
����������
�������

Citation: Hai, V.V.; Nhung, H.L.T.K.;

Prokopova, Z.; Silhavy, R.; Silhavy, P.

A New Approach to Calibrating

Functional Complexity Weight in

Software Development Effort

Estimation. Computers 2022, 11, 15.

https://doi.org/10.3390/

computers11020015

Academic Editor: Robertas

Damaševičius

Received: 15 December 2021

Accepted: 19 January 2022

Published: 22 January 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

computers

Article

A New Approach to Calibrating Functional Complexity Weight
in Software Development Effort Estimation
Vo Van Hai * , Ho Le Thi Kim Nhung , Zdenka Prokopova, Radek Silhavy and Petr Silhavy

Department of Computer and Communication Systems, Tomas Bata University in Zlin, Nam. T.G.M. 5555,
76001 Zlin, Czech Republic; lho@utb.cz (H.L.T.K.N.); prokopova@utb.cz (Z.P.); rsilhavy@utb.cz (R.S.);
psilhavy@utb.cz (P.S.)
* Correspondence: vo_van@utb.cz

Abstract: Function point analysis is a widely used metric in the software industry for development
effort estimation. It was proposed in the 1970s, and then standardized by the International Function
Point Users Group, as accepted by many organizations worldwide. While the software industry has
grown rapidly, the weight values specified for the standard function point counting have remained
the same since its inception. Another problem is that software development in different industry
sectors is peculiar, but basic rules apply to all. These raise important questions about the validity of
weight values in practical applications. In this study, we propose an algorithm for calibrating the
standardized functional complexity weights, aiming to estimate a more accurate software size that fits
specific software applications, reflects software industry trends, and improves the effort estimation of
software projects. The results show that the proposed algorithms improve effort estimation accuracy
against the baseline method.

Keywords: software development effort estimation; function point analysis; functional complexity weight

1. Introduction

Software estimation has long been considered a core issue that directly affects success
or failure. According to the Standish Group [1], the failure rate of a part of a project or
of a whole project is likely to be up to 83.9% (as of 2019). One of the reasons for this
failure is inaccurate cost and effort estimates. In fact, to obtain software projects, companies
participating in tenders must submit bids that include cost, manpower, and software
development time. To be able to win the tender, the companies participating need to give
a reasonable estimate of the cost, manpower, and time required to carry out the project.
Reasonability here does not mean underestimating the price, because in so doing the
company will not gain (if not lose) when completing the project. It is also not reasonable
to overestimate the price, because then it is certain that the company will not win the
bid. Therefore, a project estimate is considered reasonable only if it accurately reflects the
project’s actual value.

Throughout the software development process, no matter what software manage-
ment model a company uses, project leaders often have to plan the work for software
development milestones, plan the next milestone, and recalculate the work done in the
previous milestone. All of these tasks require software estimation skills. Many methods
have previously been proposed to solve the software estimation problem. Due to the
increasing demand for more efficient and accurate estimation methods that can work with
more complex software projects, such estimation methods need to be refined. Software
estimation methods can be classified into three main groups: non-algorithmic, algorithmic,
and machine learning approaches [2,3]. In the non-algorithmic category, there are two
representative methods: expert judgement (EJ) [4] and analogy [5]; with these methods,
experts play the most significant role in judgement. Of course, previous samples (historical
dataset) also play another important role. In the algorithmic category, an algorithm takes

Computers 2022, 11, 15. https://doi.org/10.3390/computers11020015 https://www.mdpi.com/journal/computers

https://doi.org/10.3390/computers11020015
https://doi.org/10.3390/computers11020015
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/computers
https://www.mdpi.com
https://orcid.org/0000-0002-5427-1960
https://orcid.org/0000-0002-3270-9343
https://orcid.org/0000-0002-3724-7854
https://doi.org/10.3390/computers11020015
https://www.mdpi.com/journal/computers
https://www.mdpi.com/article/10.3390/computers11020015?type=check_update&version=2

Computers 2022, 11, 15 2 of 20

the first role. software lifecycle management (SLIM) [6], the Constructive Cost Model (CO-
COMO) [7], and function point analysis (FPA) and the International Function Point User
Group (IFPUG FPA) [8,9] are representative models. The IFPUG FPA method arose as an
alternative to other solutions. Other methods based on IFPUG FPA —such as COSMIC [10],
FiSMA [11], MarkII [12], and NESMA [13]—were proposed to improve some aspects of the
original method. In the last category, machine learning techniques have been used in recent
years to supplement or replace the other two techniques. Most software cost estimation
techniques use statistical methods, which cannot provide strong rationales and results.
Machine learning approaches may be appropriate in this area because they can increase
the accuracy of estimates by training the estimation rules and repeating the running cy-
cles. Examples include fuzzy logic modelling, regression trees, artificial neural networks
(ANNs), and case-based reasoning (CBR). These methods have explored the applicability of
machine learning techniques to software effort estimation; they have objective and analyti-
cal formulas that are not limited to a specific number of factors. However, most methods
only evaluate the limitations of modelling techniques on a particular dataset, reducing the
generalisability of the observed results. Some researchers also overlook statistical testing of
the results obtained or evaluation of the models against the same dataset used to generate
the models [14].

This paper is organised as follows: Section 1 is the introduction. The problem formula-
tion and the contributions are described in Section 2. Section 3 illustrates the related works.
Section 4 presents the background, with a brief overview of the FPA method, Bayesian
ridge regression model, and voting regressor model. The proposed research methodology
is expressed in Section 5, in which we introduce the dataset and data processing, exper-
imental setup, and evaluation criteria. Section 6 presents the experimental results and
discussion. Section 7 describes the threats to validity. We finalise our paper in Section 8
with the conclusion.

2. Problem Formulation

FPA has been used for over four decades, and has proven to be a dependable and con-
sistent method [15] of sizing software for project estimation and productivity or efficiency
comparisons. Although it has made significant contributions in the software industry, it
still has many problems. In an earlier systematic literature review [16], we mentioned
some limitations of FPA. The inadequacy of complexity weight is still a major problem. In
addition, the locality of the dataset that builds the FPA approach (IBM projects) does not
reflect the entire global software industry. Many previous studies have suggested a new
functional complexity weight [17,18] in different ways. In [18], Xia et al. proposed a new
functional complexity table based on an IFPUG FPA calibration model called Neuro-Fuzzy
Function Point Calibration Model (NFFPCM), which integrates the power of neural net-
works and fuzzy logic. Nevertheless, the method needs to be changed in line with changes
in the modern software industry.

Another issue that needs to be mentioned is the specificity of each piece of software.
Differences in the purpose of the software being developed lead to different approaches.
With FPA, a method that applies to all software estimation cases needs to be revisited; this
was the motivation for us to propose a new, up-to-date, nonlocal functional complexity
weight that reflects the software industry.

After counting the function points (FPs), we can calculate the effort and then write
a report [9] based on these FPs. At this point, the FPA counting process is considered
complete. However, one question is whether we can further improve the effort after
the calculation of the counting process. Recent studies [19–23] show that combining an
ensemble model and other approaches provides better results than using a single model.
This study applies an ensemble model to the result after the counting and calculating
effort to improve the accuracy gained from FP counting based on the proposed functional
complexity weight.

Computers 2022, 11, 15 3 of 20

This study aims to propose an algorithm called the calibration of functional complexity
weight (CFCW) algorithm. The proposed algorithm is based on the FPA method combined
with regression methods implemented in the International Software Benchmarking Stan-
dards Group (ISBSG) dataset Release 2020 R1 [24].

Many companies around the world contribute to the ISBSG dataset, so the locality
problem can be solved. In addition, the 2020 database update addresses the out-of-date is-
sue. Many recent studies (for example, [25–27]) used the industry sector (IS) as a categorical
variable for dataset segmenting in their research. Our study tested a second approach—the
calibration of functional complexity weight with optimisation based on an ensemble model
called the voting regressor (CFCWO).

Based on the above issues, we propose three research questions:

RQ1: Is the accuracy of the proposed CFCW algorithm better than that of the IFPUG FPA or
NFFPCM methods?

RQ2: Does the advanced CFCWO algorithm outperform the CFCW algorithm?
RQ3: How accurate is the estimation for each sector compared to an ungrouped dataset?

To answer these research questions, we conducted an experimental study to evaluate
the estimation accuracy of the proposed approaches.

Contributions

The main contributions of this research are as follows:

• In the first phase, a new CFCW algorithm for the calibration of functional complexity
weight is proposed;

• In the second phase, the result from the first phase is optimised by using a voting
regressor to estimate the final software effort—the CFCWO algorithm is proposed;

• The IFPUG FPA method is compared to the CFCW algorithm for ungrouped data and
data grouped by IS;

• The CFCW algorithm is compared to the CFCWO algorithm for ungrouped data and
data grouped by IS.

3. Related Work

FPA is a standardised method for determining the size of software based on its
functional requirements; it is designed to be applicable regardless of programming language
or implementation technology. Albrecht [8] recommends FPA to measure the size of a
system that processes data from end-users. Since its introduction, much research has been
carried out to improve its accuracy.

