice point having a fill level
assigned to it, and PLIC is used in the process of surface reconstruction during curvature
calculation for calculating physical surface tension effects [6–9]. PLIC-VoF has applications
in many areas—for example, computational science [6,7,30–32], civil [33,34] and aerospace
engineering [35] and computer graphics [36]. In the final section of this work, we provide a
detailed overview of the state-of-the-art curvature calculation procedure using PLIC.

2. Plane–Cube Intersection

Inputs to the PLIC algorithm are the truncated volume V0 ∈ [0, 1] and the (normalized)
normal vector of the plane~n = (nx, ny, nz)T, |~n| = n2

x + n2
y + n2

z = 1. The desired output is
the plane offset from the origin (center of the unit cube) along the normal vector d0

V0, (nx, ny, nz)
T → d0 (1)

where d0 ∈ [− |nx |+|ny |+|nz |
2 , |nx |+|ny |+|nz |

2]. The interval is determined by the normal vector
orientation: depending on the normal vector, the maximum possible distance from the
cube center to be still at least touching the cube in one point varies between 1

2 (normal

vector parallel to one of the coordinate system axes) and
√

3
2 (normal vector along the

space diagonal).

2.1. Applying Symmetry Conditions to Reduce Problem Complexity

To reduce the amount of possible cases and to avoid having to consider all possible
intersections of the plane and cube edges—following the scheme in [2,15]—the normal
vector is component-wise mirrored into positive. (We note that in [15] in Equations (21) and
(23), respectively, the “+” should be a “−” and in Equation (24) the “>” should be a “<”.)
The mirrored normal vector components are sorted in ascending order according to their
magnitude such that 0 ≤ n1 ≤ n2 ≤ n3 ≤ 1. Because~n is normalized, the absolute value of
its largest component n3 is always greater than zero. In summary, the mirroring removes
the sign(s) from nx,ny,nz and and puts them in ascending order, such that normalization
still holds: n2

x + n2
y + n2

z = n2
1 + n2

2 + n2
3 = 1.

n1 := min(|nx|, |ny|, |nz|) ≥ 0 (2)

n3 := max(|nx|, |ny|, |nz|) > 0 (3)

n2 := |nx|+ |ny|+ |nz| − n1 − n3 ≥ 0 (4)

Since the function V0(d0) is symmetric around d0 = 0 and increasing monotonically, the
reduced-symmetry-volume V ∈ [0, 1

2] is limited to the lower half of the intersection volume
V0 and the upper half is reconstructed from symmetry.

V :=
1
2
−
∣∣∣∣V0 −

1
2

∣∣∣∣ (5)

V0 = sign(d0)

(
1
2
−V

)
+

1
2

(6)

Computation 2022, 10, 21 3 of 26

This symmetry condition for the case V0 > 1
2 is now applied to d0, and the coordinate origin

is shifted from (0, 0, 0) (center of the unit cube) to (− 1
2 , − 1

2 , − 1
2) (bottom left corner in the

back in Figure 1), resulting in the distance d ∈ [0, n1+n2+n3
2] in reduced symmetry space:

d :=
n1 + n2 + n3

2
− |d0| (7)

d0 = sign
(

V0 −
1
2

)(
n1 + n2 + n3

2
− d
)

(8)

With this reduction in symmetry, there are only five different intersection cases remaining
(see Figure 1).

(5)(4)(3)(2)(1)

s2 s2

s3
s3

s1

s1
s1 s1

s1

s2 s2 s2

s3

s3

s3

d0
d0 d0 d0 d0

Figure 1. All possible intersection cases of a plane and a unit cube. The truncated volume in reduced
symmetry space V (cyan) of cases (1) to (4) is a tetrahedral pyramid with zero (1), one (2), two (3) or
all three (4) corners extending outside of the unit cube, being cut-off tetrahedral pyramids themselves.
The distance in reduced symmetry space d would be the shortest line from the covered bottom left
corner to the intersection plane (not shown).

2.2. Formulating the Inverse PLIC Problem

In order to derive the analytic PLIC solution, first, the inverse problem is formulated
in equations—again, following the scheme in [2]. In the inverse problem, the intersection
volume is calculated from the plane offset and normal vector as inputs. At first, the
intersection points s1, s2 and s3 of the plane with the coordinate system axes (see Figure 1)
are determined:

s1 :=
d
n1

≥ s2 :=
d
n2

≥ s3 :=
d
n3

(9)

Now, one calculates the actual volume in reduced symmetry space. The approach is to
calculate the volume of the tetrahedral pyramid formed by the plane and the coordinate
system axes and, if necessary, subtract the volumes of zero, one, two or all three corners
that extend beyond 1. For case (3), an additional condition is required to mutually exclude
case (5), in which the bottom four corners of the cube are located beneath the plane.

V =



1
6 s1 s2 s3 if s1 < 1
1
6 s2 s3

(
s1 − (s1 − 1)

(
1− 1

s1

)2
)

if s1 ≥ 1 and s2 ≤ 1

1
6 s3

(
s1 s2 − (s1 − 1) s2

(
1− 1

s1

)2
− (s2 − 1) s1

(
1− 1

s2

)2
)

if s2 ≥ 1 and s3 ≤ 1

and s1 (s2 − 1) ≤ s2

1
6

(
s1 s2 s3 − (s1 − 1) s2 s3

(
1− 1

s1

)2
− (s2 − 1) s1 s3

(
1− 1

s2

)2
− (s3 − 1) s1 s2

(
1− 1

s3

)2
)

if s3 ≥ 1
1
2 s3

(
2− 1

s1
− 1

s2

)
otherwise

(10)

To shorten Equation (10), s1, s2 and s3 are substituted and the expression is simplified, yielding

Computation 2022, 10, 21 4 of 26

V =
1

6 n1 n2 n3
·



d3 (1) if d < n1

(d3 − (d− n1)
3) (2) if n1 ≤ d ≤ n2

(d3 − (d− n1)
3 − (d− n2)

3) (3) if n2 ≤ d ≤ min(n1 + n2, n3)

(d3 − (d− n1)
3 − (d− n2)

3 − (d− n3)
3) (4) if n3 ≤ d

6 n1 n2 (d− 1
2 (n1 + n2)) (5) if min(n1 + n2, n3) ≤ d ≤ n3

(11)

which is already considerably more friendly and completes the inverse PLIC formulation in
conjunction with Equations (2)–(4), (6) and (7). The condition for case (5) is the remaining
free sector of the possible range of d mutually excluded by the other four cases. Listing A1
shows the fully optimized C implementation of the inverse PLIC solution.

2.3. Inverting the Inverse PLIC Formulation Analytically

Equation (11) is now inverted for each case individually. Cases (1), (2) and (5) are
easy, but cases (3) and (4) are non-trivial third-order polynomials. Here, we make use of
the tool Mathematica, which outputs three complex solutions for cases (3) and (4) each
(Appendix A), of which the third solutions, respectively, are the correct ones as their
imaginary parts in the desired range are zero after simplification. Luckily, both are of
the same overall form (Equation (12)). However, a complex solution is not useful here
since the expected result is a real number—a problem known as the casus irreducibilis—
and most programming languages cannot deal with complex numbers natively. It would
also lead to unwanted computational overhead to carry along the imaginary part during
computation, which, in the end, will be zero anyway. To overcome this, we again make
use of Mathematica to simplify the general form of the complex solution (Equation (12)) in
order to obtain the real, trigonometric solution (Equation (13)):

f (x, y, a, b, c) := c− a
(1− i

√
3)

3
√

x + i y
− b (1 + i

√
3) 3
√

x + i y (12)

f (x, y, a, b, c) := c− 2
a + b 3

√
x2 + y2

6
√

x2 + y2
sin
(

π

6
− 1

3
atan2(y, x)

)
(13)

Equation (13) already is further simplified using the trigonometric identity
√

3 sin(α)−
cos(α) = −2 sin(π

6 − α) such that the number of trigonometric functions (which are compu-
tationally expensive compared to simpler operations such as additions or multiplications)
is minimized (Equation (13)).

For better readability, a few expressions are pre-defined. Hereby, the normalization
condition n2

1 + n2
2 + n2

3 = 1 is applied.

x3 := 81 n1 n2 (n1 + n2 − 2 V n3) > 0 (14)

y3 :=
√

23328 (n1 n2)3 − x2
3 ≥ 0 (15)

a3 := 3
√

54 n1 n2 (16)

b3 :=
1

3
√

432
(17)

c3 := n1 + n2 (18)

Computation 2022, 10, 21 5 of 26

t4 := 9 (n1 + n2 + n3)
2 − 18 (19)

x4 := 324 n1 n2 n3 (1− 2 V) ≥ 0 (20)

y4 :=
√

4 t3
4 − x2

4 ≥ 0 (21)

a4 :=
1

3
√

864
t4 (22)

b4 :=
1

3
√

3456
(23)

c4 :=
n1 + n2 + n3

2
(24)

Finally, then, the complete analytic solution to the 3D PLIC problem is given by

d =



d1 = 3
√

6 V n1 n2 n3 (1) if d1 < n1

d2 = n1
2 +

√
2 V n2 n3 − 1

12 n2
1 (2) if n1 ≤ d2 ≤ n2

d3 = f (x3, y3, a3, b3, c3) (3) if n2 ≤ d3 ≤ min(n1 + n2, n3)

d4 = f (x4, y4, a4, b4, c4) (4) if n3 ≤ d4

d5 = V n3 +
n1+n2

2 (5) if min(n1 + n2, n3) ≤ d5 ≤ n3

(25)

in conjunction with Equations (2)–(5), (8), (13)–(24).
In Equation (25), it is noteworthy that the conditions for the five different cases are

determined a posteriori by the result itself. This means that each case has to be evaluated
successively and, for the resulting value d, the respective condition has to be tested. If the
condition is true, calculation is stopped and d is returned. If the condition is false, the next
case has to be evaluated and so on, until the last case is reached.

The order in which the cases are computed and checked can be optimized to calculate
the most difficult and infrequent cases last, when the probability is high that one of the
easier and more frequent cases has already been chosen. ‘Frequent’ here refers to some
cases appearing more often than others with randomized V0 and~n, as expected in typical
PLIC applications. Here, special considerations for edge cases (more on this below) also
need to be taken into account to avoid possible divisions by zero. With this in mind, the
order (5)→ (2)→ (1)→ (3)→ (4) is preferred.

