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Abstract: Any cancer type is one of the leading death causes around the world. Skin cancer is a
condition where malignant cells are formed in the tissues of the skin, such as melanoma, known as the
most aggressive and deadly skin cancer type. The mortality rates of melanoma are associated with its
high potential for metastasis in later stages, spreading to other body sites such as the lungs, bones, or
the brain. Thus, early detection and diagnosis are closely related to survival rates. Computer Aided
Design (CAD) systems carry out a pre-diagnosis of a skin lesion based on clinical criteria or global
patterns associated with its structure. A CAD system is essentially composed by three modules:
(i) lesion segmentation, (ii) feature extraction, and (iii) classification. In this work, a methodology
is proposed for a CAD system development that detects global patterns using texture descriptors
based on statistical measurements that allow melanoma detection from dermoscopic images. Image
analysis was carried out using spatial domain methods, statistical measurements were used for
feature extraction, and a classifier based on cellular automata (ACA) was used for classification. The
proposed model was applied to dermoscopic images obtained from the PH2 database, and it was
compared with other models using accuracy, sensitivity, and specificity as metrics. With the proposed
model, values of 0.978, 0.944, and 0.987 of accuracy, sensitivity and specificity, respectively, were
obtained. The results of the evaluated metrics show that the proposed method is more effective than
other state-of-the-art methods for melanoma detection in dermoscopic images.

Keywords: pattern recognition; image analysis; cellular automata; melanoma

1. Introduction
1.1. Motivation

Skin cancer is a disease caused by the abnormal development of cancer cells in any
layer of the skin. There are two types of skin cancer, the non-melanoma type and the
melanoma type [1–3]. Basal cell and squamous cell carcinomas are non-melanoma ma-
lignancies that occur in the epidermis. They present as nodules or nonpainful ulcerated
and crusted lesions that do not heal with the passage of time. Their growth is slow, and
they rarely metastasize [3,4]. On the other hand, melanoma is the most aggressive skin
cancer type; if not diagnosed on time, it is susceptible to invade nearby tissues and spread
to other body parts [5]. Hence melanoma is considered as the deadliest form of skin can-
cer, and early detection is decisive for patient survival. Every year something worrying
happens in the world—annual rates of all forms of skin cancer are significantly increased,
and melanoma increases rapidly among other cancer forms, particularly affecting the
young population [6]. Diagnosis of melanoma is a challenging task due to the similarity in
appearance to nonmalignant nevi.

For skin cancer diagnosis, the first step is to obtain a patient medical history; sub-
sequently, a physical examination is performed. If the doctor suspects melanoma, he or
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she will use a technique called dermoscopy to see the skin more clearly [7]. Dermoscopy
consists of using a lens type and a light source, both on the lesion, and obtaining an image of
the affected area, which is called a dermoscopic image [8]. The analysis of the dermoscopic
image is extremely important in decision making if an invasive method such as biopsy is
necessary to be applied or not [8–10].