Al-Hajri et al. [17] introduced a modification weighting system for measuring FP
using an ANN model (backpropagation technique). In their study, a weighting system
was built based on four steps: (1) using the original weighting system as a baseline to
establish new weights; (2) using the DETs/RETs of the original system’s FPA to calculate
the new values, training these new values with an ANN, and then predicting the values
of the new weights; (3) applying the new weights and the original weights in the FPA
model; and (4) calculating the size of FPs as a function of the original weights and the
new weights. Wei et al. [28] proposed a different sizing approach by integrating the new
calibrated FP weight proposed in [18] into a complexity assessment system for object-
oriented development effort estimation. Misra et al. [29] proposed a metrics suite that
helps in determining the complexity of object-oriented projects by evaluation of message
complexity, attribute complexity, weighted class complexity, and code complexity.

Dewi et al. [30] produced a formula for estimating the cost of software development
projects, especially in the field of public service applications; the authors modified the
complexity adjustment factor to 16 instead of the 14 used in the standard FPA method and;
as a result, the accuracy was improved by 7.19%.

In the study of Leal et al. [31], the authors investigated the use of nearest-neighbours
linear regression methods for estimation in software engineering. These methods were
compared with multilayer perceptron neural networks, radial basis function neural net-

Computers 2022, 11, 15 4 of 20

works, support-vector regression, and bagging predictors. The dataset used in the study
was a NASA software project. Based on the relative error and the estimation rate, the
nearest-neighbours linear regression methods outperformed the others.

In a survey of applying ANNs to software estimation, Hamza et al. [32] provided an
overview of the use of ANN methods to estimate development effort for software devel-
opment projects; the authors offered four main ANN models, including (1) feedforward
neural networks; (2) recurrent neural networks; (3) radial basis function networks; and
(4) neuro-fuzzy networks. The survey also explains why those methods are used and how
accurate they are.

In the endeavour of estimating the effort needed for the next phase or the remaining
effort needed to finish a project, Lenarduzzi et al. [33] conducted an empirical study on the
estimation of software development effort. The estimation was broken down by phase so
that estimation could be used throughout the software development lifecycle. This means
that the effort needed for the next phase at any given point in the software development
lifecycle is estimated. Additionally, they estimated the effort required for the remaining
part of a software development process. The ISBSG dataset was used in the study. The
results show statistically significant correlations between effort expended in one period
and effort expended in the following period, effort expended in one period and total effort
expended, and accumulated effort up to the present stage and remaining effort. The results
also indicate that these estimation models have different degrees of goodness of fit. Further
attributes, such as the functional size, do not significantly improve estimation quality.

In [25,34], the authors presented an influence analysis of selected factors (FP count
approach, business area, IS, and relative size) on the estimation of the work effort for which
the FPA method is primarily used. They also studied the factors that influence productivity
and the productivity estimation capability in the FPA method. Based on these selected
factors and experimentally, the authors proved that the selected factors have specific effects
on work effort estimation accuracy.

In [35], from software features, the authors used various machine learning algorithms
to build a software effort estimation model. ANNs, support-vector machines, K-star,
and linear regression machine learning algorithms were appraised on a PROMISE dataset
(called Usp05-tf) with actual software efforts. The results revealed that the machine learning
approach could be applied to predict software effort. In the study, the results from the
support-vector machines were the best.

In [36], the authors conducted a comparison between soft computing and statistical
regression techniques in terms of a software development estimation regression problem.
Support-vector regression and ANNs were used as soft computing methodologies, and
stepwise multiple linear regression and log-linear regression were used as statistical regres-
sion methods. Experiments were performed using the NASA93 dataset from the PROMISE
software repository, with multiple dataset pre-processing steps performed. The authors
relied on the holdout technique associated with 25 random repetitions with confidence
interval calculation within a 95% statistical confidence level. The 30 pre-evaluation criteria
were used to compare the results. The results of the study show that the support-vector
regression model has a significant impact on precision.

4. Background
4.1. IFPUG FPA

Albrecht [8] first introduced FPA in 1979, and presented the FP metric to measure the
functionality of a project. This was proposed in response to a number of problems with
other system size measures, such as lines of code. In 1986, the International Function Point
User Group (IFPUG) [37] promoted and popularised effective software development and
maintenance management through FPA.

The IFPUG is currently the governing body for FPA, and is responsible for improving
and developing counting rules and other related matters. Since the IFPUG was created,
the original FPA method has been known as the IFPUG’s FPA. In this study, the standard

Computers 2022, 11, 15 5 of 20

FPA method concept refers to the IFPUG FPA method. FPA is currently standardised by
ISO/IEC 20926:2010 [38]; this standard specifies a set of definitions, rules, and steps for
application [9]. There are six phases in counting standards; in this study, we are only
interested in two phases: (1) data function and transactional function measurement, and (2)
functional size measurement.

The first-phase results are the unadjusted function points (UFPs) and the value adjust-
ment factor (VAF) values. The UFP value can be determined based on estimations of the
number of transactional functions (external input (EI), external output (EO), or external
inquiry (EQ)) and data functions (internal logic files (ILFs), and external interface files
(EIFs)). These components are called base functional components. Each of these, in turn,
is judged as low (L), average (A), or high (H), and assigned a weight accordingly. Table 1
shows the available complexity weight of the components.

Table 1. Data and transactional function complexity.

Component

EI EO EQ EIF ILF

Complexity
weight

Low 3 4 3 5 7
Average 4 5 4 7 10

High 6 7 6 10 15

The UFP total sets the number of types in groups, multiplies them by complexity
weights, and finds the sum of all fields, as in Equation (1):

UFP =
n

∑
i = 1

m

∑
j = 1

(Sij ×Wij) (1)

where Sij represents the total of each functional component, Wij represents the complexity
weights, n is the number of types, and m is the number of complexity groups.

The VAF count is based on the rate of 14 general system characteristics (GSCs): data
communications, distributed data processing, performance, heavily used configuration,
transaction rate, online data entry, end user efficiency, online update, complex processing,
reusability, installation ease, operational ease, multiple sites, and facilitate change.

There are six influence levels of GSC criteria, with the system being determined as
a value from 0 to 5 contingent on the level: 0—no influence; 1—incidental influence; 2—
moderate influence; 3—average influence; 4—significant influence; and 5—strong influence
throughout. The VAF count is adjusted as follows:

VAF = 0.65 + 0.01×
14

∑
i = 1

(Fi × rating) (2)

The second-phase result is the adjusted function points (AFPs) value, which can be
obtained using Equation (3):

AFP = UFP×VAF (3)

To estimate the effort after AFP counting, we should use another parameter. The
productivity factor (PF) was described as the relationship between one FP and the number
of hours needed for its development by one person. Productivity and PF were studied
in [39,40]. The following formula can be used to calculate the effort using the PF:

E f f ort = AFP× PF (4)

ISBSG uses the productivity delivery rate (PDR) as a metric for efficiency. The PDR
is measured in person-hours per FP. From the PDR, we can derive the PF in FPs per
person-hour. We can see that the PDR is the inverted value of the PF (and vice versa) [9].

Computers 2022, 11, 15 6 of 20

In our study, the IFPUG FPA method is the base method for proposing the new model;
it is also used for the base compared with the proposed model. Additionally, the terms FPA
and IFPUG FPA have the same meaning, and are interchangeable.

4.2. Bayesian Ridge Regression Model

The full Bayesian regression inference uses the Markov chain Monte Carlo algorithm
to construct models [41]. The Bayesian modelling framework has been reputed for its ability
to deal with a hierarchical data structure. In Bayesian regression techniques, regularisation
parameters can be included in the estimation procedure. A regularisation parameter is
not hard set, but is tuned to the data at hand. This can be done by introducing non-
informative priors over the hyperparameters of the model. The l2 regularisation used in
ridge regression and classification is equivalent to finding a maximum a posteriori estimate
under a Gaussian prior over the coefficients with precision. Instead of setting the lambda
manually, this variable can be randomly estimated from the available data [42]. To acquire
a fully probabilistic model, the output y is assumed to be Gaussian distributed around Xω:

p(y|X, ω, α) = ℵ(y|Xω, α) (5)

where α is treated as a random variable that is to be estimated from the data.
Bayesian ridge regression (BRR) is a probabilistic method that builds a regression

model using Bayesian inference; it combines prior information about parameters (the
coefficient of software features) with the observed training data in order to acquire the
parameters’ posterior distribution [42]. The prior for the coefficient ω is specified by a
spherical Gaussian:

p(ω|λ) = ℵ
(

ω
∣∣∣0, λ−1 Ip

)
(6)

The priors over α and λ are picked to be gamma distributions [43]—the conjugate
prior for the precision of the Gaussian distribution.

In our study, the BRR plays a significant role in the calibration phase (see Figure 1).
Computers 2022, 11, 15 7 of 20

Figure 1. Experimental process.

4.3. Voting Regressor Model
The ensemble is a learning method that uses a specific aggregation mechanism to

create a collection of prediction models, and then uses a weighted vote of their initial
results to obtain the final solution [44–48]. The principal premise is that if techniques work
together as a committee with reliable methods, they may be improved and generate more
significant results [44]. As a result, this method is excellent for predicting software effort,
since each model has its assumptions and setup parameters, allowing the ensemble to
perform exceptionally well with some desirable statistical qualities [45]. Idri et al. [22,23]
conducted a systematic literature review and mapping study, and discovered that (1)
ensemble effort estimation techniques are more accurate than solo methods, (2)
homogeneous ensembles are the most investigated, (3) machine learning techniques are
the most used solo techniques to construct ensembles, and (4) there are two types of
combiner rules used to estimate ensemble effort estimation: linear and nonlinear.