Additional speedup can be gained by noting that the implicit condition involving d
can be replaced by an explicit condition involving V for cases (1), (2) and (5):

d =



d1 = 3
√

6 V n1 n2 n3 (1) if 6 V n2 n3 < n2
1

d2 = n1
2 +

√
2 V n2 n3 − 1

12 n2
1 (2) if 3 n2 (V n3 + n1 − n2) ≤ n2

1 ≤ 6 V n2 n3

d3 = f (x3, y3, a3, b3, c3) (3) if n2 ≤ d3 ≤ min(n1 + n2, n3)

d4 = f (x4, y4, a4, b4, c4) (4) if n3 ≤ d4

d5 = V n3 +
n1+n2

2 (5) if n1 + n2 ≤ 2 V n3

(26)

Since V is known, these conditions are checked a priori in order to avoid root function calls
if the condition is false.

For even more speedup, all redundant mathematical operations are reduced to a
minimum by pre-calculating them to variables (micro-optimization), and condition checks
mutually excluded by previous checks are skipped, especially all conditions for the very
last case. In the implementation order (5) → (2) → (1) → (3) → (4), the conditions for
case (3) simplify to d3 ≤ n3, which will mutually exclusively decide between cases (3) and
(4). Since both d3 and d4 are very complicated expressions, here, no simplified a priori
condition is formulated.

In Equations (19), (21) and (25), the argument of the square root may be negative before
the case condition is tested. In this case—since, in the actual code, floating-point exception
handling is turned off for performance reasons—the resulting NaN of a square root of a

Computation 2022, 10, 21 6 of 26

negative number would not be captured in the case condition, leading to an incorrect result.
An additional fdim function call in the square root solves this issue. In the implementation,
we artificially exclude the edge case x4 = 0 in order to, instead of atan2(y, x), use the faster
atan(y/x), giving the algorithm a 15% speedup. In case branching would be undesirable,
bit masking is also an option, but bit masking turned out to be slower even on GPUs.

Two edge cases still need to be taken into careful consideration: n1 = 0 (2D) and
n3 = 1 (1D). n1 = 0 restricts ~n to be in a 2D plane of two coordinate system axes and
n3 = 1 restricts ~n to be parallel to one of the coordinate system axes. For the (1D) case,
n3 = 1 and the solution is always (5), so n1 = n2 = 0 and min(n1 + n2, n3) = 0, simplifying
Equation (25) without loss of generality to

d =
{

V (5) if 0 ≤ d ≤ 1 (27)

A clean derivation of the 1D case yields

d = V (28)

without any conditions, so it is a necessary requirement that both additional conditions in
Equation (27) must be fulfilled automatically. d is in the range 0 ≤ d ≤ n1+n2+n3

2 , so, here,
in the special case, we have 0 ≤ d ≤ 0+0+1

2 = 1
2 ≤ 1, which means that 0 ≤ d ≤ 1 is indeed

fulfilled automatically.
In the (2D) case, n1 = 0 (n2 = 0 is excluded here since it is already covered in the (1D)

case, so here n2 > 0). Here, only intersection cases (2) or (5) are possible, 0 < n2 ≤ n3 ≤ 1
and min(n1 + n2, n3) = n2, simplifying Equation (25) without loss of generality to

d =

{√
2 V n2 n3 (2) if 0 ≤ d ≤ n2

V n3 +
n2
2 (5) if n2 ≤ d ≤ n3

(29)

A clean derivation of the 2D case yields

d =

{√
2 V n2 n3 (2) if d ≤ n2

V n3 +
n2
2 (5) if n2 ≤ d

(30)

which has simpler conditions, so again it is a necessary requirement that both additional
conditions in Equation (29) must be fulfilled automatically. d is in the range 0 ≤ d ≤
n1+n2+n3

2 , so here, with the special conditions, we have 0 ≤ d ≤ 0+n2+n3
2 ≤ n3+n3

2 = n3,
meaning that both 0 ≤ d and d ≤ n3 are indeed fulfilled automatically.

In the above chosen (5) → (2) → (1) → (3) → (4) implementation order, the 1D
and 2D special cases are already covered in (5) and (2) at the beginning, so they both are
excluded in the remaining intersection cases (1), (3) and (4), meaning that n1, n2, n3 > 0 are
always given, resulting in x3 > 0 in Equation (14).

Listing A2 shows the fully optimized C implementation of the analytic PLIC solution
with Equation (26).

2.4. The Analytic SZ Solution

The analytic PLIC solution by Scardovelli and Zaleski from 2000 [4] was implemented
in Fortran in 2016 by Kawano [5], where it was used as a comparison to the approximative
APPLIC method. Here, we focus on the exact SZ solution. The SZ solution is particularly
interesting in that it builds upon the L1-normalized plane normal vector, instead of the more
common L2 normalization as used in our own solution in Section 2.3. We first translate
the Fortran implementation to C, make it compatible with an L2-normalized plane normal

vector as input and rescale the result from the original [0, 1] to [− |nx |+|ny |+|nz |
2 , |nx |+|ny |+|nz |

2].
The implementation is provided in Listing A3.

Computation 2022, 10, 21 7 of 26

To summarize, the differences between our novel solution and the SZ Kawano imple-
mentation are the following:

• while our solution is based on the L2-normalized plane normal vector, the SZ solution
uses the L1-normalized normal vector;

• our solution takes two atan operations while the SZ solution takes one acos operation;
• our solution has a smaller number of arithmetic operations and branching than the SZ

Kawano implementation, but requires more special functions.

When closely studying the implementation in Listing A3, we notice that the 1D edge case is
poorly handled despite the addition of a tiny constant to the denominator for the calculation
of v1. In the edge cases of the normal vector~n = (1, 0, 0)T and the volume V0 ∈ {0, 1}, the
algorithm returns -NaN both in our OpenCL and in the original Fortran implementation. By
checking cases (5) and (2) first and by avoiding divisions by vm1 and vm2 before the checks
for cases (5) and (2), respectively, we improve the handling of the 1D edge case. We further
apply some micro-optimization to significantly reduce the number of arithmetic operations
and branching.

With the knowledge gained from our novel PLIC solution, we are able to make
the following improvements to the existing SZ Kawano implementation, resulting in an
optimized implementation of the SZ solution as shown in Listing A4:

• correct edge case behavior;
• more efficient branching by computing easier, more common cases first and less

common, more computationally expensive cases last;
• micro-optimization by pre-computing redundant terms and minimizing the number

of arithmetic operations and branching.

2.5. Iterative Solutions

For comparison, we also provide iterative solutions using nested intervals in Listing A5
and Newton–Raphson in Listing A6.

2.6. Performance and Accuracy Comparison

Apart from floating-point errors, the SZ solution in Listing A4 and our own solution
in Listing A2 produce identical results. For accuracy comparison, we define the error as

Ei := |plic_cube_inverse(plic_cube(V0, ~ni), ~ni)−V0| (31)

with plic_cube_inverse(d0, ~ni) referring to the implementation in Listing A1 and
plic_cube(V0, ~ni) referring to the various PLIC implementations. We define the average
error as follows:

Eavg :=
1

N L

N L−1

∑
i=0

(Ei) (32)

The execution time for a ‘blank run’

Ei,blank := |plic_cube_inverse(V0 −
1
2

, ~ni)−V0| (33)

containing the time for memory loads and stores as well as computing time for the inverse
PLIC algorithm is measured and later subtracted from the execution times of the different
PLIC variants in order to isolate their execution time. The time is also divided by the number
of PLIC function evaluations (N L) in order to obtain the time for a single execution.

Table 1 classifies the different PLIC algorithms based on the number and type of
operations. Iterative solutions trade special functions (square/cube roots and trigonometric
functions) for a larger number of additions and multiplications.

Computation 2022, 10, 21 8 of 26

Table 1. Number of operations counted from C code. Arithmetic operations contain all floating-point
and integer operations except for those listed separately. For nested intervals, k ≈ 20 denotes the
number of iterations until sufficient convergence.

PLIC Variant Arithmetic Ops Branching 1√
x

√
x 3

√
x sin/cos asin/acos atan

Listing A2 our solution 95 4 2 3 3 2 2
Listing A3 SZ Kawano 123 6 2 1 1 1
Listing A4 SZ optimized 97 3 2 1 1 1
Listing A5 nested intervals 750 (70 + 34 k) 44 (4 + 2 k) 1 1
Listing A6 Newton-Raphson 308 4 1

2.6.1. CPU Testing

In this test,~ni is set to N = 4096 different normal vectors, of which one is (1, 0, 0)T, one
is (1√

2
, 1√

2
, 0)T, 510 are random 2D directions in the x-y-plane and the remaining 3584 are

random 3D directions. For each of these, the volume V0 is varied in the interval [0, 1]—edge
cases included—in L = 4096 equally spaced steps. The test is executed on a single core
of a Coffee Lake Intel Core i7-8700K CPU at 4.5 GHz non-AVX2 and 4.0 GHz AVX2 clock
frequency with the MSVC C++ compiler. The tests run only on a single CPU core. We cover
three scenarios with different compiler flags.

Firstly, we test without any compiler optimization (/Od, /Qpar-). The execution time
results are very different, as shown in Table 2. All variants but the Kawano implementation
and nested intervals are within the margin of error regarding computing time. In the edge
cases of the normal vector ~n = (1, 0, 0)T and the volume V0 ∈ {0, 1}, the SZ solution by
Kawano returns -NaN, which propagates through the entire error averaging procedure. For
the IEEE-754 FP32 floating-point format, the machine epsilon is at ε = 5.96× 10−8, meaning
that, for all other PLIC variants, the average error Eavg is within machine precision.

Table 2. Comparison of execution time and accuracy of the different PLIC variants with compiler
optimizations disabled.

PLIC Variant Execution Time/ns Eavg

Listing A2 our analytic solution 40.1± 7.9 2.04× 10−8

Listing A3 SZ solution by Kawano 51.3± 8.3 −NaN
Listing A4 SZ solution optimized 35.6± 11.4 4.70× 10−8

Listing A5 nested intervals 416.7± 19.5 2.62× 10−8

Listing A6 Newton-Raphson 49.3± 7.6 1.70× 10−8

Secondly, we repeat the test with compiler optimizations enabled, but with AVX2
disabled. The used compiler flags are /O2, /Oi, /Ot, /Qpar- and /fp:except-. The re-
sults are presented in Table 3. Here, Newton–Raphson considerably outperforms all the
other solutions.

Table 3. Comparison of execution time and accuracy of the different PLIC variants with compiler
optimizations enabled but AVX2 auto-vectorization disabled.