1.2. Related Jobs

Computer Aided Design (CAD) are computer systems that perform the interpretation
of a medical image as if it were done by a medical specialist. CADs focused on melanoma
detection are a great help for medical specialists in the decision-making process that they
carry out in observing a dermoscopic image and is helpful in the pre-diagnosis process
in a rapid way [11–13]. The first task of a CAD system of this type is to segment the
lesions present in dermoscopic images; therefore, there are works that show methodologies
that allow lesion segmentation and provide guidelines for their subsequent classification.
Some of these works propose methodologies that use fully convolutional network (FCN)
and dual path network (DPN) [14]; other works perform segmentation by masks that
are manually or automatically performed [15], and others use local binary patterns and
clustering using k-means [16]. In this work, segmentation is carried out using spatial
domain methods and morphological operators. There are works that perform melanoma
detection in dermoscopic images based on clinical diagnostic procedures, such as the ABCD
rule. The ABCD rule is a clinical guide to determine when a lesion is a melanoma. This
guide consists of looking for specific characteristics that allow detecting the asymmetry (A)
of a lesion; the type of border (B) if it is irregular, uneven, or blurred; the color variation
(C), with reddish, whitish, and bluish being the most dangerous; and the length of the
diameter (D) of the lesion [17]. In [18–21], different methodologies for melanoma detection
use the ABCD rule. Unfortunately, this type of system development is hampered by several
challenges, such as the lack of data sets with detailed clinical criteria information, or the
subtlety of some diagnostic criteria that makes them difficult to detect. On the other
hand, there are works that inspect the lesion, detecting the specific presence of patterns
associated with its structure. These methods attempt to detect global patterns that are
mainly divided into three categories, such as texture, shape, and color [22–24]. In this
work, texture descriptors based on statistical measurements are used. In [18], a scoring
system based on the ABCD rule, which they call the Total Dermoscopic Score (TDS) for
the classification between malignant and benign lesions, is proposed. Other works classify
using convolutional neural networks, such as AlexNet and VGG16 [25,26], Support Vector
Machines [1,19], or k-NN [27], among others, to classify. In this work, the classification is
carried out using a model based on cellular automata proposed by the authors in [28].

The objective of the present work is to develop and implement a classifier algorithm
through the use of cellular automata that allows the detection of melanoma-type lesions
in dermoscopic images. Cellular automata are simple models to implement and require
few computational resources compared to models that make use, for example, of deep
learning, such as the AlexNet and VGG16 architectures. On the other hand, with the
proposal, concepts from the field of cellular automata could be used and applied to the
field of supervised learning through this approach to that of cellular automata.

2. Basic Concepts
2.1. Digital Image

A digital image is a discrete two-dimensional function f (x, y), where x and y are
discrete spatial coordinates in the plane. The breadth f of a coordinate pair (x, y) is
called the gray level intensity of the image at that point. An image is represented by a
two-dimensional array Fij =

(
fij
)

H×W , where H and W represent the size of the image
(referencing H and W to height and width of the image, respectively), with fij = f

(
xi, xj

)
(Figure 1) [29].
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2.2. Mathematical Morphology

The following definitions and theorems correspond to the mathematical morphol-
ogy [30,31].

Definition 1. Let A ⊆ Z2. It defines the reflected set of A denoted for A−, by:

A− = {−x|x ∈ A}

Definition 2. Let A ⊆ Z2 and x ∈ Z2. The translation of A by x denoted by (A)x is defined as:

(A)x = {a + x|a ∈ A}

Definition 3. Let A, B ⊆ Z2. The dilation of A by B, denoted by A⊕ B, is the Minkowski sum of
A and B, that is:

A⊕ B = {a + b|a ∈ A and b ∈ B}

The set B of the above definition is called the structuring element.

Theorem 1. Let A, B ⊆ Z2. The following applies:

A⊕ B =
{

x
∣∣∣(B−)x

⋂
A 6= ∅

}

Definition 4. Let A, B ⊆ Z2. The erosion of A by B, denoted by A � B, is the Minkowski
subtraction of A by B, that is:

A� B =
{

x ∈ Z2
∣∣∣x + b ∈ A f or each b ∈ B

}

Theorem 2. Let A, B ⊆ Z2. The following applies:

A� B = {x|(B)x ⊆ A}

2.3. Cellular Automata

The following definitions correspond to cellular automata [32].
Let I be a set of indices. Let A = {[ai, bi]}i∈I be a countable family of closed intervals

in R, such that the following conditions:

1.
⋃

X∈A X = [a, b] for some a, b ∈ R or
⋃

X∈A X = R.
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2. If [ai, bi] ∈ A, then bi − ai > 0.
3. If [ai, bi] and

[
cj, dj

]
are in A with bi ≤ cj, then [ai, bi]

⋂[
cj, dj

]
= ∅ or [ai, bi]

⋂[
cj, dj

]
=

bi = cj.