A voting regressor [46] is based on the idea of integrating various machine learning
approaches to return uniform average projected values. A voting regressor is a technique
that fits each of the base regressors to the entire dataset. A regressor such as this can help
a group of estimators with similar performance levels to balance out their individual
flaws. When the predictors are as independent as possible, ensemble approaches perform
best. In general, each regressor is trained using a distinct technique, in order to make each
prediction more independent of the others. This increases the likelihood that they will
make a variety of blunders, which will improve the ensemble’s performance. A voting
regressor can be applied for classification or regression. Each label’s predictions are
combined with regard to classification, and the label with the most votes is chosen. In the
case of regression, this entails computing the mean of the predictions from the models.
According to Witten et al. [47], a voting ensemble is appropriate when all applicable
models should perform well on a predictive modelling task; in other words, the models
used in the ensemble must mostly agree.

In our study, the voting regressor was used in the CFCWO algorithm in the
optimization phase (Figure 1).

Figure 1. Experimental process.

Computers 2022, 11, 15 7 of 20

4.3. Voting Regressor Model

The ensemble is a learning method that uses a specific aggregation mechanism to
create a collection of prediction models, and then uses a weighted vote of their initial results
to obtain the final solution [44–48]. The principal premise is that if techniques work together
as a committee with reliable methods, they may be improved and generate more significant
results [44]. As a result, this method is excellent for predicting software effort, since
each model has its assumptions and setup parameters, allowing the ensemble to perform
exceptionally well with some desirable statistical qualities [45]. Idri et al. [22,23] conducted
a systematic literature review and mapping study, and discovered that (1) ensemble effort
estimation techniques are more accurate than solo methods, (2) homogeneous ensembles are
the most investigated, (3) machine learning techniques are the most used solo techniques
to construct ensembles, and (4) there are two types of combiner rules used to estimate
ensemble effort estimation: linear and nonlinear.

A voting regressor [46] is based on the idea of integrating various machine learning
approaches to return uniform average projected values. A voting regressor is a technique
that fits each of the base regressors to the entire dataset. A regressor such as this can
help a group of estimators with similar performance levels to balance out their individual
flaws. When the predictors are as independent as possible, ensemble approaches perform
best. In general, each regressor is trained using a distinct technique, in order to make
each prediction more independent of the others. This increases the likelihood that they
will make a variety of blunders, which will improve the ensemble’s performance. A
voting regressor can be applied for classification or regression. Each label’s predictions
are combined with regard to classification, and the label with the most votes is chosen. In
the case of regression, this entails computing the mean of the predictions from the models.
According to Witten et al. [47], a voting ensemble is appropriate when all applicable models
should perform well on a predictive modelling task; in other words, the models used in the
ensemble must mostly agree.

In our study, the voting regressor was used in the CFCWO algorithm in the optimiza-
tion phase (Figure 1).

5. Research Methodology

In this section, we present the research methodology. This includes describing the
data to be used, along with the data processing and the experimental setup. In addition,
evaluation criteria are introduced here.

5.1. Experimental Setup

In this section, we describe the experimental process, which is graphically illustrated
in Figure 1.

In the data pre-processing phase (Figure 1), data filtering and cleaning were performed
to create the working dataset (see following section). This dataset was used for two branches
of experiments: experiments on ungrouped data (all sectors), and experiments on grouped
data, where IS categorical variables were used for grouping. The fivefold cross-validation
was used to create a training/testing fold. The dataset we used in our experiments was
the ISBSG repository August 2020 R1 [24]. In our study, the criteria for data filtering were
as follows:

1. We selected records with the IFPUG counting approach (including IFPUG Old and
IFPUG 4+);

2. Only the records where the data quality rating is A or B has been selected;
3. The development type was new development;
4. The rows with an empty value of base functional components were eliminated;
5. Rows with empty values in the industry sector column were removed;
6. The rows with empty values in normalised productivity delivery rate and summary

work effort (SWE) were also erased;
7. We filled the VAF blank cells with the values obtained from Equation (3).

Computers 2022, 11, 15 8 of 20

According to Lichtenberg and Şimşek [49], the number of records in a dataset is large
enough to be eligible for a given training set to attain the most satisfactory results. M.
Hammad [35] also proved that some algorithms learn perfectly as the size of the training
set increases. In our case, after many tests and evaluations, the results from ISs with over
30 records gave the best results. For the ISs that did not satisfy this condition (the number
of records is less than 30), we gathered them into a group named “Others”. Figure 2 shows
a histogram of the dataset after being processed.

Computers 2022, 11, 15 8 of 20

5. Research Methodology
In this section, we present the research methodology. This includes describing the

data to be used, along with the data processing and the experimental setup. In addition,
evaluation criteria are introduced here.

5.1. Experimental Setup
In this section, we describe the experimental process, which is graphically illustrated

in Figure 1.
In the data pre-processing phase (Figure 1), data filtering and cleaning were

performed to create the working dataset (see following section). This dataset was used for
two branches of experiments: experiments on ungrouped data (all sectors), and
experiments on grouped data, where IS categorical variables were used for grouping. The
fivefold cross-validation was used to create a training/testing fold. The dataset we used in
our experiments was the ISBSG repository August 2020 R1 [24]. In our study, the criteria
for data filtering were as follows:
1. We selected records with the IFPUG counting approach (including IFPUG Old and

IFPUG 4+);
2. Only the records where the data quality rating is A or B has been selected;
3. The development type was new development;
4. The rows with an empty value of base functional components were eliminated;
5. Rows with empty values in the industry sector column were removed;
6. The rows with empty values in normalised productivity delivery rate and summary

work effort (SWE) were also erased;
7. We filled the VAF blank cells with the values obtained from Equation (3).

According to Lichtenberg and Şimşek [49], the number of records in a dataset is large
enough to be eligible for a given training set to attain the most satisfactory results. M.
Hammad [35] also proved that some algorithms learn perfectly as the size of the training
set increases. In our case, after many tests and evaluations, the results from ISs with over
30 records gave the best results. For the ISs that did not satisfy this condition (the number
of records is less than 30), we gathered them into a group named “Others”. Figure 2 shows
a histogram of the dataset after being processed.

Figure 2. Histogram of the processed dataset.

We notice that there is a possibility that the data may be noisy because some SWE
values are too far from the mean group. In this study, we used the interquartile range
(IQR) method [50,51] on these features to determine and remove outliers, with the lower
boundary being 0.15 and the upper boundary being 0.85. Figures 3 and 4 show the
description of the dataset before and after the removal of outliers, respectively.

Figure 2. Histogram of the processed dataset.

We notice that there is a possibility that the data may be noisy because some SWE
values are too far from the mean group. In this study, we used the interquartile range (IQR)
method [50,51] on these features to determine and remove outliers, with the lower boundary
being 0.15 and the upper boundary being 0.85. Figures 3 and 4 show the description of the
dataset before and after the removal of outliers, respectively.

Computers 2022, 11, 15 9 of 20

Figure 3. Boxplot of the dataset before removing outliers.

Figure 4. Boxplot of the dataset after removing outliers.

The calibration phase (Figure 1) represents the CFCW algorithm. The CFCW works
as follows:
1. Bayesian ridge regression (Section 4.2) is employed;

Figure 3. Boxplot of the dataset before removing outliers.

Computers 2022, 11, 15 9 of 20

Computers 2022, 11, 15 9 of 20

Figure 3. Boxplot of the dataset before removing outliers.

Figure 4. Boxplot of the dataset after removing outliers.

The calibration phase (Figure 1) represents the CFCW algorithm. The CFCW works
as follows:
1. Bayesian ridge regression (Section 4.2) is employed;

Figure 4. Boxplot of the dataset after removing outliers.

The calibration phase (Figure 1) represents the CFCW algorithm. The CFCW works
as follows:

1. Bayesian ridge regression (Section 4.2) is employed;
2. CFCW elicits the complexity weights for the EI, EO, EQ, EIF, and ELF variables using

Bayesian ridge regression;
3. The UFP is calculated by using a newly estimated complexity weight for each of the

variables (EI, EO, EQ, EIF, and ELF);
4. Estimated effort is obtained by multiplying UFP by the VAF and, finally, by multiply-

ing by PF.

The optimisation phase (Figure 1) represents the CFCWO algorithm, which works
as follows:

1. Effort from CFCW (calibration phase) is used as input;
2. The voting regressor (Section 4.3) algorithm is employed;
3. Voting regressor is an ensemble model, consisting of four estimators (Table 2);
4. CFCWO optimises estimated effort by CFCW by minimising the error to SWE (know

effort from dataset).

Table 2. Base estimators of the voting ensemble model.

Algorithm Implementation Parameters

Random forests sklearn.ensemble.RandomForestRegressor n_estimators = 200,
random_state = 0

Bayesian ridge sklearn.linear_model. BayesianRidge n_iter = 300

ANN sklearn.neural_network. MLPRegressor tol = 0.00001, max_iter=10000,
momentum = 0.000001

Lasso sklearn.linear_model. Lasso
alpha = 0.01,

selection = ‘random’,
random_state = 63

Computers 2022, 11, 15 10 of 20

Tested Models

The CFCW model and CFCWO model were tested on datasets with and without IS
filtering. The variant called “all sectors” used the whole dataset without IS grouping. The IS
was used as a grouping variable, allowing us to test both models on each IS independently
(as seen in the Results section). The following is a brief description of the compared models:

• CFCW—effort is computed using the IFPUG approach; complexity weights are esti-
mated by Bayesian ridge regression; PF (PDR) is the mean from all ISs or based on
each IS;

• CFCWO—effort is estimated using a trained voting regressor, where the regressor is
the effort value from CFCW, and the dependent variable is the SWE value (from the
dataset); again, variant for all sectors and per sector were tested.