PLIC Variant Execution Time/ns Eavg

Listing A2 our analytic solution 33.0± 5.1 2.04× 10−8

Listing A3 SZ solution by Kawano 36.6± 5.1 −NaN
Listing A4 SZ solution optimized 35.3± 7.0 4.70× 10−8

Listing A5 nested intervals 266.0± 11.2 2.62× 10−8

Listing A6 Newton-Raphson 10.6± 5.8 1.70× 10−8

Lastly, we test with full compiler optimizations and AVX2. The used compiler flags are
/O2, /Oi, /Ot, /Qpar, /arch:AVX2 and /fp:except-. The results are presented in Table 4.

Computation 2022, 10, 21 9 of 26

In all variants, execution times do not significantly differ from when AVX is disabled,
indicating that auto-vectorization is not being applied at all. As an additional indicator, the
CPU clock frequency does not drop by the AVX2 clock offset while the tests are running.

Table 4. Comparison of execution time and accuracy of the different PLIC variants with compiler
optimizations enabled and with AVX2 auto-vectorization allowed.

PLIC Variant Execution Time/ns Eavg

Listing A2 our analytic solution 37.0± 8.2 2.04× 10−8

Listing A3 SZ solution by Kawano 37.2± 3.6 −NaN
Listing A4 SZ solution optimized 35.6± 5.3 4.70× 10−8

Listing A5 nested intervals 252.2± 8.7 2.62× 10−8

Listing A6 Newton-Raphson 9.6± 3.1 1.70× 10−8

2.6.2. GPU Testing

Since, in many applications, the target platform for the PLIC algorithm is the GPU,
we also benchmark the different variants in OpenCL on an Nvidia Titan Xp GPU (3840
CUDA cores at 1582 MHz, 12.1 TFLOPs/s, driver version 442.59, OpenCL 1.2). The test here
differs from the CPU C++ test in that, for sufficient saturation of the parallel computing
capabilities, the number of random normal vectors is increased to 67,108,864, of which again
one is (1, 0, 0)T, one is (1√

2
, 1√

2
, 0)T, 8,388,606 are random 2D directions in the x-y-plane and

the remaining 58,720,256 are random 3D directions. For these normal vectors, PLIC is run
in parallel and, for each of them, the volume V0 is varied in the interval [0, 1]—edge cases
included—in L = 256 equally spaced steps in series. For more accurate results through
averaging, this test is run 64 times and the mean execution time is averaged and divided by
the number of parallel and serial PLIC computations, resulting in an average computing
time that is more than three magnitudes shorter than for single-core CPU execution, as
listed in Table 5. Even though the tests are designed differently for the CPU and GPU, this
comparison is appropriate because, in both cases, the same algorithms are computed and
the hardware is fully saturated. The table also includes the number of arithmetic operations
(floating-point, integer and bit operations combined) Na and the number of branching
operations Nb in PTX assembly [37]. GPUs are especially poor at branching, so a small Nb
is desired. These operation counts—in analogy to the computing time—refer to the isolated
PLIC variants with the background ‘blank run’ for memory loads and stores as well as
the inverse PLIC algorithm subtracted. Na indicates that Newton–Raphson is unrolled by
the compiler, whereas nested intervals are not. The number of iterations to reach machine
precision for nested intervals depends on the initial interval width, which is a function of
the normal vector components. For Newton–Raphson, the number of branching operations
Nb is the smallest, resulting in rather good performance. Nevertheless, our optimized
implementation of the SZ solution pulls ahead rather significantly and thus is preferred
by us.

By dividing Na by the execution time, we obtain the performance in TFLOPs/s (integer
and bit operations are included since these are performed on the same CUDA cores as
floating-point operations on Nvidia Pascal), showing that computing efficiency is not
significantly impacted by the special functions used in the analytic solutions.

Computation 2022, 10, 21 10 of 26

Table 5. Comparison of execution time and accuracy of the different PLIC variants in OpenCL on
a GPU.

PLIC Variant Execution Time/ps Na Nb TFLOPs/s Eavg

Listing A2 our analytic solution 19.0± 1.7 189 13 9.9 5.73× 10−8

Listing A3 SZ solution by Kawano 16.0± 1.5 149 14 9.3 −NaN
Listing A4 SZ solution optimized 12.8± 1.0 132 12 10.3 6.58× 10−8

Listing A5 nested intervals 106.4± 6.2 106 13 10.0 2.86× 10−8

Listing A6 Newton-Raphson 19.2± 1.8 256 11 13.3 5.47× 10−8

It is noteworthy that there also is a novel neural network-based approach termed
NPLIC that promises significant speedup, especially for more complex, non-cubic lat-
tices [38]. This approach efficiently works on GPU hardware by using mainly multiplication
and addition.

3. Application: Curvature Calculation for VoF-LBM on the GPU
3.1. Volume-of-Fluid Overview

Volume-of-Fluid (VoF) is a model to simulate a sharp, freely moving interface between
a fluid and gas phase in a Cartesian lattice [9–12]. While it can be coupled to any flow solver,
here, we focus on its usage in conjunction with the lattice Boltzmann method (LBM). The
interface is ensured to be exactly one lattice cell thick at any time (illustrated in Figure 2).
As an indicator for each lattice point type, the fill level ϕ is introduced, whereby, for fluid
lattice points ϕ = 1, for interface 1 > ϕ > 0 and for gas ϕ = 0:

ϕ(~x, t) :=
m(~x, t)
ρ(~x, t)


= 1 if ~x is fluid
∈]0, 1[if ~x is interface
= 0 if ~x is gas

(34)

Here, ρ is the density provided by the lattice Boltzmann method (LBM) and m is the fluid
mass. m is a conserved quantity and cannot be gained or lost, only moved within the
simulation box. Isolated interface cells are not allowed to exist. If an interface cell has no
fluid neighbors, it is converted to gas. Its remaining mass is distributed as excess mass to
neighboring interface cells. The details are described in [8].

0.0 0.0

1.01.0 1.0

0.7 0.3 0.4

0.1

Figure 2. The idea of the Volume-of-Fluid model illustrated in 2D: A sharp interface (black curved
line) divides the gas phase (white cells) from the fluid phase (dark blue cells). Lattice points are located
at the center of each cell. All cells through which the interface extends are called interface cells (light
blue). Every lattice cell has a fill level ϕ ∈ [0, 1] assigned to it, which is ϕ = 0 for gas, ϕ = 1 for fluid
and ϕ ∈]0, 1[for interface—based on where exactly the sharp interface cuts through.

The key difficulty of modeling a free surface on a discretized lattice is to obtain the
surface curvature, which is a necessary ingredient for calculating the surface tension via
the Young–Laplace pressure

∆p = 2 σ κ (35)

Computation 2022, 10, 21 11 of 26

with κ = 1
R denoting the local mean curvature and σ denoting the surface tension param-

eter of the simulated fluid. The equation is easy in principle, but calculating κ from the
discretized interface geometry is not. Specifically, discretized interface here means that
only a local 33 neighborhood of fill levels ϕ ∈ [0, 1] is known, in addition to the point in the
center of this neighborhood being an interface lattice point.

ϕ0, . . . , ϕ26 → κ (36)

The most common algorithm in the literature [9,12] is the curvature calculation via a least-
squares paraboloid fit from a neighborhood of points located on the interface. It assumes
the local interface to be a paraboloid, the specifics of which will be given in the following
sections. Finding an appropriate set of neighboring points on the interface requires the
PLIC solution.

0.0 0.0

1.01.0 1.0

0.7 0.3 0.4

0.1

(a)

0.0 0.0

1.01.0 1.0

0.7 0.3 0.4

0.1

(b)

0.0 0.0

1.01.0 1.0

0.7 0.3 0.4

0.1

(c)

0.0 0.0

1.01.0 1.0

0.7 0.3 0.4

0.1

(d)

0.0 0.0

1.01.0 1.0

0.7 0.3 0.4

0.1

(e)

Figure 3. The curvature calculation procedure with PLIC illustrated in 2D. (a) The fill levels of the
interface lattice points indicate the position of the true interface (not known; here illustrated as a
black curve), but only a 33-neighborhood of these fill levels is available in memory. For obtaining
the local curvature, the steps are to (b) identify all interface neighbors (Equation (34)), (c) correct the
relative interface neighbor positions with the PLIC offset (Section 2), (d) rotate/translate these now
PLIC-corrected points into a coordinate system (Equation (41)) with the PLIC-corrected center point
being the origin and the z-axis being colinear with the local surface normal (Appendix C.1) and finally
(e) perform a paraboloid fit with these points (Appendix C.3).

3.2. Obtaining Neighboring Interface Points: PLIC Point Neighborhood

Piecewise linear interface construction works on a 33 neighborhood of an interface
lattice point (illustrated in 2D in Figure 3a). Within this neighborhood, only interface
points other than the center interface point—which is always interface—are considered
as candidates for the later fitting procedure (Figure 3b). The difficult part is to accu-
rately obtain the heights zi of at least five neighboring points located on the true interface
(Figure 3c). For this, first, the normal vector~n of the center interface point is calculated via
the Parker–Youngs approximation as described in the Appendix C.1 in Equation (A4). A
new coordinate system is introduced, with its first base vector~bz defined as this normal
vector. Then, the cross product with an arbitrary vector such as

~r := (0.56270900, 0.32704452, 0.75921047)T (37)

which is always non-colinear with~bz by random chance is calculated to provide second
and third orthonormal vectors

~bz := ~n (38)

~by :=
~bz ×~r
|~bz ×~r|

(39)

~bx :=~by ×~bz (40)

forming the new coordinate system in which the z-axis is colinear with the surface normal
and the center interface point is in the origin. Now, the relative positions~ei of all neighboring
interface lattice points (equal to the D3Q27 LBM streaming directions, Equation (A2)) are

Computation 2022, 10, 21 12 of 26

gathered and transformed into the rotated coordinate system. During this step, the approx-
imate interface position of neighboring interface points (streaming directions, Figure 3b) is
corrected to the much more accurate interface position via the PLIC plane–cube intersection
solution (Section 2, Figure 3c,d):

~pi =

xi
yi
zi

 :=

 ~ei ·~bx

~ei ·~by

~ei ·~bz + d0(ϕi, ~n)− d0(ϕ0, ~n)

 (41)

Here, i is only the subset of {0, . . . , 26} for which 0 < ϕi < 1 is true (interface points).
d0(V0 = ϕi, ~n) denotes the PLIC function (Equation (8)). Note that d0(V0 = ϕ0, ~n) only
needs to be calculated once, while d0(V0 = ϕi, ~n) has to be calculated for each neighboring
interface point, and that the normal vectors of neighboring interface lattice points are
approximated to be equal to the normal vector of the center lattice point. In theory, going
with the separately calculated neighbor normal vectors—which would require either an
additional data buffer for normal vectors in memory or alternatively a 53 neighborhood,
which would break the multi-GPU capabilities of the code—should be more accurate, but
our practical tests indicated no significant difference (see Figure 4).