Definition 5. Let [a, b] be an interval of R with a 6= b and A a family of closed intervals that
satisfy 1, 2, and 3. A 1-dimensional lattice is the set L = {xi × [a, b]|xi ∈ A}. If A1, A2, . . . , An
are families of intervals that meets 1, 2, and 3, then a lattice of dimension n > 1 is the set
L = {x1 × x2 × · · · × xn|xi ∈ Ai}.

Definition 6. Let r ∈ R. A 1-dimensional lattice is regular if [ai, bi] = r for each [ai, bi] ∈ A. An
n-dimensional lattice is regular if [aik, bik] ∈ Ai for i = 1, 2, . . . , n.

Definition 7. Let L be a lattice. A cell or site is an element f L; that is, a cell is an element of the
form [a1k, b1k]× · · · × [ank, bnk] with [aik, bik] ∈ Ai for i = 1, 2, . . . , n.

Definition 8. Let L be a lattice, and r is a cell of L. A neighborhood of size n ∈ N for r is the set
v(r) =

{
{k1, k2, . . . , kn}

∣∣k j is a cell o f L f or each j
}

.

Definition 9. Let n ∈ N. A cellular automata (CA) is a tuple (L,S ,N , f ), such that:

1. L is a regular lattice.
2. S is a finite set of states.
3. N is a set of neighborhoods that nest as follows:

N = {v(r)|r is a cell and v(r) is a neighborhood r o f size n}

4. f : N → S is a function called the transition function.

Definition 10. A configuration of the cellular automata (L,S ,N , f ) is a function Ct : L → S ,
which associates to each cell of the lattice L at time t, a state of S .

If (L,S ,N , f ) is a cellular automata and r ∈ L, then the configuration Ct is related with
f through:

Ct = f ({Ct(i)|i ∈ N (r)})

Definition 11. Let F = (L,S ,N , f ) andM = (L,S ,N ′, g) be two cellular automata. Cellular
automata composition of the CA F andM in the time t = tk is defined as F ∗M by the cellular
automata F ∗M = (L,S ,N , h), where h, f , and g are related as follows:

Ctk+1(r) = f ({Ctk(i)|i ∈ N (r)})
Ctk+2(r) = g

({
Ctk+1(i)

∣∣i ∈ N ′(r)})
Ctk+2(r) = h

({
Ctk (i)

∣∣i ∈ N (r)
})

Definition 12. LetR = (L,S ,N , f ) be a cellular automata with L = Z2. If A ⊆ Z2 and x ∈ S ,
then [A]x denote the number of cells in A with state x.

3. Materials and Methods

This section presents the methodology that detect melanoma in dermoscopic images.
The methodology is divided into three modules: image segmentation, feature extraction,
and classification.

3.1. Image Segmentation

Segmentation of skin lesions into dermoscopic images was carried out using spatial
domain methods. Then, the steps that led the lesion segmentation are shown.
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Step 1. To reduce the number of variations in intensity between neighboring pixels, a
median filter is applied.

Step 2. The image is binarized using Otsu’s method.
After you apply step 2, the binarized images exhibit additive noise at the corners of

the image. To eliminate this noise, the next step is performed.
Step 3. It is considered the circumference that passes through the periphery of the

corners of the binarized image taking as its center the coordinate
(
Cx, Cy

)
= (H/2, W/2)

and radius r =
√
(Cx − ax)

2 +
(
Cy − ay

)2, where
(
ax, ay

)
. corresponds to the coordinate

with the shortest distance that is on the corner’s periphery of the binarized image to the
point

(
Cx, Cy

)
. Those points that are outside the circumference are removed:

f (x, y) =

{
255 si (Cx − x)2 +

(
Cy − y

)2 ≥ r2

0 otherwise

Step 4. Three morphological erosions are applied using Moore’s neighborhood as a
structuring element.