We performed a process using the voting ensemble model with four base estimators
in the estimation effort optimization. These estimators and their parameters are described
in Table 2.

CFCWW and CFCWO were compared to the following models:

• IFPUG FPA [37]—effort is computed using the IFPUG approach; IFPUG-based com-
plexity weights and PF (PDR) from the dataset (mean from all sectors or based on
each sector);

• NFFPCM [18]—effort is computed using IFPUG approach; complexity weight from
the study of Xia et al. and PF (PDR) from the dataset (mean from all sectors or based
on each sector).

5.2. Evaluation Criteria

Regarding measurement accuracy, according to Foss et al. [52], there have been many
investigations and evaluations of the suitability of error functions proposed and used thus
far. However, there is no universal solution to the problem of choosing good predictive
models from among several alternatives; this means that each accuracy indicator has
certain advantages over the others. Kitchenham et al. [53] pointed out that the crucial
factor for meaningful comparisons between predictive models is identifying what each
error function uses for actual measurements. This study uses the most common and widely
used measures to evaluate the predictability of comparative models and the accuracy of
the proposed model.

MAE (mean absolute error) [54]:

MAE =
1
N

N

∑
i = 0
|yi − ŷi| (7)

MSE (mean squared error) [55]:

MSE = 1
N

N

∑
i = 1

(yi − ŷi)
2 (8)

RMSE (root-mean-square error) [56]:

RMSE =

√√√√ 1
N

N

∑
i = 1

(yi − ŷi)
2 (9)

MAPE (mean absolute percentage error) [57]:

MAPE =
1
N

N

∑
i = 0

∣∣∣∣yi − ŷi
yi

∣∣∣∣ ∗ 100 (10)

where yi is the actual value, ŷi is the predicted value, and N is the number of projects.

Computers 2022, 11, 15 11 of 20

6. Results and Discussion

In this section, we evaluate the accuracy of the proposed CFCW and CFCWO from
the experimental results. We compare the IFPUG FPA and NFFPCM models to CFCW
and CFCWO algorithms. All experiments for all sectors and for data grouped by IS
were calculated.

The calibrated functional complexity weight values obtained from the experiment
are listed in Table 3. According to the values of the individual parameters EI, EI, EQ, ELF,
and ILF, the calibrated values of the scales differ from the original values. The minimum
percentage deviation is approximately 2% on an ungrouped dataset, while the maximum
deviation is nearly 242% against standard weights. The individual ISs show an even greater
variance in deviations.

Table 3. Calibrated functional complexity weight.

IFPUG
FPA

All
Sectors Banking Communication Financial Government Insurance Manufacturing Service

Industry Others

EI
Low 3 3.48 1.73 1.10 3.52 0.41 2.09 3.49 3.95 3.17

Average 4 1.17 1.21 3.97 3.98 7.76 4.18 0.99 5.50 1.33
High 6 8.35 7.90 3.86 4.64 7.04 4.15 8.54 6.72 9.55

EO
Low 4 3.49 3.06 3.45 4.9 2.47 3.78 3.58 3.83 3.03

Average 5 4.42 5.37 2.54 2.01 5.59 4.78 5.28 4.74 4.20
High 7 4.94 8.09 7.48 7.06 6.09 4.80 6.89 6.37 7.20

EQ
Low 3 3.79 0.71 1.87 3.35 2.98 3.94 2.00 2.42 2.81

Average 4 5.94 4.39 3.38 3.82 4.38 5.70 4.81 4.26 6.31
High 6 2.28 9.48 4.22 5.86 2.57 6.42 5.78 4.81 3.34

ILF
Low 5 5.13 6.26 4.77 4.28 8.22 4.96 5.52 3.07 3.20

Average 7 7.22 2.24 10.60 8.92 5.31 4.14 7.99 3.53 9.93
High 10 9.58 15.96 9.72 8.22 7.24 10.72 6.38 5.82 11.44

EIF
Low 7 7.13 2.23 7.22 8.97 6.20 11.54 8.55 5.82 6.61

Average 10 7.04 10.16 9.72 12.46 12.84 2.48 1.88 17.32 4.40
High 15 15.75 24.9 7.68 9.48 18.33 9.24 22.41 16.59 12.90

Figure 5 shows a comparison of efforts estimated by the IFPUG FPA, NFFPCM, CFCW,
and CFCWO methods versus the real SWE. The effort estimated by the CFCWO approach
was closest to the SWE (in all cases). This means that the proposed CFCWO approach also
outperforms the IFPUG FPA, NFFPCM, and CFCW methods.

Computers 2022, 11, 15 12 of 20

Average 10 7.04 10.16 9.72 12.46 12.84 2.48 1.88 17.32 4.40
High 15 15.75 24.9 7.68 9.48 18.33 9.24 22.41 16.59 12.90

Figure 5 shows a comparison of efforts estimated by the IFPUG FPA, NFFPCM,
CFCW, and CFCWO methods versus the real SWE. The effort estimated by the CFCWO
approach was closest to the SWE (in all cases). This means that the proposed CFCWO
approach also outperforms the IFPUG FPA, NFFPCM, and CFCW methods.

Figure 5. Comparison of the SWE and estimated efforts.

Table 4 shows the MAE value when using the IFPUG FPA, NFFPCM, CFCW, and
CFCWO algorithms, along with the percentage improvement value of the CFCW method
compared to the IFPUG FPA method, and the percentage improvement value of the
CFCWO algorithm compared to the CFCW algorithm. Accordingly, the lowest
improvement value of the CFCW method compared to the IFPUG FPA method was in the
government sector, with 6.48%, while the highest was in the communication sector, with
51.55%. Overall, the estimated effort by the CFCW algorithm improved by 5.46%, while
that by the CFCWO algorithm was enhanced by 11.89%.

Table 4. MAE evaluation results and improvement percentages.

 MAE Improvement
of CFCW vs.
IFPUG FPA

(%)

Improvement
of CFCW vs.
NFFPCM (%)

Improvement
of CFCWO vs.

CFCW (%) IFPUG FPA NFFPCM CFCW CFCWO

All Sectors 678.72 758.42 641.68 565.37 5.46 15.39 11.89
Banking 463.96 493.09 301.02 244.76 35.12 38.95 18.69

Communication 422.76 322.31 204.82 191.73 51.55 36.45 6.39
Financial 210.16 569.07 169.11 131.60 19.53 70.28 22.18

Government 513.30 1012.22 480.05 450.62 6.48 52.57 6.13
Insurance 417.08 422.45 325.86 305.46 21.87 22.86 6.26

Manufacturing 207.29 398.12 192.84 167.97 6.97 51.56 12.90
Service Industry 319.78 1051.87 294.48 257.72 7.91 72.00 12.48

Others 344.90 619.79 278.00 247.53 19.40 55.15 10.96
Mean (Sectors) 362.40 611.12 280.77 249.67 22.52 49.98 11.08

Figure 5. Comparison of the SWE and estimated efforts.

Table 4 shows the MAE value when using the IFPUG FPA, NFFPCM, CFCW, and
CFCWO algorithms, along with the percentage improvement value of the CFCW method
compared to the IFPUG FPA method, and the percentage improvement value of the CFCWO
algorithm compared to the CFCW algorithm. Accordingly, the lowest improvement value
of the CFCW method compared to the IFPUG FPA method was in the government sector,

Computers 2022, 11, 15 12 of 20

with 6.48%, while the highest was in the communication sector, with 51.55%. Overall, the
estimated effort by the CFCW algorithm improved by 5.46%, while that by the CFCWO
algorithm was enhanced by 11.89%.

Table 4. MAE evaluation results and improvement percentages.

MAE
Improvement
of CFCW vs.
IFPUG FPA

(%)

Improvement
of CFCW vs.
NFFPCM (%)

Improvement
of CFCWO
vs. CFCW

(%)IFPUG FPA NFFPCM CFCW CFCWO

All Sectors 678.72 758.42 641.68 565.37 5.46 15.39 11.89
Banking 463.96 493.09 301.02 244.76 35.12 38.95 18.69

Communication 422.76 322.31 204.82 191.73 51.55 36.45 6.39
Financial 210.16 569.07 169.11 131.60 19.53 70.28 22.18

Government 513.30 1012.22 480.05 450.62 6.48 52.57 6.13
Insurance 417.08 422.45 325.86 305.46 21.87 22.86 6.26

Manufacturing 207.29 398.12 192.84 167.97 6.97 51.56 12.90
Service

Industry 319.78 1051.87 294.48 257.72 7.91 72.00 12.48
Others 344.90 619.79 278.00 247.53 19.40 55.15 10.96

Mean (Sectors) 362.40 611.12 280.77 249.67 22.52 49.98 11.08

According to this MAE evaluation criterion, the NFFPCM does outperform IFPUG
FPA in most sectors, except for communication. The CFCW results are always better than
that of NFFPCM, and the CFCWO is the same.

Figure 6 shows a comparison of the results from a visual perspective. The MAE of the
CFCWO algorithm is always the smallest, indicating the best estimation accuracy.

Computers 2022, 11, 15 13 of 20

According to this MAE evaluation criterion, the NFFPCM does outperform IFPUG
FPA in most sectors, except for communication. The CFCW results are always better than
that of NFFPCM, and the CFCWO is the same.