The set of points ~pi is then used to fit a local paraboloid. This paraboloid (Figure 3e)
here lacks a vertical offset parameter as that is handled already by the center point be-
ing defined as the origin, reducing the computational cost to an LU decomposition of
dimensionality N = 5. The paraboloid has the form

z(x, y) = Ax2 + By2 + Cxy + Hx + Iy =: ~x · ~Q (42)

with

~x := (A, B, C, H, I)T (43)
~Q := (x2, y2, x y, x, y)T (44)

The solution vector ~x and thus the fitting parameters are calculated following the procedure
in Appendix C.3. Finally, the constants A, B, C, H and I are inserted into the analytic
equation for the curvature (A13), completing the algorithm.

3.3. Validating Curvature Calculation

To test the accuracy of the presented curvature calculation method, we validate it on
spherical drops of different radius R = 1

κtheo
. The fill levels ϕ are initialized with the inverse

PLIC algorithm. To let the drop relax and the error converge, we simulate up to 50,000
LBM time steps with D3Q19 SRT (τ = 1, σ = 0.001). The curvature error is calculated using
the L1 error norm with summation over all interface points:

E(κ) := ∑ |κsim − κtheo|
∑ κtheo

(45)

Computation 2022, 10, 21 13 of 26

 0

 10

 20

 30

 40

 50

16 32 48 64 80 96 112 128

E
/

%

R / Δx

our proposed method
our proposed method (with correct neighbor normals)
Donath's Minkowski functionals
Donath's Minkowski functionals (with correction term)

 0

 10

 20

 30

 40

 50

16 32 48 64 80 96 112 128

Figure 4. L1 error for our proposed curvature calculation method (red) depending on sphere radius.
We also show what happens when we use the PLIC reconstruction for the interface neighborhood not
with the center normal vector, but with the normal vectors of the interface neighbors, as discussed in
Section 3.2 (orange). For comparison, we provide the curvature approximation method proposed by
Donath [17] in both its variants (green and blue).

We plot the error in Figure 4. For low drop radius R ≤ 32, the error of our proposed
method (red curve) is around 0.5% and the local distribution of the error on the sphere
is very homogeneous (Figure 5). As R is increased, the error also generally increases and
points with particularly large errors emerge on the sphere surface. This can be assuming
that κsim is accurate to some statistically distributed error ε, κsim = κtheo ± ε. When ε

remains independent of R, the relative error |κsim−κtheo|
κtheo

= ε R will increase proportionally
with R. The curvature-independent error ε in turn arises from the so-called staircase effect,
in which the numerical curvature of a flat plane is non-zero if the plane is not aligned with
one of the coordinate axes. In Figure 6, we demonstrate this effect quantitatively.

Figure 5. Local L1 error |κsim−κtheo|
κtheo

for our proposed curvature calculation method illustrated for
spheres of radius R ∈ {16, 32, 64, 128}.

Computation 2022, 10, 21 14 of 26

−0.015
−0.010
−0.005

0.000
0.005
0.010
0.015

0 5 10 15 20 25 30 35 40 45av
er

ag
e

cu
rv

at
ur

e
/

1/
Δx

surface inclination / °

our proposed method

−0.015
−0.010
−0.005

0.000
0.005
0.010
0.015

0 5 10 15 20 25 30 35 40 45

Figure 6. Average curvature for a flat plane of different inclination (rotated around the x-axis). For 0◦

inclination, the curvature is exactly 0. However, due to the fitting procedure, for an inclination other
than 0◦, it is not, and deviations are especially large in the region 2◦ to 15◦.

If we do not make the assumption that the PLIC normal direction of neighbor interface
points has to equal the center normal vector (orange curve), then accuracy is slightly
improved. However, the additional computational complexity may not justify this small
improvement in accuracy.

For comparison, we also plot the curvature approximation method proposed by
Donath [17] without and with the proposed π

4 correction factor. As expected, the error is
much larger, but this method is also computationally less expensive than ours and certainly
has its use-cases as well.

3.4. Application Example: Simulating a Terminal Velocity Raindrop Impact

The analytic plane–cube intersection solution presented in this work has originally
been developed for the VoF-LBM GPU simulation code FluidX3D, where we could observe
a significant speedup compared to when an iterative nested-intervals solution is used. To
illustrate this particular application of PLIC, we show a simulation of a 5 mm diameter
raindrop impact at terminal velocity in Figure 7. The parameters for this simulation are
ν = 1.307× 10−6 m2

s , ρ = 999.7 kg
m3 , σ = 74.2× 10−3 kg

s2 , g = 9.81 m
s2 , d = 0.005 m, u = 9.2 m

s ,
resulting in the dimensionless numbers Re = 35195, We = 5702, Fr = 41.54, Ca = 0.1620,
Bo = 3.3042. The simulation box has the dimensions 5.00 cm× 5.00 cm× 4.25 cm and the
pool height is 2.00 cm. The simulation code FluidX3D is documented in great detail in [8].
A large-scale computational study on these raindrop impact simulations was conducted
in [6], alongside extensive validation of the method, showing very good agreement with
experiments. At this large Reynolds number, there is only a small gap of possible LBM unit
parametrization to have stable simulations and only the SRT collision operator remains
stable; details can be found in SI Section S3 in [6].

The t = 0.005 s of computed time is equivalent to 4907 LBM time steps at 400× 400× 340
lattice resolution. Computing time with a Nvidia Titan Xp GPU is 59.7 s with our optimized
version of the SZ solution (Listing A4). When removing PLIC from the LBM algorithm,
computing time is 51.2 s, meaning that 14.3% of the entire computing time is spent on the
PLIC routine. This fraction of course depends on the simulation itself and the amount
of surface area where curvature is computed, but it should give an impression of the
significance of an efficient PLIC implementation for computing time. For comparison, with
nested intervals (Listing A5), the total computing time for the raindrop increases to 68.0 s,
so this PLIC routine would take 32.8% of the total computing time.

Computation 2022, 10, 21 15 of 26

Figure 7. A 5 mm diameter raindrop impacting a lake at 9.2 m
s mean sea level pressure terminal

velocity [39] and 10 ◦C water temperature, simulated with the VoF-LBM GPU simulation code
FluidX3D at a lattice resolution of 400 × 400 × 340 with the D3Q19 discretization and the SRT
collision operator. Frames are shown at times t ∈ {0, 1, 2, 3, 4, 5}ms. Computing time for this
simulation is less than one minute on a single Nvidia Titan Xp GPU. Visualization is done with a
custom GPU implementation of the marching cubes algorithm [40–42].

4. Conclusions

We derived an analytic solution to the PLIC problem and compared it to the existing so-
lution by Scardovelli and Zaleski [4] in two variants: an implementation by Kawano [5] and
an improved and micro-optimized version thereof. We furthermore compared these three
analytic solutions to two iterative solutions using Newton–Raphson and nested intervals.
We provide C implementations of all variants as well as the inverse PLIC formulation.

We observe that, in a benchmark scenario with compiler optimization on the CPU,
the Newton–Raphson solution (Listing A6) is considerably faster than all other solutions.
Without compiler optimization, execution times for our novel solution and our optimized
version of the SZ solution are both faster than Newton–Raphson.

On the GPU, the analytic solutions are faster than the iterative solutions, with our
micro-optimized version of the SZ solution as presented in Listing A4 being fastest. For a
generic PLIC problem, this is the solution we recommend.

In the most common application of PLIC—curvature calculation for Volume-of-Fluid
LBM, which we presented and also validated on spherical drops—profiling revealed PLIC
to be the main bottleneck regarding computing time. Here, our proposed fast PLIC solution
led to significant speedup of VoF calculations. We hope that our findings will also make
other simulation codes more computationally efficient.

Author Contributions: Analytic calculations were performed by M.L. M.L. conducted programming
and testing. M.L. wrote the initial draft and created the illustrations. M.L. and S.G. performed review
and editing on the draft. All authors have read and agreed to the published version of the manuscript.

Funding: This study was funded by the Deutsche Forschungsgemeinschaft (DFG, German Research
Foundation)—Project Number 391977956—SFB 1357, and Number 491183248. Funded by the Open
Access Publishing Fund of the University of Bayreuth.

Data Availability Statement: All data are archived and available upon request. All code beyond
what is provided in the listings is archived and available upon request.

Computation 2022, 10, 21 16 of 26

Acknowledgments: We acknowledge funding and support from the SFB 1357 Mikroplastik. We
gratefully acknowledge the computing time provided by the SuperMUC system of the Leibniz
Rechenzentrum, Garching. We further acknowledge support through the computational resources
provided by the Bavarian Polymer Institute. We acknowledge the NVIDIA Corporation for donating
a Titan Xp GPU for our research. M.L. acknowledges support from the ENB Biological Physics.

Conflicts of Interest: The authors declare no potential conflicts of interests.