Step 5. Three morphological dilations are applied using Moore’s neighborhood as a
structuring element.

Step 6. Perform an operation and with the color input image.
Figure 2 shows the block diagram that obtains lesion segmentation in the skin from

dermoscopic images.
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Figure 3 shows the steps’ application to a dermoscopic image in order to obtain the
segmented lesion.

Computers 2022, 11, x FOR PEER REVIEW 6 of 13 
 

 
Figure 3. Lesion segmentation in (a) dermoscopic image, in (b) median filter, in (c) the Otsu method, 
in (d) corner elimination, in (e) erosions by Moore’s neighborhood, in (f) dilations by Moore’s neigh-
borhood, and in (g) segmented lesion. 

3.2. Feature Extraction 
To form the pattern of features associated with each image, texture descriptors were 

used based on 11 statistical measurements shown in Table 1 [33,34]. To perform this, 𝑁 
represents the total number of pixels, 𝐿 is the total number of gray levels, 𝐼 𝑓  is the 
value of the gray level of the pixel (𝑖, 𝑗) in the image 𝑓(𝑥, 𝑦), 𝑃(𝑗) is the probability that 
the value of the gray level occurs in the image 𝑓(𝑥, 𝑦), 𝑇(𝑖) is the number of pixels with 
gray value 𝑖 in the image 𝑓(𝑥, 𝑦), 𝑃 𝐼 𝑓  is the probability that the gray level 𝐼 𝑓  

occurs in the image 𝑓(𝑥, 𝑦), and 𝑃 𝑓 = 𝑇 𝐼 𝑓 𝑁⁄ . 

Table 1. Statistical characteristics. 

Statistical Features Expression 

Mean 𝜇 = ∑ 𝑓𝑁  
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3.2. Feature Extraction

To form the pattern of features associated with each image, texture descriptors were
used based on 11 statistical measurements shown in Table 1 [33,34]. To perform this, N
represents the total number of pixels, L is the total number of gray levels, I

(
fij
)

is the value
of the gray level of the pixel (i, j) in the image f (x, y), P(j) is the probability that the value
of the gray level occurs in the image f (x, y), T(i) is the number of pixels with gray value
i in the image f (x, y), P

(
I
(

fij
))

is the probability that the gray level I
(

fij
)

occurs in the
image f (x, y), and P

(
fij
)
= T

(
I
(

fij
))

/N.
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Table 1. Statistical characteristics.

Statistical Features Expression

Mean µ =
∑ij fij

N

Standard Deviation
σ =

√
∑ij( fij−µ)

2

N

Smoothness R = 1− 1
(1+σ2)

Skewness Sk =
∑ij( fij−µ)

3

Nσ3

Kurtosis K =
∑ij( fij−µ)

4

(N−1)σ4

Uniformity U =
L−1
∑

i=0
P(i)2

Average Histogram AHg = 1
L

L−1
∑

i=0
T(i)

Modified Skew MSK = 1
σ3 ∑ij

(
fij − µ

)3
P
(

fij

)
Modified Standar Deviation σm =

√
∑ij

(
fij − µ

)2
P
(

fij

)
Entropy Etp = −∑L−1

j=0 P(j)log2[P(j)]

Modified Entropy MEtp = ∑ij P
(

fij

)
log2

[
P
(

I
(

fij

))]
3.3. Classification

An associative model based on cellular automata was used for classification [30].
Associative models are mathematical models whose main objective is to retrieve complete
patterns from input patterns. The operation of associative models is divided into two
phases: the learning phase—the phase where the associative model is generated, and the
recovery phase—the phase where the associative model is operated. During the learning
phase, the associative model is constructed from a set of ordered pairs of previously known
patterns called the fundamental set. Each pattern that defines the fundamental set is called
the fundamental pattern. The fundamental set is represented as follows [35]:

FS = {(xµ, yµ)|µ = 1, 2, . . . , p}

where (xµ, yµ) ∈ An × Am for µ = 1, 2, . . . , p with A = {0, 1}. During the recovery phase,
the associative model operates with an input pattern to obtain the corresponding output
pattern. In this work, we used the associative model based on cellular automata presented
in [30]. Then, we present previous definitions and the classifier model in its learning and
recovery phase.