Figure 6 shows a comparison of the results from a visual perspective. The MAE of
the CFCWO algorithm is always the smallest, indicating the best estimation accuracy.

Figure 6. MAE evaluation criteria results comparison.

Table 5 shows the percentage difference based on the MAE evaluation criteria for
each IS compared to the same algorithm applied to all sectors.

Table 5. MAE percentage difference of the individual sectors compared to the ungrouped dataset.

 IFPUG FPA (%) NFFPCM (%) CFCW (%) CFCWO (%)
Banking 31.64 34.98 53.09 56.71

Communication 37.71 57.50 68.08 66.09
Financial 69.04 24.97 73.65 76.72

Government 24.37 −33.46 25.19 20.3
Insurance 38.55 44.30 49.22 45.97

Manufacturing 69.46 47.51 69.95 70.29
Service Industry 52.89 −38.69 54.11 54.42

Others 49.18 18.28 56.68 56.22
Mean 46.61 19.42 56.25 55.84

Table 6 shows the MAPE evaluation values of the proposed approach and the
improvement of the CFCW and CFCWO methods compared to the IFPUG FPA method.
Each value in the CFCW column is always smaller than that in the FPA column, and each
value in the CFCWO column is smaller than that in the CFCW column. This means that
the CFCW method is better than the FPA method, and the CFCWO algorithm is better
than the CFCW algorithm. The superiority of the CFCW and CFCWO methods in
comparison to the IFPUG FPA method is shown in the last two columns. Accordingly, the
progress of the CFCW algorithm vs. the FPA algorithm for all sectors is 4.01% (for
individual sectors, the minimum value is 1.08% in the government sector, while the
maximum value is 37.51% in the communication sector). Finally, the superiority of the
CFCWO method compared to the CFCW method for all sectors is 6.56% (for individual
sectors, the minimum value of 4.10% is also in the government sector, while the maximum
value of 14.67% is in the banking sector).

Table 6. MAPE evaluation results and improvement percentages.

 MAPE

Figure 6. MAE evaluation criteria results comparison.

Table 5 shows the percentage difference based on the MAE evaluation criteria for each
IS compared to the same algorithm applied to all sectors.

Table 6 shows the MAPE evaluation values of the proposed approach and the im-
provement of the CFCW and CFCWO methods compared to the IFPUG FPA method. Each
value in the CFCW column is always smaller than that in the FPA column, and each value
in the CFCWO column is smaller than that in the CFCW column. This means that the
CFCW method is better than the FPA method, and the CFCWO algorithm is better than the
CFCW algorithm. The superiority of the CFCW and CFCWO methods in comparison to
the IFPUG FPA method is shown in the last two columns. Accordingly, the progress of the
CFCW algorithm vs. the FPA algorithm for all sectors is 4.01% (for individual sectors, the
minimum value is 1.08% in the government sector, while the maximum value is 37.51%
in the communication sector). Finally, the superiority of the CFCWO method compared
to the CFCW method for all sectors is 6.56% (for individual sectors, the minimum value

Computers 2022, 11, 15 13 of 20

of 4.10% is also in the government sector, while the maximum value of 14.67% is in the
banking sector).

Table 5. MAE percentage difference of the individual sectors compared to the ungrouped dataset.

IFPUG FPA (%) NFFPCM (%) CFCW (%) CFCWO (%)

Banking 31.64 34.98 53.09 56.71
Communication 37.71 57.50 68.08 66.09

Financial 69.04 24.97 73.65 76.72
Government 24.37 −33.46 25.19 20.3

Insurance 38.55 44.30 49.22 45.97
Manufacturing 69.46 47.51 69.95 70.29

Service Industry 52.89 −38.69 54.11 54.42
Others 49.18 18.28 56.68 56.22
Mean 46.61 19.42 56.25 55.84

Table 6. MAPE evaluation results and improvement percentages.

MAPE
Improvement
of CFCW vs.
IFPUG FPA

(%)

Improvement
of CFCW vs.
NFFPCM (%)

Impprovement
of CFCWO
vs. CFCW

(%)IFPUG FPA NFFPCM CFCW CFCWO

All Sectors 14.18 19.01 13.61 12.72 4.01 28.41 6.56
Banking 10.63 13.43 7.36 6.28 30.76 45.20 14.67

Communication 13.99 13.81 10.09 8.22 27.94 26.94 18.53
Financial 9.08 24.48 7.91 7.15 12.89 67.69 9.61

Government 7.40 19.21 7.32 7.02 1.08 61.89 4.10
Insurance 11.17 12.75 9.52 8.99 14.77 25.33 5.57

Manufacturing 11.19 19.73 10.42 9.59 6.88 47.19 7.97
Service Industry 7.41 16.93 6.64 5.94 10.39 60.78 10.54

Others 9.57 18.94 8.10 7.71 15.36 57.23 4.81
Mean (Sectors) 10.06 17.41 8.42 7.61 16.26 49.03 9.59

Figure 7 shows a visual representation of the results. For the CFCWO method, the
values are always less than the others, indicating the most accurate estimation.

Computers 2022, 11, 15 14 of 20

 IFPUG FPA NFFPCM CFCW CFCWO

Improvement
of CFCW vs.
IFPUG FPA

(%)

Improvement
of CFCW vs.
NFFPCM (%)

Impprovemen
t of CFCWO

vs. CFCW (%)

All Sectors 14.18 19.01 13.61 12.72 4.01 28.41 6.56
Banking 10.63 13.43 7.36 6.28 30.76 45.20 14.67

Communication 13.99 13.81 10.09 8.22 27.94 26.94 18.53
Financial 9.08 24.48 7.91 7.15 12.89 67.69 9.61

Government 7.40 19.21 7.32 7.02 1.08 61.89 4.10
Insurance 11.17 12.75 9.52 8.99 14.77 25.33 5.57

Manufacturing 11.19 19.73 10.42 9.59 6.88 47.19 7.97
Service Industry 7.41 16.93 6.64 5.94 10.39 60.78 10.54

Others 9.57 18.94 8.10 7.71 15.36 57.23 4.81
Mean (Sectors) 10.06 17.41 8.42 7.61 16.26 49.03 9.59

Figure 7 shows a visual representation of the results. For the CFCWO method, the
values are always less than the others, indicating the most accurate estimation.

Figure 7. MAPE evaluation criteria results comparison.

Table 7 shows the percentage difference based on the MAPE evaluation criteria for
each IS compared to the same algorithm applied to all sectors.

Table 7. MAPE percentage difference of the individual sectors compared to the ungrouped dataset.

 IFPUG FPA (%) NFFPCM (%) CFCW (%) CFCWO (%)
Banking 25.08 29.35 45.94 50.46

Communication 1.30 27.35 25.92 35.38
Financial 35.99 −28.77 41.88 43.81

Government 47.82 −1.05 46.26 44.78
Insurance 21.26 32.93 30.04 29.47

Manufacturing 21.08 −3.79 23.44 24.66
Service Industry 47.73 10.94 51.24 53.77

Others 32.5 0.37 40.52 39.21
Mean 29.10 8.42 38.16 40.19

In the same way, the results for the RMSE evaluation criterion were compared (see
Tables 8 and 9, as well as Figure 8). The only difference was that the lowest improvement
value of the CFCW method compared to the IFPUG FPA method was in the government

Figure 7. MAPE evaluation criteria results comparison.

Table 7 shows the percentage difference based on the MAPE evaluation criteria for
each IS compared to the same algorithm applied to all sectors.

Computers 2022, 11, 15 14 of 20

Table 7. MAPE percentage difference of the individual sectors compared to the ungrouped dataset.

IFPUG FPA (%) NFFPCM (%) CFCW (%) CFCWO (%)

Banking 25.08 29.35 45.94 50.46
Communication 1.30 27.35 25.92 35.38

Financial 35.99 −28.77 41.88 43.81
Government 47.82 −1.05 46.26 44.78

Insurance 21.26 32.93 30.04 29.47
Manufacturing 21.08 −3.79 23.44 24.66

Service Industry 47.73 10.94 51.24 53.77
Others 32.5 0.37 40.52 39.21
Mean 29.10 8.42 38.16 40.19

In the same way, the results for the RMSE evaluation criterion were compared (see
Tables 8 and 9, as well as Figure 8). The only difference was that the lowest improvement
value of the CFCW method compared to the IFPUG FPA method was in the government
sector, at 8.77%, while the highest was in the communication sector, at 54.15%. Overall, by
using the CFCW algorithm, the estimated results improved by 10.39%, and the CFCWO
algorithm enhanced the estimate by 24.62%. The NNFPCM model’s results, in this case,
were better than those of the IFPUG FPA method in some sectors (banking, communication,
government, and insurance).

Table 8. RMSE evaluation results and improvement percentages.

RMSE
Improvement
of CFCW vs.
IFPUG FPA

(%)

Improvement
of CFCW vs.
NFFPCM (%)

Improvement
of CFCWO
vs. CFCW

(%)FPA NFFPCM CFCW CFCWO

All Sectors 1578.92 1766.29 1414.83 1066.47 10.39 19.90 24.62
Banking 828.43 641.44 441.71 323.47 46.68 31.14 26.77

Communication 585.70 430.01 268.52 254.77 54.15 37.55 5.12
Financial 304.54 694.71 226.76 206.52 25.54 67.36 8.92

Government 1259.87 1219.93 1149.40 1042.79 8.77 5.78 9.28
Insurance 691.23 537.50 502.79 476.84 27.26 6.46 5.16

Manufacturing 362.54 474.34 311.59 232.82 14.05 34.31 25.28
Service Industry 461.49 1314.06 370.71 340.87 19.67 71.79 8.05

Others 598.41 842.07 407.48 349.25 31.91 51.61 14.29
Mean (Sectors) 636.52 769.26 459.87 403.42 27.75 38.25 12.28

Table 9. RMSE percentage difference of the individual sectors compared to the ungrouped dataset.