Abbreviations
The following abbreviations are used in this manuscript:

AVX2 advanced vector extensions 2 (256-bit)
CPU central processing unit
GPU graphics processing unit
LBM lattice Boltzmann method
PLIC piecewise linear interface construction
VoF Volume-of-Fluid

Appendix A. PLIC Inversion with Mathematica

In[1]:= $Assumptions = {x, y, a, b, c, V, n1, n2, n3} ∈ Reals

Out[1]= (x y a b c V n1 n2 n3) ∈ 

In[2]:= f := c - a * (1 - I * 3^ (1 / 2)) / (x + I * y)^ (1 / 3) - b * (1 + I * 3^ (1 / 2)) * (x + I * y)^ (1 / 3)

f

FullSimplify[ComplexExpand[Re[f]]]

Out[3]= c -

1 - ⅈ 3  a

(x + ⅈ y)1/3
- 1 + ⅈ 3 b (x + ⅈ y)1/3

Out[4]= c +

a + b x2 + y21/3 -Cos 1
3
Arg[x + ⅈ y] + 3 Sin 1

3
Arg[x + ⅈ y]

x2 + y21/6

In[5]:= V1 := d^3 / (6 * n1 * n2 * n3)

V1

Solve[V ⩵ V1, d]

Out[6]=
d3

6 n1 n2 n3

Out[7]= d → -(-6)1/3 V1/3 n1
1/3 n2

1/3 n3
1/3, d → 61/3 V1/3 n1

1/3 n2
1/3 n3

1/3, d → (-1)2/3 61/3 V1/3 n1
1/3 n2

1/3 n3
1/3

In[8]:= V2 := (d^3 - (d - n1)^3) / (6 * n1 * n2 * n3)

V2

Solve[V ⩵ V2, d]

Out[9]=
d3 - (d - n1)

3

6 n1 n2 n3

Out[10]= d →
1

2
n1 -

-n1
2 + 24 V n2 n3

3
, d →

1

2
n1 +

-n1
2 + 24 V n2 n3

3


Computation 2022, 10, 21 17 of 26

In[11]:= V3 := (d^3 - (d - n1)^3 - (d - n2)^3) / (6 * n1 * n2 * n3)

V3

Solve[V ⩵ V3, d]

Out[12]=
d3 - (d - n1)

3 - (d - n2)
3

6 n1 n2 n3

Out[13]= d → n1 + n2 +

6 × 21/3 n1 n2

81 n1
2 n2 + 81 n1 n2

2 - 162 V n1 n2 n3 + -23328 n1
3 n2

3 + 81 n1
2 n2 + 81 n1 n2

2 - 162 V n1 n2 n3
2

1/3
+

81 n1
2 n2 + 81 n1 n2

2 - 162 V n1 n2 n3 + -23328 n1
3 n2

3 + 81 n1
2 n2 + 81 n1 n2

2 - 162 V n1 n2 n3
2

1/3

3 × 21/3
,

d → n1 + n2 -

3 × 21/3 1 + ⅈ 3  n1 n2

81 n1
2 n2 + 81 n1 n2

2 - 162 V n1 n2 n3 + -23328 n1
3 n2

3 + 81 n1
2 n2 + 81 n1 n2

2 - 162 V n1 n2 n3
2

1/3
-

1

6 × 21/3
1 - ⅈ 3 81 n1

2 n2 + 81 n1 n2
2 - 162 V n1 n2 n3 +

-23328 n1
3 n2

3 + 81 n1
2 n2 + 81 n1 n2

2 - 162 V n1 n2 n3
2

1/3

, d → n1 + n2 -

3 × 21/3 1 - ⅈ 3  n1 n2

81 n1
2 n2 + 81 n1 n2

2 - 162 V n1 n2 n3 + -23328 n1
3 n2

3 + 81 n1
2 n2 + 81 n1 n2

2 - 162 V n1 n2 n3
2

1/3
-

1

6 × 21/3
1 + ⅈ 3

81 n1
2 n2 + 81 n1 n2

2 - 162 V n1 n2 n3 + -23328 n1
3 n2

3 + 81 n1
2 n2 + 81 n1 n2

2 - 162 V n1 n2 n3
2

1/3



2 plic_solution.nb

Computation 2022, 10, 21 18 of 26

In[14]:= V4 := (d^3 - (d - n1)^3 - (d - n2)^3 - (d - n3)^3) / (6 * n1 * n2 * n3)

V4

Solve[V ⩵ V4, d]

Out[15]=
d3 - (d - n1)

3 - (d - n2)
3 - (d - n3)

3

6 n1 n2 n3

Out[16]= d →
1

2
(n1 + n2 + n3) - -9 (n1 + n2 + n3)

2 + 18 n1
2 + n2

2 + n3
2  3 × 22/3 324 n1 n2 n3 - 648 V n1 n2 n3 +

(324 n1 n2 n3 - 648 V n1 n2 n3)
2 + 4 -9 (n1 + n2 + n3)

2 + 18 n1
2 + n2

2 + n3
2

3
1/3

+

1

6 × 21/3
324 n1 n2 n3 - 648 V n1 n2 n3 +

(324 n1 n2 n3 - 648 V n1 n2 n3)
2 + 4 -9 (n1 + n2 + n3)

2 + 18 n1
2 + n2

2 + n3
2

3
1/3

,

d →
1

2
(n1 + n2 + n3) + 1 + ⅈ 3 -9 (n1 + n2 + n3)

2 + 18 n1
2 + n2

2 + n3
2 

6 × 22/3 324 n1 n2 n3 - 648 V n1 n2 n3 +

(324 n1 n2 n3 - 648 V n1 n2 n3)
2 + 4 -9 (n1 + n2 + n3)

2 + 18 n1
2 + n2

2 + n3
2

3
1/3

-

1

12 × 21/3
1 - ⅈ 3 324 n1 n2 n3 - 648 V n1 n2 n3 +

(324 n1 n2 n3 - 648 V n1 n2 n3)
2 + 4 -9 (n1 + n2 + n3)

2 + 18 n1
2 + n2

2 + n3
2

3
1/3

,

d →
1

2
(n1 + n2 + n3) + 1 - ⅈ 3 -9 (n1 + n2 + n3)

2 + 18 n1
2 + n2

2 + n3
2 

6 × 22/3 324 n1 n2 n3 - 648 V n1 n2 n3 +

(324 n1 n2 n3 - 648 V n1 n2 n3)
2 + 4 -9 (n1 + n2 + n3)

2 + 18 n1
2 + n2

2 + n3
2

3
1/3

-

1

12 × 21/3
1 + ⅈ 3 324 n1 n2 n3 - 648 V n1 n2 n3 +

(324 n1 n2 n3 - 648 V n1 n2 n3)
2 + 4 -9 (n1 + n2 + n3)

2 + 18 n1
2 + n2

2 + n3
2

3
1/3



plic_solution.nb 3

In[17]:= V5 := (d - (n1 + n2) / 2) / n3
V5

Solve[V ⩵ V5, d]

Out[18]=

d +
1

2
(-n1 - n2)

n3

Out[19]= d →
1

2
(n1 + n2 + 2 V n3)

4 plic_solution.nb

Computation 2022, 10, 21 19 of 26

Appendix B. Code Listings

Listing A1. Fully optimized C implementation of the inverse PLIC solution. To avoid branching
between cases (3) and (4), in the implementation, the fdimf(x,y):=
max(x-y,0) function is used. Case (2) cannot be included with another fdimf(x,y) because, in case
(2), division by n1 must be avoided since it could be zero.

float plic_cube_inverse (const float d0 , const float nx , const float ny , const float nz) { // unit cube - plane intersection
↪→ : plane offset d0 , normal vector n -> volume V0 in [0 ,1]

const float n1 = fmin(fmin(fabs(nx), fabs(ny)), fabs(nz)); // eliminate most cases due to symmetry
const float n3 = fmax(fmax(fabs(nx), fabs(ny)), fabs(nz));
const float n2 = fabs(nx)-n1+fabs(ny)+fabs(nz)-n3;
const float d = 0.5f∗(n1+n2+n3)-fabs(d0); // calculate PLIC with reduced symmetry , shift origin from (0.0 ,0.0 ,0.0) ->

↪→ (0.5 ,0.5 ,0.5)
float V; // 0.0 <=V <=0.5
if(fmin(n1+n2 , n3) <=d && d <= n3) { // case (5)

V = (d-0.5f∗(n1+n2))/n3; // avoid division by n1 and n2
} else if(d<n1) { // case (1)

V = cb(d) /(6.0 f∗n1∗n2∗n3); // condition d<n1 ==0 is impossible if d ==0.0 f
} else if(d <= n2) { // case (2)

V = (3.0f∗d∗(d-n1)+sq(n1)) /(6.0 f∗n2∗n3); // avoid division by n1
} else { // case (3) or (4)

V = (cb(d)-cb(d-n1)-cb(d-n2)-cb(fdim(d, n3))) /(6.0 f∗n1∗n2∗n3);
}
return copysign (0.5f-V, d0)+0.5f; // apply symmetry for V0 >0.5

}

Listing A2. Fully optimized C implementation of our analytic PLIC solution.

float plic_cube_reduced (const float V, const float n1 , const float n2 , const float n3) {
const float n1pn2 =n1+n2 , n3xV=n3∗V;
if(n1pn2 <=2.0 f∗n3xV) return n3xV +0.5f∗ n1pn2 ; // case (5)
const float V6n2n3 =6.0f∗n2∗n3xV , sqn1=sq(n1);
if(V6n2n3 >= sq(n1) && 3.0f∗n2 ∗(2.0 f∗n3xV+n1-n2) <=sqn1) return 0.5f∗n1 +0.28867513 f∗sqrt (24.0 f∗n2∗n3xV-sqn1); // case (2)
if(V6n2n3 <sqn1) return cbrt(V6n2n3 ∗n1); // case (1)
const float n1xn2 =n1∗n2;
const float x3 = 81.0f∗ n1xn2 ∗(n1pn2 -2.0f∗n3xV); // x3 >0
const float y32 = fdim (23328.0 f∗cb(n1xn2), sq(x3)); // y3 >=0
const float u3 = cbrt(sq(x3)+y32);
const float d3 = n1pn2 - (7.5595264 f∗ n1xn2 +0.26456684 f∗u3)∗ rsqrt (u3)∗sin (0.5235988 f- 0.33333334 f∗atan(sqrt(y32)/x3)); // x3

↪→ >0
if(d3 <= n3) return d3; // case (3)
const float t4 = 9.0f∗sq(n1pn2 +n3)-18.0f;
const float x4 = fmax(n1xn2 ∗n3 ∗(324.0 f- 648.0 f∗V), 1.1754944 E-38f); // avoid edge case V ==0.5 to make x4 >0
const float y42 = 4.0f∗cb(t4)-sq(x4); // y4 >=0
const float u4 = cbrt(sq(x4)+y42);
const float d4 = 0.5f∗(n1pn2 +n3)- (0.20998684 f∗t4 +0.13228342 f∗u4)∗ rsqrt (u4)∗sin (0.5235988 f- 0.33333334 f∗atan(sqrt(y42)/x4))

↪→ ; // x4 >0
return d4; // case (4)

}
float plic_cube (const float V0 , const float nx , const float ny , const float nz) { // unit cube - plane intersection : volume

↪→ V0 in [0 ,1] , normal vector n -> plane offset d0
const float ax=fabs(nx), ay=fabs(ny), az=fabs(nz), V=0.5f-fabs(V0-0.5f); // eliminate symmetry cases
const float n1 = fmin(fmin(ax , ay), az);
const float n3 = fmax(fmax(ax , ay), az);
const float n2 = ax-n1+ay+az-n3;
const float d = plic_cube_reduced (V, n1 , n2 , n3); // calculate PLIC with reduced symmetry
return copysign (0.5f∗(n1+n2+n3)-d, V0-0.5f); // apply symmetry for V0 >0.5