Let A, B ⊆ Z2. Hereinafter, D = (L,S ,N , f ) is a cellular automata with initial
configuration A, defined as follows:

• L = Z2.
• S = {0, 1}.
• N = {vx|x ∈ L} with vx = (B−)x.
• The transition function f : N → S is given as follows:

f (vx) =

{
1 i f [vx]1 > 0
0 i f [vx]1 = 0

Theorem 3. The CA D with initial configuration A is equivalent to dilating the set A by B in the
first iteration.
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Proof. If x ∈ A
⊕

B ⊆ L, then by theorem 1, (B−)x ∩ A 6= ∅. Therefore, there y ∈ L
such that y ∈ (B−)x ∩ A. Since we are dealing with binary images, this means that 1
corresponds as the value of y such that y ∈ vx; therefore, [vx]1 > 0 then f (x) = 1. If
x /∈ A

⊕
B then (B−)x ∩ A = ∅. Since we are dealing with binary images, this means that

the neighborhood vx is formed only by cells with zero values, then [vx]1 = 0, and therefore,
f (x) = 0. Conversely, if x ∈ L with f (x) = 1, then [vx]1 > 0, then there is a cell with the
value 1, which is in the vicinity vx, i.e., there y ∈ L such that y ∈ vx and y ∈ A, and A is the
initial configuration of the CA; therefore, y ∈ (B−)x and y ∈ A exists, then y ∈ (B−)x ∩ A,
then it follows by theorem 1 that x ∈ A

⊕
B. If x ∈ L with f (x) = 0, then [vx]1 = 0, this

means that the neighborhood vx is formed only by cells with values equal to zero, i.e.,
vx ∩ A 6= ∅, then (B−)x ∩ A 6= ∅; therefore, x /∈ A

⊕
B. �

The CA of the previous theorem is called Cellular Dilation (CAD). Let A, B ⊆ Z2.
Hereinafter, E = (L,S ,N , f ) is a CA with initial configuration A, defined as follows:

• L = Z2.
• S = {0, 1}.
• N = {vx|x ∈ L} with vx = (B)x.
• The transition function f : N → S is given as follows:

f (vx) =

{
1 i f [vx]1 = |B|
0 i f [vx]1 < |B|

Theorem 4. The CA E with initial configuration A is equivalent to erode the set A by B in the
first iteration.

Proof. If x ∈ A� B, then (B)x ⊆ A by the Theorem 2, because (B)x is the set B moved by x,
(B)x has to have as many cells with values 1 as B; therefore, [vx]1 = |B|, therefore f (x) = 1.
If x /∈ A� B, then (B)x * A, i.e., there is y ∈ (B)x ⊆ L such that y /∈ A, and this means
that there is a cell (B)x with value 1 whose value is zero at vx, then [vx]1 < |B|; therefore
f (vx) = 0. Conversely, if x ∈ L is a cell with f (vx) = 1, then [vx]1 = |B|, then (B)x ⊆ A.
If x ∈ L is a cell with f (vx) = 0, then [vx]1 < |B|, and this means that there is a cell in vx
with value zero, and on the other hand, this cell has the value 1 in Bx; therefore, y ∈ (B)x
exists such that y /∈ A; therefore, (B)x * A. �

The CA E of the previous theorem is called Cell Erosion (CAE).
In what follows, consider the set A = {0, 1} and the fundamental set