IFPUG FPA (%) NFFPCM (%) CFCW (%) CFCWO (%)

Banking 47.53 63.68 68.78 69.67
Communication 62.91 75.65 81.02 76.11

Financial 80.71 60.67 83.97 80.63
Government 20.21 30.93 18.76 2.22

Insurance 56.22 69.57 64.46 55.29
Manufacturing 77.04 73.14 77.98 78.17

Service Industry 70.77 25.60 73.80 68.04
Others 62.10 52.33 71.20 67.25
Mean 59.69 56.45 67.50 62.17

We can observe two interesting points to summarize this section: (1) values always
descend from the IFPUG FPA method to the CFCW method to the CFCWO method for
each evaluation criterion, and (2) the evaluation criteria values of the ISs are always smaller
than the values for all sectors.

Computers 2022, 11, 15 15 of 20

Computers 2022, 11, 15 15 of 20

sector, at 8.77%, while the highest was in the communication sector, at 54.15%. Overall,
by using the CFCW algorithm, the estimated results improved by 10.39%, and the
CFCWO algorithm enhanced the estimate by 24.62%. The NNFPCM model’s results, in
this case, were better than those of the IFPUG FPA method in some sectors (banking,
communication, government, and insurance).

Table 8. RMSE evaluation results and improvement percentages.

 RMSE Improvement
of CFCW vs.
IFPUG FPA

(%)

Improvement
of CFCW vs.
NFFPCM (%)

Improvement
of CFCWO vs.

CFCW (%) FPA NFFPCM CFCW CFCWO

All Sectors 1578.92 1766.29 1414.83 1066.47 10.39 19.90 24.62
Banking 828.43 641.44 441.71 323.47 46.68 31.14 26.77

Communication 585.70 430.01 268.52 254.77 54.15 37.55 5.12
Financial 304.54 694.71 226.76 206.52 25.54 67.36 8.92

Government 1259.87 1219.93 1149.40 1042.79 8.77 5.78 9.28
Insurance 691.23 537.50 502.79 476.84 27.26 6.46 5.16

Manufacturing 362.54 474.34 311.59 232.82 14.05 34.31 25.28
Service Industry 461.49 1314.06 370.71 340.87 19.67 71.79 8.05

Others 598.41 842.07 407.48 349.25 31.91 51.61 14.29
Mean (Sectors) 636.52 769.26 459.87 403.42 27.75 38.25 12.28

Table 9. RMSE percentage difference of the individual sectors compared to the ungrouped dataset.

 IFPUG FPA (%) NFFPCM (%) CFCW (%) CFCWO (%)
Banking 47.53 63.68 68.78 69.67

Communication 62.91 75.65 81.02 76.11
Financial 80.71 60.67 83.97 80.63

Government 20.21 30.93 18.76 2.22
Insurance 56.22 69.57 64.46 55.29

Manufacturing 77.04 73.14 77.98 78.17
Service Industry 70.77 25.60 73.80 68.04

Others 62.10 52.33 71.20 67.25
Mean 59.69 56.45 67.50 62.17

Figure 8. RMSE evaluation criteria results comparison. Figure 8. RMSE evaluation criteria results comparison.

Based on these statements and the analysis of previous results, we can proceed to
answer the research questions.

RQ1: Is the accuracy of the proposed CFCW algorithm better than that of the standard
IFPUG FPA or NFFCPM methods?

For each evaluation criterion shown in Tables 4, 6 and 8, we can observe that the
value in the CFCW column is always smaller than the value in the corresponding IFPUG
FPA or NFFPCM column. Figures 6–8, depicting the results of the MAE, MAPE, and
RMSE evaluation criteria, respectively, also show that the estimation errors for the CFCW
algorithm are always better than the estimation errors for the IFPUG FPA and NFFCMP
methods. This means that the proposed CFCW algorithm outperforms the IFPUG FPA
and NFFCMP methods. The percentage improvement of the CFCW method in terms of
accuracy compared with the IFPUG FPA method was MAE = 5.46%, MAPE = 4.10%, and
RMSE = 10.39% for all sectors. When CFCW is compared to NFFCMP, those figures are
MAE = 15.39%, MAPE = 28.41%, and RMSE = 19.9% for all sectors.

RQ2: Does the advanced CFCWO algorithm outperform the CFCW algorithm?

To answer this research question, we also evaluated Tables 4, 6 and 8. As we can see, the
percentage improvement of the CFCWO method in terms of accuracy compared with the
CFCW method was MAE = 11.89%, MAPE = 6.56%, and RMSE = 24.62% for all sectors. As in
the previous comparison, there was a greater improvement in the accuracy of the CFCWO
algorithm estimate for each sector. The largest percentage differences were MAE = 22.18%
(financial sector), MAPE = 18.53% (communication sector), and RMSE = 26.77% (bank-
ing sector). The mean percentage differences of the individual sectors compared to the
ungrouped dataset were MAE = 11.08%, MAPE = 9.59%, and RMSE = 12.28%.

RQ3: How accurate is the estimation for each sector compared to an ungrouped dataset?

The answer to this question is shown in Tables 5, 7 and 9. As we can see, the accuracy
of the estimate in all individual sectors for all evaluation criteria is higher than for an
ungrouped dataset.

When CFCW is compared to IFPUG FPA, improvement in the accuracy of the CFCW
estimate can be seen for the individual sectors, where the largest percentage differences are
MAE = 51.55% (communication sector), MAPE = 30.76% (banking sector) and RMSE = 54.15%
(communication sector); the mean percentage differences of the individual sectors com-
pared to the ungrouped dataset are MAE = 22.52%, MAPE = 16.26%, and RMSE = 27.75%.

When CFCW is compared to NFFCMP, improvement in the accuracy of the CFCW
estimate can be seen for the individual sectors, where the largest percentage differences
are MAE = 72.00% (service industry), MAPE = 67.69% (financial), and RMSE = 71.79%

Computers 2022, 11, 15 16 of 20

(service industry); the mean percentage differences of the individual sectors compared to
the ungrouped dataset are MAE = 49.98%, MAPE = 49.03%, and RMSE = 38.25%.

Paired-samples t-tests were used for evaluating statistical significance comparisons [58,59]
to see whether the CFCWO method is significantly different from the other methods, in
order to confirm the evaluation conclusions (see Table 10). The notations�,�, and ≈ re-
flect the statistical superiority, inferiority, and similarity of the CFCWO approach compared
to each of the other methods (FPA and NFFPCM), respectively. We can conclude that the
difference in estimating accuracy between the CFCWO and each alternative approach is
significant when the p-value is less than 0.05.

Table 10. The statistical t-tests based on the final evaluation results.

Pairs of Methods CFCW VS. FPA CFCWO VS.
CFCW

CFCWO VS.
NFFPCM

MAE results

Mean MAE 280.77 vs. 362.4 249.67 vs. 280.77 10.06 vs. 611.12

Mean p-value 0.00787 0.00013 0.00156

Statistical
conclusion >> >> >>

MAPE results

Mean MAPE 8.42 vs. 10.06 7.61 vs. 8.42 636.52 vs. 17.41

Mean p-value 0.00475 0.00124 0.00017

Statistical
conclusion >> >> >>

RMSE results

Mean SE 459.87 vs. 636.52 403.42 vs. 459.87 403.42 vs. 769.26

Mean p-value 0.00215 0.00287 0.00445

Statistical
conclusion >> >> >>

All used evaluation criteria results in this study were used as the sample test set for
each method in this study.

7. Threats to Validity

Internal validity in this study, which can affect the validity of conclusions drawn
from experimental research, is an incorrect/inaccurate evaluation method to assess the
proposed method; specifically, it refers to the technique of statistical sample validation.
The threat to the validity was controlled using the k-fold cross-validation method, which
guarantees that the proposed method is accurately assessed. Another internal threat that
may affect the validity of the obtained results is the choice of parameters in the machine
learning technique. In this study, we use the default parameter settings of the Bayesian
ridge regressor technique for the proposed algorithm.

External validity in this study is concerned with the range of validity of the results
obtained, and whether the results obtained could be applied in a different context. The
ISBSG repository August 2020 R1 dataset was used to assess the predictive ability of the
proposed method. This dataset contains many software projects collected from different
organisations worldwide that differ in terms of features, fields, size, and number of features.

Unbiased evaluation criteria are used to evaluate the performance accuracy of the
proposed method. This study used evaluation criteria such as the MAE, MAPE, and RMSE,
which are unbiased evaluation criteria according to previous research [60,61]. Therefore,
we can conclude that the experimental results of this study are highly generalizable.