}

Computation 2022, 10, 21 20 of 26

Listing A3. The Fortran implementation [5] of the analytic SZ PLIC solution [4] translated to C
without further optimization.

float plic_cube (const float V0 , const float nx , const float ny , const float nz) { // unit cube - plane intersection : volume
↪→ V0 in [0 ,1] , normal vector n -> plane offset d0

const float l = fabs(nx)+fabs(ny)+fabs(nz); // length in L1 norm
const float ax=fabs(nx)/l, ay=fabs(ny)/l, az=fabs(nz)/l, w=0.5f-fabs(V0-0.5f); // eliminate symmetry cases
const float vm1 = fmin(fmin(ax , ay), az);
const float vm3 = fmax(fmax(ax , ay), az);
const float vm2 = fdim (1.0f, vm1+vm3); // ensure vm2 >=0
const float vm12 = vm1+vm2;
float alpha = 0.0f;
const float v1 = sq(vm1) /(6.0 f∗vm2∗vm3 +1E-25f);
const float w6 = 6.0f∗vm1∗vm2∗vm3∗w;
if(w<v1) {

alpha = cbrt(w6); // case (1)
} else if(w<v1 +0.5f∗(vm2-vm1)/vm3) {

alpha = 0.5f∗(vm1+sqrt(sq(vm1)+8.0f∗vm2∗vm3 ∗(w-v1))); // case (2)
} else {

float v3;
if(vm3 <vm12) {

v3 = (sq(vm3) ∗(3.0 f∗vm12-vm3)+sq(vm1)∗(vm1-3.0f∗vm3)+sq(vm2)∗(vm2-3.0f∗vm3)) /(6.0 f∗vm1∗vm2∗vm3);
} else {

v3 = 0.5f∗vm12/vm3;
if(v3 <=w) alpha = vm3∗w+0.5f∗vm12; // case (5)

}
if(alpha ==0.0 f) {

float a0 , a1 , a2;
if(w<v3) { // case (3)

a2 = -3.0f∗vm12;
a1 = 3.0f∗(sq(vm1)+sq(vm2));
a0 = w6-cb(vm1)-cb(vm2);

} else { // case (4)
a2 = -1.5f;
a1 = 1.5f∗(sq(vm1)+sq(vm2)+sq(vm3));
a0 = 0.5f∗(w6-cb(vm1)-cb(vm2)-cb(vm3));

}
const float q0 = 0.16666667 f∗(a1∗a2-3.0f∗a0)- 3.7037037 E-2f∗cb(a2); // 3.7037037 E-2f = 1/27
const float sp = sqrt (0.11111111 f∗sq(a2)- 0.33333334 f∗a1);
alpha = 2.0f∗sp∗cos (4.1887902 f +0.33333334 f∗acos(q0/cb(sp)))- 0.33333334 f∗a2; // 4.1887902 f = 4/3∗ pi

}
}
return l∗ copysign (0.5f-alpha , V0-0.5f); // rescale result and apply symmetry for V0 >0.5

}

Listing A4. Fully optimized C implementation of the SZ PLIC solution.

float plic_cube_reduced (const float V, const float n1 , const float n2 , const float n3) { // optimized solution from SZ and
↪→ Kawano

const float n12=n1+n2 , n3V=n3∗V;
if(n12 <=2.0 f∗n3V) return n3V +0.5f∗n12; // case (5)
const float sqn1=sq(n1), n26 =6.0f∗n2 , v1=sqn1/n26; // after case (5) check n2 >0 is true
if(v1 <= n3V && n3V <v1 +0.5f∗(n2-n1)) return 0.5f∗(n1+sqrt(sqn1 +8.0f∗n2 ∗(n3V-v1))); // case (2)
const float V6 = n1∗n26∗n3V;
if(n3V <v1) return cbrt(V6); // case (1)
const float v3 = n3 <n12 ? (sq(n3) ∗(3.0 f∗n12-n3)+sqn1 ∗(n1-3.0f∗n3)+sq(n2)∗(n2-3.0f∗n3))/(n1∗n26) : 0.5f∗n12; // after case

↪→ (2) check n1 >0 is true
const float sqn12 =sqn1+sq(n2), V6cbn12 =V6-cb(n1)-cb(n2);
const bool case34 = n3V <v3; // true: case (3) , false : case (4)
const float a = case34 ? V6cbn12 : 0.5f∗(V6cbn12 -cb(n3));
const float b = case34 ? sqn12 : 0.5f∗(sqn12 +sq(n3));
const float c = case34 ? n12 : 0.5f;
const float t = sqrt(sq(c)-b);
return c-2.0f∗t∗sin (0.33333334 f∗asin ((cb(c)-0.5f∗a-1.5f∗b∗c)/cb(t)));

}
float plic_cube (const float V0 , const float nx , const float ny , const float nz) { // unit cube - plane intersection : volume

↪→ V0 in [0 ,1] , normal vector n -> plane offset d0
const float ax=fabs(nx), ay=fabs(ny), az=fabs(nz), V=0.5f-fabs(V0-0.5f), l=ax+ay+az; // eliminate symmetry cases ,

↪→ normalize n using L1 norm
const float n1 = fmin(fmin(ax , ay), az)/l;
const float n3 = fmax(fmax(ax , ay), az)/l;
const float n2 = fdim (1.0f, n1+n3); // ensure n2 >=0
const float d = plic_cube_reduced (V, n1 , n2 , n3); // calculate PLIC with reduced symmetry
return l∗ copysign (0.5f-d, V0-0.5f); // rescale result and apply symmetry for V0 >0.5

}

Computation 2022, 10, 21 21 of 26

Listing A5. C implementation of the iterative nested-intervals solution for cases (3) and (4).

int log2_fast (const float x) { // evil log2 hack: log2(x)=(as_uint (x) >>23)-127
return (as_uint (x) >>23)-127;

}
float plic_cube_reduced (const float V, const float n1 , const float n2 , const float n3) {

const float n1pn2 =n1+n2 , n3xV=n3∗V;
if(n1pn2 <=2.0 f∗n3xV) return n3xV +0.5f∗ n1pn2 ; // case (5)
const float V6n2n3 =6.0f∗n2∗n3xV , sqn1=sq(n1);
if(V6n2n3 >= sq(n1) && 3.0f∗n2 ∗(2.0 f∗n3xV+n1-n2) <=sqn1) return 0.5f∗n1 +0.28867513 f∗sqrt (24.0 f∗n2∗n3xV-sqn1); // case (2)
if(V6n2n3 <sqn1) return cbrt(V6n2n3 ∗n1); // case (1)
const float V6n1n2n3 = V6n2n3 ∗n1;
float dmin , dmax , d;
uint k;
dmin=n2; dmax=n1+n2; d=0.5f∗(dmin+dmax);
k = (uint) log2_fast ((dmax-dmin) ∗1.67772162 E7f); // deterdmine number of interval halvings to reach machine precision
for(uint i=0; i <=k; i++) {

if(cb(d)-cb(d-n1)-cb(d-n2)<V6n1n2n3) dmin = d;
else dmax = d;
d = 0.5f∗(dmin+dmax);

}
if(d <= n3) return d; // case (3)
dmin=n3; dmax =0.5f∗(n1+n2+n3); d=0.5f∗(dmin+dmax);
k = (uint) log2_fast ((dmax-dmin) ∗1.67772162 E7f); // deterdmine number of interval halvings to reach machine precision
for(uint i=0; i <=k; i++) {

if(cb(d)-cb(d-n1)-cb(d-n2)-cb(d-n3)<V6n1n2n3) dmin = d;
else dmax = d;
d = 0.5f∗(dmin+dmax);

}
return d;

}
float plic_cube (const float V0 , const float nx , const float ny , const float nz) {

const float n1 = fmin(fmin(fabs(nx), fabs(ny)), fabs(nz)); // eliminate most cases due to symmetry
const float n3 = fmax(fmax(fabs(nx), fabs(ny)), fabs(nz));
const float n2 = fabs(nx)-n1+fabs(ny)+fabs(nz)-n3;
const float V = 0.5f-fabs(V0-0.5f);
const float d = plic_cube_reduced (V, n1 , n2 , n3);
return copysign (0.5f∗(n1+n2+n3)-d, V0-0.5f); // apply symmetry for V0 >0.5

}

Listing A6. C implementation of the iterative Newton–Raphson solution for cases (1), (3) and (4).
Calculating case (1) with Newton–Raphson as well instead of the cbrt() function results in a very
small but noticeable improvement in performance when executed on the CPU.

float plic_cube_reduced (const float V, const float n1 , const float n2 , const float n3) {
const float n1pn2 =n1+n2 , n3xV=n3∗V;
if(n1pn2 <=2.0 f∗n3xV) return n3xV +0.5f∗ n1pn2 ; // case (5)
const float V6n2n3 =6.0f∗n2∗n3xV , sqn1=sq(n1);
if(V6n2n3 >= sq(n1) && 3.0f∗n2 ∗(2.0 f∗n3xV+n1-n2) <=sqn1) return 0.5f∗n1 +0.28867513 f∗sqrt (24.0 f∗n2∗n3xV-sqn1); // case (2)
const float V6n1n2n3 = V6n2n3 ∗n1;
float dmin , dmax , d;
if(V6n2n3 <sqn1) {

dmin =0.0f; dmax=n1; d=0.5f∗(dmin+dmax);
for(uint i=0; i <7; i++) {

const float f = cb(d)- V6n1n2n3 ;
const float fs = 3.0f∗sq(d);
d -= f/fs;

}
return d; // case (1)

}
dmin=n2; dmax=n1+n2; d=0.5f∗(dmin+dmax);
for(uint i=0; i <4; i++) {

const float f = cb(d)-cb(d-n1)-cb(d-n2)- V6n1n2n3 ;
const float fs = 3.0f∗(sq(d)-sq(d-n1)-sq(d-n2));
d -= f/fs;

}
if(d <= n3) return d; // case (3)
dmin=n3; dmax =0.5f∗(n1+n2+n3); d=0.5f∗(dmin+dmax);
for(uint i=0; i <4; i++) {

const float f = cb(d)-cb(d-n1)-cb(d-n2)-cb(d-n3)- V6n1n2n3 ;
const float fs = 3.0f∗(sq(d)-sq(d-n1)-sq(d-n2)-sq(d-n3));
d -= f/fs;

}
return d; // case (4)