8. Conclusions and Future Work

A standard IFPUG FPA method calibration algorithm based on the Bayesian ridge
regressor model for calibration (CFCW) and the voting regressor model for optimising effort
estimation (CFCWO) with and without dataset grouping is presented in this study. This
paper aimed to answer three research questions: In answer to RQ1, we can see a percentage
accuracy improvement with the proposed CFCW algorithm compared to the IFPUG FPA
method, depending on the evaluation criteria and whether a grouped or ungrouped

Computers 2022, 11, 15 17 of 20

dataset was used. For the ungrouped dataset, the percentage accuracy improvement for
MAE = 5.46%, MAPE = 4.10%, and RMSE = 10.39%. The mean percentage difference of the
individual sectors compared to the ungrouped dataset was MAE = 22.52%, MAPE = 16.26%,
and RMSE = 27.75%, showing an even greater improvement in the accuracy of the estimates.
This demonstrates that the IFPUG FPA method needs calibration, and can be calibrated.
When CFCW is compared to NFFCMP, MAE = 15.39%, MAPE = 28.41%, and RMSE = 19.9%
for all sectors.

The second proposed algorithm, CFCWO, brings further improvement, and outper-
forms the CFCW algorithm, answering RQ2. The percentage improvement varies according
to the evaluation criteria and dataset. For the ungrouped dataset, the percentage accuracy
improvement is MAE = 11.89%, MAPE = 6.56%, and RMSE = 24.62%. The mean percentage
difference of the individual sectors compared to the ungrouped dataset is MAE = 11.08%,
MAPE = 9.59%, and RMSE = 12.28%. The results also show that it makes sense to work
with data belonging to a specific group. In our case, we grouped the data according to
the IS. The answer to RQ3 is that the estimate’s accuracy in all individual sectors for all
evaluation criteria is higher than for an ungrouped dataset.

The functional complexity weight values reflect the modern software industry trend of
improving work performance thanks to the development of computer technology, program-
ming languages, and CASE tools. This manifests itself in functional complexity weight
values that are smaller than the original value. In addition, the demand for sophistication
and complexity of software functions also increases over time in certain areas, manifest-
ing in calibrated functional complexity weight values that are more significant than the
original values.

IFPUG FPA is a calculation method that estimates the size, cost, and effort in the field
of software development; it plays a significant role in today’s software industry. However,
software engineering is a rapidly evolving field; today’s actual values may not accurately
reflect tomorrow’s software values. Therefore, the weights proposed in this paper need
to be updated according to the new trend. The ISBSG dataset is an up-to-date database
of companies around the globe; it reflects the modern software industry that is constantly
updated. Therefore, in the future, when project data are updated, the IFPUG FPA weighting
values should be recalibrated to reflect the latest software industry trends.

Author Contributions: Conceptualization, V.V.H., P.S. and H.L.T.K.N.; methodology, V.V.H., R.S. and
Z.P.; software, V.V.H. and H.L.T.K.N.; validation, V.V.H., P.S. and H.L.T.K.N.; investigation, V.V.H.,
H.L.T.K.N., R.S. and Z.P.; resources, P.S., Z.P. and R.S.; data curation, V.V.H., P.S. and H.L.T.K.N.;
writing—original draft preparation, V.V.H., R.S. and Z.P.; writing—review and editing, V.V.H. and
R.S.; visualization, V.V.H., P.S. and H.L.T.K.N.; supervision, R.S. and Z.P.; project administration,
P.S., R.S. and Z.P.; funding acquisition, P.S., R.S. and Z.P. All authors have read and agreed to the
published version of the manuscript.

Funding: This research was funded by the Faculty of Applied Informatics, Tomas Bata University in
Zlin, under Project No.: RVO/FAI/2021/002.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The ISBSG data used to support the findings of this study may be
released upon application to the ISBSG, which can be contacted at admin@isbsg.org or http://isbsg.
org/academic-subsidy (accessed on 20 September 2021).

Conflicts of Interest: The authors declare no conflict of interest.

http://isbsg.org/academic-subsidy
http://isbsg.org/academic-subsidy

Computers 2022, 11, 15 18 of 20

References
1. Standish Group Report. Available online: https://www.standishgroup.com (accessed on 20 September 2021).
2. Vera, T.; Ochoa, S.F.; Perovich, D. Survey of Software Development Effort Estimation Taxonomies; Technical Report; Computer Science

Department, University of Chile: Santiago, Chile, 2017.
3. Khan, B.; Khan, W.; Arshad, M.; Jan, N. Software cost estimation: Algorithmic and non-algorithmic approaches. Int. J. Data Sci.

Adv. Anal. 2020, 2, 1–5.
4. Faria, P.; Miranda, E. Expert judgment in software estimation during the bid phase of a project—An exploratory survey. In

Proceedings of the 2012 Joint Conference of the 22nd International Workshop on Software Measurement and the 2012 Seventh
International Conference on Software Process and Product Measurement, IEEE, Assisi, Italy, 17–19 October 2012; pp. 126–131.

5. Azzeh, M.; Nassif, A.B. Analogy-based effort estimation: A new method to discover set of analogies from dataset characteristics.
IET Softw. 2015, 9, 39–50. [CrossRef]

6. Putnam, L.H. A general empirical solution to the macro software sizing and estimating problem. IEEE Trans. Softw. Eng. 1978, 4,
345–361. [CrossRef]

7. Boehm, B. Software Engineering Economics; Prentice-Hall: Englewood Cliffs, NJ, USA, 1981.
8. Albrecht, A.J. Measuring application development productivity. In Proceedings of the IBM Applications Development Sympo-

sium, Monterey, CA, USA, 14–17 October 1979; p. 83.
9. IFPUG. Function Point Counting Practices; Manual, Release 4.3.1; International Function Point Users Group: Westerville, OH, USA, 2010.
10. ISO/IEC 19761:2011; Software Engineering—COSMIC: A Functional Size Measurement Method. International Organization for

Standardization: Geneva, Switzerland, 2011.
11. ISO/IEC 29881:2010; Information Technology—Systems and Software Engineering—FiSMA 1.1 Functional Size Measurement

Method. International Organization for Standardization: Geneva, Switzerland, 2010.
12. ISO/IEC 20968:2002; Software Engineering—MK II Function Point Analysis—Counting Practices Manual. International Organiza-

tion for Standardization: Geneva, Switzerland, 2002.
13. ISO/IEC 24570:2005; Software Engineering—NESMA Functional Size Measurement Method Version 2.1—Definitions and Counting

Guidelines for the Application of Function Point Analysis. International Organization for Standardization: Geneva, Switzerland, 2005.
14. Kitchenham, B.; Mendes, E. Why comparative effort prediction studies may be invalid. In Proceedings of the 5th International

Conference on Predictor Models in Software Engineering—PROMISE’09, Vancouver, BC, Canada, 18 May 2009; ACM Press:
New York, NY, USA, 2009; pp. 1–5.

15. Peter, R.H. Practical Software Project Estimation; McGraw-Hill: New York, NY, USA, 2011.
16. Hai, V.V.; Nhung, H.L.T.K.; Hoc, H.T. A review of software effort estimation by using functional points analysis. In Computational

Statistics and Mathematical Modeling Methods in Intelligent Systems; Silhavy, R., Silhavy, P., Prokopova, Z., Eds.; Springer: Cham,
Switzerland, 2019; pp. 408–422.

17. Al-Hajri, M.A.; Abdul Ghani, A.A.; Sulaiman, M.N.; Selamat, M.H. Modification of standard Function Point complexity weights
system. J. Syst. Softw. 2005, 74, 195–206. [CrossRef]

18. Xia, W.; Capretz, L.F.; Ho, D.; Ahmed, F. A new calibration for Function Point complexity weights. Inf. Softw. Technol. 2008, 50,
670–683. [CrossRef]

19. Shukla, S.; Kumar, S. Applicability of neural network based models for software effort estimation. In Proceedings of the 2019
IEEE World Congress on Services (SERVICES), Milan, Italy, 8–13 July 2019; IEEE: Milan, Italy, 2019; pp. 339–342.

20. Shukla, S.; Kumar, S.; Bal, P.R. Analyzing effect of ensemble models on multi-layer perceptron network for software effort
estimation. In Proceedings of the 2019 IEEE World Congress on Services (SERVICES), Milan, Italy, 8–13 July 2019; IEEE: Milan,
Italy, 2019; pp. 386–387.

21. Priya, V.A.G.; Anitha, K.; Varadarajan, V. Estimating software development efforts using a random forest-based stacked ensemble
approach. Electronics 2021, 10, 1195. [CrossRef]

22. Idri, A.; Hosni, M.; Abran, A. Systematic literature review of ensemble effort estimation. J. Syst. Softw. 2016, 118, 151–175.
[CrossRef]

23. Idri, A.; Hosni, M.; Abran, A. Systematic mapping study of ensemble effort estimation. In Proceedings of the 11th International
Conference on Evaluation of Novel Software Approaches to Software Engineering, Rome, Italy, 27–28 April 2016; pp. 132–139.

24. International Software Benchmarking Standards Groupm. ISBSG Repository August 2020 R1. Available online: https://www.isbsg.org
(accessed on 20 September 2021).

25. Silhavy, P.; Silhavy, R.; Prokopova, Z. Categorical variable segmentation model for software development effort estimation. IEEE
Access 2019, 7, 9618–9626. [CrossRef]

26. Pospieszny, P.; Czarnacka-Chrobot, B.; Kobylinski, A. An effective approach for software project effort and duration estimation
with machine learning algorithms. J. Syst. Softw. 2018, 137, 184–196. [CrossRef]

27. Jayakumar, K.R.; Abran, A. Estimation models for software functional test effort. J. Softw. Eng. Appl. 2017, 10, 338–353. [CrossRef]
28. Wei, K.T.; Selamat, M.H.; Ghani, A.A.A.; Abdullah, R. Exponential Effort Estimation Model Using Unadjusted Function Points.

In Proceedings of the 5th International Conference on New Trends in Information Science and Service Science, Macao, China,
24–26 October 2011; IEEE: Macao, China, 2011; pp. 111–115.

29. Misra, S.; Adewumi, A.; Fernandez-Sanz, L.; Damasevicius, R. A Suite of Object Oriented Cognitive Complexity Metrics. IEEE
Access 2018, 6, 8782–8796. [CrossRef]

https://www.standishgroup.com
http://doi.org/10.1049/iet-sen.2013.0165
http://doi.org/10.1109/TSE.1978.231521
http://doi.org/10.1016/j.jss.2003.12.033
http://doi.org/10.1016/j.infsof.2007.07.004
http://doi.org/10.3390/electronics10101195
http://doi.org/10.1016/j.jss.2016.05.016
https://www.isbsg.org
http://doi.org/10.1109/ACCESS.2019.2891878
http://doi.org/10.1016/j.jss.2017.11.066
http://doi.org/10.4236/jsea.2017.104020
http://doi.org/10.1109/ACCESS.2018.2791344

Computers 2022, 11, 15 19 of 20

30. Dewi, R.S.; Subriadi, A.P.; Sholiq, S. A modification complexity factor in function points method for software cost estimation
towards public service application. Procedia Comput. Sci. 2017, 124, 415–422. [CrossRef]

31. Leal, L.Q.; Fagundes, R.A.A.; de Souza, R.M.C.R.; Moura, H.P.; Gusmao, C.M.G. Nearest-neighborhood linear regression in an
application with software effort estimation. In Proceedings of the 2009 IEEE International Conference on Systems, Man and
Cybernetics, San Antonio, TX, USA, 11–14 October 2009; pp. 5030–5034.

32. Hamza, H.; Kamel, A.; Shams, K. Software effort estimation using artificial neural networks: A survey of the current practices.
In Proceedings of the 2013 10th International Conference on Information Technology: New Generations, Las Vegas, NV, USA,
15–17 April 2013; IEEE: Las Vegas, NV, USA, 2013; pp. 731–733.

33. Lenarduzzi, V.; Morasca, S.; Taibi, D. Estimating software development effort based on phases. In Proceedings of the 2014 40th
EUROMICRO Conference on Software Engineering and Advanced Applications, Verona, Italy, 27–29 August 2014; IEEE: Verona,
Italy, 2014; pp. 305–308.

34. Prokopova, Z.; Silhavy, P.; Silhavy, R. Influence analysis of selected factors in the function point work effort estimation. In
Intelligent Systems in Cybernetics and Automation Control Theory; Silhavy, R., Silhavy, P., Prokopova, Z., Eds.; Springer: Cham,
Germany, 2019; pp. 112–124.

35. Hammad, M.; Alqaddoumi, A. Features-level software effort estimation using machine learning algorithms. In Proceedings of
the 2018 International Conference on Innovation and Intelligence for Informatics, Computing, and Technologies (3ICT), Sakhier,
Bahrain, 18–20 November 2018; IEEE: Sakhier, Bahrain, 2018; pp. 1–3.

36. Abdellatif, T.M. A comparison study between soft computing and statistical regression techniques for software effort estimation.
In Proceedings of the 2018 IEEE Canadian Conference on Electrical & Computer Engineering (CCECE), Quebec, QC, Canada,
13–16 May 2018; IEEE: Quebec, QC, Canada, 2018; pp. 1–5.

37. IFPUG. Announcing the New Business Applications Committee. Available online: https://www.ifpug.org (accessed on
20 September 2021).

38. ISO/IEC 20926:2009; Software and Systems Engineering—Software Measurement—IFPUG Functional Size Measurement Method.
International Organization for Standardization: Geneva, Switzerland, 2009.

39. Azzeh, M.; Nassif, A.B. Analyzing the relationship between project productivity and environment factors in the use case points
method. J. Softw. Evol. Process 2017, 29, e1882. [CrossRef]

40. Azzeh, M.; Nassif, A.B.; Banitaan, S. Comparative analysis of soft computing techniques for predicting software effort based use
case points. IET Softw. 2018, 12, 19–29. [CrossRef]

41. MacKay, D.J.C. Bayesian interpolation. Neural Comput. 1992, 4, 415–447. [CrossRef]
42. Michael, E.T. Sparse Bayesian learning and the relevance vector machine. J. Mach. Learn. Res. 2001, 1, 211–244.
43. Park, S.Y.; Bera, A.K. Maximum entropy autoregressive conditional heteroskedasticity model. J. Econom. 2009, 150, 219–230.

[CrossRef]
44. Kocaguneli, E.; Menzies, T.; Keung, J.W. On the value of ensemble effort estimation. IEEE Trans. Softw. Eng. 2012, 38, 1403–1416.

[CrossRef]
45. Kocaguneli, E.; Kultur, Y.; Bener, A. Combining multiple learners induced on multiple datasets for software effort prediction. Int.

Symp. Softw. Reliab. Eng. 2009, 17, 25–49.
46. An, K.; Meng, J. Voting-averaged combination method for regressor ensemble. In Advanced Intelligent Computing Theories and

Applications; Huang, D.S., Zhao, Z., Bevilacqua, V., Figueroa, J.C., Eds.; Springer: Berlin/Heidelberg, Germany, 2010; pp. 540–546.
47. Witten, I.H.; Frank, E.; Hall, M.A.; Pal, C.J. Data Mining: Practical Machine Learning Tools and Techniques; Morgan Kaufmann:

Amsterdam, The Netherlands, 2017.
48. Azzeh, M.; Nassif, A.B.; Minku, L.L. An empirical evaluation of ensemble adjustment methods for analogy-based effort estimation.

J. Syst. Softw. 2015, 103, 36–52. [CrossRef]
49. Lichtenberg, J.M.; Şimşek, Ö. Simple regression models. Proc. Mach. Learn. 2016, 58, 13–25.
50. Upton, G.; Cook, I. Understanding Statistics; Oxford University Press: Oxford, UK, 1996.
51. Zwillinger, D.; Kokoska, S. CRC Standard Probability and Statistics Tables and Formulae; Chapman & Hall/CRC Press: Boca Raton,

FL, USA, 2000.
52. Foss, T.; Stensrud, E.; Kitchenham, B.; Myrtveit, I. A simulation study of the model evaluation criterion mmre. IEEE Trans. Softw.

Eng. 2003, 29, 985–995. [CrossRef]
53. Kitchenham, B.A.; Pickard, L.M.; MacDonell, S.G.; Shepperd, M.J. What accuracy statistics really measure. IEE Proc. Softw. 2001,

148, 81–85. [CrossRef]
54. Hardin, J.; Hardin, J.; Hilbe, J.; Hilbe, J. Generalized Linear Models and Extensions; Stata Press: College Station, TX, USA, 2007.
55. Gupta, H.V.; Kling, H.; Yilmaz, K.K.; Martinez, G.F. Decomposition of the mean squared error and NSE performance criteria:

Implications for improving hydrological modelling. J. Hydrol. 2009, 377, 80–91. [CrossRef]
56. Shepperd, M.; MacDonell, S. Evaluating prediction systems in software project estimation. Inf. Softw. Technol. 2012, 54, 820–827.

[CrossRef]
57. Kaiser, M.; Ullrich, C. Estimation accuracy in large is programs insights from a descriptive case study. In Proceedings of the 22st

European Conference on Information Systems, Tel Aviv, Israel, 9–11 June 2014; pp. 1–14.
58. Anderson, D.R.; Sweeney, D.J.; William, T.A. Statistics for Business and Economics, 14th ed.; Thomson South-Western, Cengage

Learning: Boston, MA, USA, 2009.

http://doi.org/10.1016/j.procs.2017.12.172
https://www.ifpug.org
http://doi.org/10.1002/smr.1882
http://doi.org/10.1049/iet-sen.2016.0322
http://doi.org/10.1162/neco.1992.4.3.415
http://doi.org/10.1016/j.jeconom.2008.12.014
http://doi.org/10.1109/TSE.2011.111
http://doi.org/10.1016/j.jss.2015.01.028
http://doi.org/10.1109/TSE.2003.1245300
http://doi.org/10.1049/ip-sen:20010506
http://doi.org/10.1016/j.jhydrol.2009.08.003
http://doi.org/10.1016/j.infsof.2011.12.008

Computers 2022, 11, 15 20 of 20

59. Ross, A.; Willson, V.L.. Paired Samples t-Test. In Basic and Advanced Statistical Tests; SensePublishers: Rotterdam, The Netherlands,
2017; pp. 17–19.

60. Chai, T.; Draxler, R.R. Root mean square error (RMSE) or mean absolute error (MAE)?—Arguments against avoiding RMSE in the
literature. Geosci. Model Dev. 2014, 7, 1247–1250. [CrossRef]

61. Todros, K.; Tabrikian, J. On order relations between lower bounds on the MSE of unbiased estimators. In Proceedings of the
2010 IEEE International Symposium on Information Theory, Austin, TX, USA, 13–18 June 2010; IEEE: Austin, TX, USA, 2010;
pp. 1663–1667.

http://doi.org/10.5194/gmd-7-1247-2014

	Introduction
	Problem Formulation
	Related Work
	Background
	IFPUG FPA
	Bayesian Ridge Regression Model
	Voting Regressor Model

	Research Methodology
	Experimental Setup
	Evaluation Criteria

	Results and Discussion
	Threats to Validity
	Conclusions and Future Work
	References