}
float plic_cube (const float V0 , const float nx , const float ny , const float nz) {

const float n1 = fmin(fmin(fabs(nx), fabs(ny)), fabs(nz)); // eliminate most cases due to symmetry
const float n3 = fmax(fmax(fabs(nx), fabs(ny)), fabs(nz));
const float n2 = fabs(nx)-n1+fabs(ny)+fabs(nz)-n3;
const float V = 0.5f-fabs(V0-0.5f);
const float d = plic_cube_reduced (V, n1 , n2 , n3);
return copysign (0.5f∗(n1+n2+n3)-d, V0-0.5f); // apply symmetry for V0 >0.5

}

Computation 2022, 10, 21 22 of 26

Appendix C. Paraboloid Curvature, Interface Normal and Least-Squares Fit

Appendix C.1. Calculating the Interface Normal Vector from a 33 Neighborhood

Calculating the normal vector on an interface lattice point in a 33 neighborhood in
which all fill levels ϕi are known works by applying the gradient to the fill levels:

∇ϕ(x, y, z) =


∂

∂x ϕ(x, y, z)
∂

∂y ϕ(x, y, z)
∂
∂z ϕ(x, y, z)


≈ 1

18

 ϕ1 + ϕ7 + ϕ9 + ϕ13 + ϕ15 + ϕ19 + ϕ21 + ϕ23 + ϕ26
ϕ3 + ϕ7 + ϕ11 + ϕ14 + ϕ17 + ϕ19 + ϕ21 + ϕ24 + ϕ25
ϕ5 + ϕ9 + ϕ11 + ϕ16 + ϕ18 + ϕ19 + ϕ22 + ϕ23 + ϕ25


− 1

18

 ϕ2 + ϕ8 + ϕ10 + ϕ14 + ϕ16 + ϕ20 + ϕ22 + ϕ24 + ϕ25
ϕ4 + ϕ8 + ϕ12 + ϕ13 + ϕ18 + ϕ20 + ϕ22 + ϕ23 + ϕ26
ϕ6 + ϕ10 + ϕ12 + ϕ15 + ϕ17 + ϕ20 + ϕ21 + ϕ24 + ϕ26


=

1
18

26

∑
i=1

~ei ϕi (A1)

~ei =


0 ±1 0 0 ±1 ±1 0 ±1 ±1 0 ±1 ±1 ±1 ∓1
0 0 ±1 0 ±1 0 ±1 ∓1 0 ±1 ±1 ±1 ∓1 ±1
0 0 0 ±1 0 ±1 ±1 0 ∓1 ∓1 ±1 ∓1 ±1 ±1

, i ∈ [0, 26] (A2)

This is called the center of mass (CM) method:

~nCM := − ∑26
i=1~ei ϕi

|∑26
i=1~ei ϕi|

(A3)

~ei are the directions from the center point of the 33-neighborhood to all of its 26 neighbors,
including itself.

Another, more accurate approach is the Parker–Youngs (PY) approximation [17,43],
which assigns different weights to the gradient components, similar to a Sobel filter (We
kindly note that [12] provides the weights in the wrong order.):

~nPY := − ∑26
i=1 wi~ei ϕi

|∑26
i=1 wi~ei ϕi|

(A4)

with

wi :=


4 for |~ci| = 1
2 for |~ci| =

√
2

1 for |~ci| =
√

3

(A5)

According to [12], the average error for CM is approximately 4◦, while for PY, it is approxi-
mately 1◦. For the surface curvature algorithms below, the more accurate and equally fast
PY method is used.

Appendix C.2. Analytic Curvature of a Paraboloid

A paraboloid curve is described by

z = f (x, y) = A x2 + B y2 + C x y + H x + I y + J (A6)

Computation 2022, 10, 21 23 of 26

where A, B, C, H, I and J are fitting parameters. For such a 2D surface in 3D space in the
Monge patch x, y, z = f (x, y), the mean curvature ([44], p. 185) [45–48] is

κ :=
fxx

(
f 2
y + 1

)
+ fyy

(
f 2
x + 1

)
− 2 fxy fx fy

2
(√

f 2
x + f 2

y + 1
)3 (A7)

The partial derivatives of Equation (A6) evaluated at the point (x = 0, y = 0) are

fxx |x=y=0
= 2 A (A8)

fyy
∣∣

x=y=0
= 2 B (A9)

fxy
∣∣

x=y=0
= C (A10)

fx |x=y=0
= 2 A x + C y + H |

x=y=0
= H (A11)

fy
∣∣

x=y=0
= 2 B y + C x + I |

x=y=0
= I (A12)

so that the mean curvature for the paraboloid at the origin is given by

κ :=
A (I2 + 1) + B (H2 + 1)− C H I(√

H2 + I2 + 1
)3 . (A13)

We note here that [9] in Equation (13) have an erroneous factor 2 and that [14] use a different
definition of the mean curvature. The strategy for finding the required fitting parameters is
to apply a least-squares fit on a neighborhood of points on the interface.

Appendix C.3. Curvature from Least-Squares Paraboloid Fit

The least-squares method [49] is a procedure for fitting an analytic curve—here, a
Monge patch—to a set of discretized points located nearby the analytic curve. The general
idea is to define the total error as a general expression of all fitting parameters and the
entire set of discretized points and then find its global minimum by zeroing its gradient

The analytic curve first needs to be written in a dot product form

z(x, y) = ~x · ~Q (A14)

with ~x being defined as the vector of parameters that define the curve and ~Q = ~Q(x, y)
being an expression of the continuous coordinates x and y. This equation is then discretized
to a set of individual data points (xi, yi, zi)

zi(xi, yi) ≈ ~x · ~Qi (A15)

with ~Qi = ~Qi(xi, yi) being a vector containing expressions only dependent on a discretized
set of points (xi, yi) whose corresponding z-component zi is located close to the curve.
In this notation, the error E between the z-positions of the analytic curve ~x · ~Q and a set
of z-positions of at least N neighboring interface points zi is defined by summing up the
squared differences

E(~x) =
N

∑
i=0

(~x · ~Qi − zi)
2 (A16)

whereby N denotes the dimensionality, which is equal to the number of desired fitting
parameters. The gradient of the error E is calculated and set to zero, where the error must
have a global minimum:

∇E(~x) = 2
N

∑
i=0

(~x · ~Qi − zi) ~Qi = 0 (A17)

Computation 2022, 10, 21 24 of 26

With some algebra, this equation is then transformed into a linear equation(
N

∑
i=0

~Qi ~Qi
T
)
~x =

N

∑
i=0

zi ~Qi (A18)

M :=
N

∑
i=0

~Qi ~Qi
T ~b :=

N

∑
i=0

zi ~Qi (A19)

M~x =~b (A20)

which is solved by LU decomposition and provides the desired solution ~x that uniquely
defines the curve.

Note that the matrix M is always symmetrical, meaning that only the upper half and
diagonal have to be calculated explicitly and the lower half is copied over. This reduces
the computational cost significantly due to every matrix element being a sum over an
expression depending on all fitted points. In case there are less than N data points available
(lattice points next to solid boundaries may have less interface neighbors), the regular fitting
will not work. Instead, then, the amount of fitting parameters is decreased to match the
number of available data points by reducing dimensionality in the LU decomposition. The
ignored fitting parameters will remain zero.

Finally, from the solution vector ~x, the constants defining the fitted curve are extracted
and the curvature is calculated from them using Equation (A13).

References
1. Youngs, D.L. Time-dependent multi-material flow with large fluid distortion. In Numerical Methods in Fluid Dynamics; Academic

Press: Cambridge, MA, USA, 1982.
2. Youngs, D.L. An Interface Tracking Method for a 3D Eulerian Hydrodynamics Code; Technical Report; Atomic Weapons Research

Establishment (AWRE): Aldermaston, UK, 1984; Volume 44, p. 35.
3. Janßen, C.F.; Grilli, S.T.; Krafczyk, M. On enhanced non-linear free surface flow simulations with a hybrid LBM–VOF model.

Comput. Math. Appl. 2013, 65, 211–229. [CrossRef]
4. Scardovelli, R.; Zaleski, S. Analytical relations connecting linear interfaces and volume fractions in rectangular grids. J. Comput.

Phys. 2000, 164, 228–237. [CrossRef]
5. Kawano, A. A simple volume-of-fluid reconstruction method for three-dimensional two-phase flows. Comput. Fluids 2016,

134, 130–145. [CrossRef]
6. Lehmann, M.; Oehlschlägel, L.M.; Häusl, F.P.; Held, A.; Gekle, S. Ejection of marine microplastics by raindrops: A computational

and experimental study. Microplastics Nanoplastics 2021, 1, 18. [CrossRef]
7. Laermanns, H.; Lehmann, M.; Klee, M.; Löder, M.G.; Gekle, S.; Bogner, C. Tracing the horizontal transport of microplastics on

rough surfaces. Microplastics Nanoplastics 2021, 1, 11. [CrossRef]
8. Lehmann, M. High Performance Free Surface LBM on GPUs. Master’s Thesis, University of Bayreuth, Bayreuth, Germany, 2019.
9. Bogner, S.; Rüde, U.; Harting, J. Curvature estimation from a volume-of-fluid indicator function for the simulation of surface

tension and wetting with a free-surface lattice Boltzmann method. Phys. Rev. E 2016, 93, 043302. [CrossRef]
10. Körner, C.; Thies, M.; Hofmann, T.; Thürey, N.; Rüde, U. Lattice Boltzmann model for free surface flow for modeling foaming. J.

Stat. Phys. 2005, 121, 179–196. [CrossRef]
11. Thürey, N.; Körner, C.; Rüde, U. Interactive Free Surface Fluids with the Lattice Boltzmann Method; Technical Report 05-4; University

of Erlangen-Nuremberg: Erlangen, Germany, 2005.
12. Pohl, T. High Performance Simulation of Free Surface Flows Using the Lattice Boltzmann Method; Verlag Dr. Hut: Erlangen, Ger-

many, 2008.
13. Schreiber, M.; Neumann, P.; Zimmer, S.; Bungartz, H.J. Free-surface lattice-Boltzmann simulation on many-core architectures.

Procedia Comput. Sci. 2011, 4, 984–993. [CrossRef]
14. Popinet, S. An accurate adaptive solver for surface-tension-driven interfacial flows. J. Comput. Phys. 2009, 228, 5838–5866.

[CrossRef]
15. Jafari, A.; Shirani, E.; Ashgriz, N. An improved three-dimensional model for interface pressure calculations in free-surface flows.

Int. J. Comput. Fluid Dyn. 2007, 21, 87–97. [CrossRef]
16. Xing, X.Q.; Butler, D.L.; Yang, C. Lattice Boltzmann-based single-phase method for free surface tracking of droplet motions. Int. J.

Numer. Methods Fluids 2007, 53, 333–351. [CrossRef]
17. Donath, S. Wetting Models for a Parallel High-Performance Free Surface Lattice Boltzmann Method: Benetzungsmodelle Für Eine Parallele

Lattice-Boltzmann-Methode Mit Freien Oberflächen; Verlag Dr. Hut: Erlangen, Germany, 2011.

http://doi.org/10.1016/j.camwa.2012.05.012
http://dx.doi.org/10.1006/jcph.2000.6567
http://dx.doi.org/10.1016/j.compfluid.2016.05.014
http://dx.doi.org/10.1186/s43591-021-00018-8
http://dx.doi.org/10.1186/s43591-021-00010-2
http://dx.doi.org/10.1103/PhysRevE.93.043302
http://dx.doi.org/10.1007/s10955-005-8879-8
http://dx.doi.org/10.1016/j.procs.2011.04.104
http://dx.doi.org/10.1016/j.jcp.2009.04.042
http://dx.doi.org/10.1080/10618560701440915
http://dx.doi.org/10.1002/fld.1282

Computation 2022, 10, 21 25 of 26

18. Donath, S.; Mecke, K.; Rabha, S.; Buwa, V.; Rüde, U. Verification of surface tension in the parallel free surface lattice Boltzmann
method in waLBerla. Comput. Fluids 2011, 45, 177–186. [CrossRef]

19. Anderl, D.; Bogner, S.; Rauh, C.; Rüde, U.; Delgado, A. Free surface lattice Boltzmann with enhanced bubble model. Comput.
Math. Appl. 2014, 67, 331–339. [CrossRef]

20. Obrecht, C.; Kuznik, F.; Tourancheau, B.; Roux, J.J. A new approach to the lattice Boltzmann method for graphics processing
units. Comput. Math. Appl. 2011, 61, 3628–3638. [CrossRef]

21. Wittmann, M. Hardware-effiziente, hochparallele Implementierungen von Lattice-Boltzmann-Verfahren für komplexe Geometrien.
Ph.D. Thesis, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Nürnberg, Germany, 2016.

22. Delbosc, N.; Summers, J.L.; Khan, A.; Kapur, N.; Noakes, C.J. Optimized implementation of the Lattice Boltzmann Method on a
graphics processing unit towards real-time fluid simulation. Comput. Math. Appl. 2014, 67, 462–475. [CrossRef]

23. Herschlag, G.; Lee, S.; Vetter, J.S.; Randles, A. GPU data access on complex geometries for d3q19 lattice Boltzmann method. In
Proceedings of the 2018 IEEE International Parallel and Distributed Processing Symposium (IPDPS), Vancouver, BC, Canada,
21–25 May 2018; pp. 825–834.

24. Mawson, M.J.; Revell, A.J. Memory transfer optimization for a lattice Boltzmann solver on Kepler architecture nVidia GPUs.
Comput. Phys. Commun. 2014, 185, 2566–2574. [CrossRef]

25. Wittmann, M.; Zeiser, T.; Hager, G.; Wellein, G. Comparison of different propagation steps for lattice Boltzmann methods. Comput.
Math. Appl. 2013, 65, 924–935. [CrossRef]

26. Kuznik, F.; Obrecht, C.; Rusaouen, G.; Roux, J.J. LBM based flow simulation using GPU computing processor. Comput. Math.
Appl. 2010, 59, 2380–2392. [CrossRef]

27. Krüger, T.; Kusumaatmaja, H.; Kuzmin, A.; Shardt, O.; Silva, G.; Viggen, E.M. The Lattice Boltzmann Method; Springer International
Publishing: Berlin/Heidelberg, Germany, 2017; Volume 10, pp. 4–15.

28. Chapman, S.; Cowling, T.G.; Burnett, D. The Mathematical Theory of Non-Uniform Gases: An Account of the Kinetic Theory of Viscosity,
Thermal Conduction and Diffusion in Gases; Cambridge University Press: Cambridge, MA, USA, 1990.

29. Purqon, A. Accuracy and Numerical Stabilty Analysis of Lattice Boltzmann Method with Multiple Relaxation Time for Incom-
pressible Flows. J. Phys. Conf. Ser. 2017, 877, 012035.

30. Wu, X.; Wu, E. Bubble creation and multi-fluids interaction. In Proceedings of the 2009 11th IEEE International Conference on
Computer-Aided Design and Computer Graphics, Huangshan, China, 19–21 August 2009; pp. 87–91.

31. Yuan, M.; Yang, Y.; Li, T.; Hu, Z. Numerical simulation of film boiling on a sphere with a volume of fluid interface tracking
method. Int. J. Heat Mass Transf. 2008, 51, 1646–1657. [CrossRef]

32. Ma, C.; Bothe, D. A VOF-based method for the simulation of thermocapillary flow. In APS Division of Fluid Dynamics Meeting
Abstracts; Technical University Darmstadt: Darmstadt, Germany, 2010; Volume 63, p. HW-008.

33. Booshi, S.; Ketabdari, M.J. Modeling of solitary wave interaction with emerged porous breakwater using PLIC-VOF method.
Ocean Eng. 2021, 241, 110041. [CrossRef]

34. Sato, K.; Koshimura, S. A lattice Boltzmann approach for three-dimensional tsunami simulation based on the PLIC-VOF method.
Coast. Eng. Proc. 2018, 36, 90. [CrossRef]

35. Sheng, M.; Chen, W.; Liu, J.; Shi, S. Ejecting performance simulation of an innovative piezoelectric actuated lubrication generator
for space mechanisms. Int. J. Mech. Sci. 2011, 53, 867–871. [CrossRef]

36. Meredith, J.S.; Childs, H. Visualization and Analysis-Oriented Reconstruction of Material Interfaces. In Computer Graphics Forum;
Wiley Online Library: Hoboken, NJ, USA, 2010; Volume 29, pp. 1241–1250.

37. NVIDIA. Parallel Thread Execution ISA Version 6.4. 2019. Available online: https://docs.nvidia.com/cuda/parallel-thread-
execution/ (accessed on 21 July 2021).

38. Ataei, M.; Bussmann, M.; Shaayegan, V.; Costa, F.; Han, S.; Park, C.B. NPLIC: A machine learning approach to piecewise linear
interface construction. Comput. Fluids 2021, 223, 104950. [CrossRef]

39. Porcù, F.; D’adderio, L.P.; Prodi, F.; Caracciolo, C. Effects of altitude on maximum raindrop size and fall velocity as limited by
collisional breakup. J. Atmos. Sci. 2013, 70, 1129–1134. [CrossRef]

40. Bourke, P. Polygonising a Scalar Field. 1994. Available online: http://paulbourke.net/geometry/polygonise/ (accessed on 21
July 2021).

41. Lorensen, W.E.; Cline, H.E. Marching cubes: A high resolution 3D surface construction algorithm. ACM Siggraph Comput. Graph.
1987, 21, 163–169. [CrossRef]

42. Vega, D.; Abache, J.; Coll, D. A Fast and Memory-Saving Marching Cubes 33 Implementation with the Correct Interior Test. J.
Comput. Graph. Tech. Vol. 2019, 3. Available online: https://jcgt.org/published/0008/03/01/paper.pdf (accessed on 21 July 2021).

43. Parker, B.; Youngs, D. Two and Three Dimensional Eulerian Simulation of Fluid Flow with Material Interfaces; Atomic Weapons
Establishment: Aldermaston, UK, 1992.

44. Pressley, A.N. Elementary Differential Geometry; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2010.
45. Abbena, E.; Salamon, S.; Gray, A. Modern Differential Geometry of Curves and Surfaces with Mathematica; Chapman and Hall/CRC:

Boca Raton, FL, USA, 2017.
46. Yu, J.; Yin, X.; Gu, X.; McMillan, L.; Gortler, S. Focal surfaces of discrete geometry. In ACM International Conference Proceeding

Series; Eurographics Association/Association for Computing Machinery: Norrköping, Sweden, 2007; Volume 257, pp. 23–32.

http://dx.doi.org/10.1016/j.compfluid.2010.12.027
http://dx.doi.org/10.1016/j.camwa.2013.06.007
http://dx.doi.org/10.1016/j.camwa.2010.01.054
http://dx.doi.org/10.1016/j.camwa.2013.10.002
http://dx.doi.org/10.1016/j.cpc.2014.06.003
http://dx.doi.org/10.1016/j.camwa.2012.05.002
http://dx.doi.org/10.1016/j.camwa.2009.08.052
http://dx.doi.org/10.1016/j.ijheatmasstransfer.2007.07.037
http://dx.doi.org/10.1016/j.oceaneng.2021.110041
http://dx.doi.org/10.9753/icce.v36.papers.90
http://dx.doi.org/10.1016/j.ijmecsci.2011.07.009
https://docs.nvidia.com/cuda/parallel-thread-execution/
https://docs.nvidia.com/cuda/parallel-thread-execution/
http://dx.doi.org/10.1016/j.compfluid.2021.104950
http://dx.doi.org/10.1175/JAS-D-12-0100.1
http://paulbourke.net/geometry/polygonise/
http://dx.doi.org/10.1145/37402.37422
https://jcgt.org/published/0008/03/01/paper.pdf

Computation 2022, 10, 21 26 of 26

47. Har’el, Z. Curvature of Curves and Surfaces—A Parabolic Approach; Department of Mathematics, Technion–Israel Institute of
Technology: Haifa, Israel, 1995.

48. Jia, Y.B. Gaussian and Mean Curvatures; Com S 477/577 Notes; Iowa State University: Ames, IA, USA, 2018.
49. Eberly, D. Least Squares Fitting of Data; Magic Software: Chapel Hill, NC, USA, 2000.

	Introduction
	Plane–Cube Intersection
	Applying Symmetry Conditions to Reduce Problem Complexity
	Formulating the Inverse PLIC Problem
	Inverting the Inverse PLIC Formulation Analytically
	The Analytic SZ Solution
	Iterative Solutions
	Performance and Accuracy Comparison
	CPU Testing
	GPU Testing

	Application: Curvature Calculation for VoF-LBM on the GPU
	Volume-of-Fluid Overview
	Obtaining Neighboring Interface Points: PLIC Point Neighborhood
	Validating Curvature Calculation
	Application Example: Simulating a Terminal Velocity Raindrop Impact

	Conclusions
	Appendix A
	Code Listings
	Paraboloid Curvature, Interface Normal and Least-Squares Fit
	Calculating the Interface Normal Vector from a 33 Neighborhood
	Analytic Curvature of a Paraboloid
	Curvature from Least-Squares Paraboloid Fit

	References