FS = {(xµ, yµ)|µ = 1, 2, . . . , p}with xµ ∈ An and yµ ∈ Am. The lattice L for the CA shall con-
sist of the matrix of size 2m × 2n with the first index in (0, 0). The set
S = {0, 1} is the finite set of states. Let I = {i ∈ Z|i = 2k f or k = 0, 1, . . . , n− 1} and
J = {j ∈ Z|j = 2k + 1 f or k = 0, 1, . . . , m− 1}. Consider the partition of L formed by the fam-
ily of subsets I J =

{
v(i,j)

∣∣∣(i, j) ∈ I × J
}

with v(i,j) = {(i, j), (i, j− 1), (i + 1, j), (i + 1, j− 1)}.
Since I J is a partition of L, given ` ∈ L, there exists a unique (i, j) ∈ I × J such that
` ∈ v(i,j). We denote by v` this single element, i.e., v` = v(i,j). For example, if ` = (3, 0),
then ` ∈ v(3,0) = v(2,1) = {(2, 1), (2, 0), (3, 1), (3, 0)}.

From the above fact, it defines the set of neighborhoods:

N =
{

v`
∣∣∣` ∈ L}

Definition 13. Consider the set Ak. We defined the projection function of the i-th component
(1 ≤ i ≤ k) as Pri : Ak → A as:

Pri(z) = zi, with z = (z1, z2, . . . , zk)
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Theorem 5. If
(
yi, xj

)
∈ Pryx =

{(
yi, xj

)∣∣yi = Pri(y) and xj = Prj(x)
}

, then(
2j− 2 + yi, 2i− 2 + xj

)
∈ v(2j−2,2i−1).

We define the set LFS =
(

2j− 2 + yµ
i , 2i− 2 + xµ

j

)
|1 ≤ µ ≤ p, 1 ≤ i ≤ m and

1 ≤ j ≤ n ⊆ L.
Consider the CA Q = (L,S ,N , fQ) and W = (L,S ,N ′, fW ) with N ′ = I J, and

fQ : N → S , fW : N ′ → S are defined as follows:

fQ
(

v(i,j)
)
=

{
1 i f (i, j) ∈ LFS
0 i f (i, j) /∈ LFS

and

fW
(

v(i,j)
)
=

{
1 in position (i + 1, j) i f (i, j− 1) = 1
1 in position (i, j− 1) i f (i + 1, j) = 1

We define the Associative CA (ACA) in its learning phase as:

W ∗Q = (L,S ,N , fA)

The recovery phase for ACA uses the composition of erosions and dilations CA. The
algorithm which defines the recovery phase is shown in Algorithm 1.

Algorithm 1. ACA in recovery phase

Input: Fundamental set FS = {(xµ, yµ)|µ = 1, 2, . . . , p}; structuring element B; integer value ne
(number of erosions); integer value nd (number of dilations); pattern to recovery x̃ ∈ An.
Output: Recovery pattern ỹ ∈ Am.

1.
Building the Learning ACA for FS.

2.
Applying ne times the cell erosion E with the structuring element B to the initial
configuration of learning ACA. This is, applied to the configuration of the ACA,
E ∗ E ∗ · · · ∗ E ne times.

3.
Applying nd times the cellular dilation with the structuring element D to the configuration
obtained in point 2. This is, applying the configuration obtained in point 2, D ∗D ∗ · · · ∗ D
nd times.

4.
For the input pattern x̃ ∈ An will get the output pattern ỹ ∈ Am applying:

for i = 1→ m do
ỹi = 1

for j = 1→ n do
if ¬(x̃i = 0∧ (2j− 1, 2i− 2) = 1) then

if ¬(x̃i = 1∧ ((2j− 1, 2i− 2) = 1∨ (2j− 1, 2i− 2) = 1)) then
ỹi = 0
break

end if
end if

end for
end for

4. Experiments and Results

Dermoscopic images used in this work were obtained from the dermatological ser-
vice of the Pedro Hispano Hospital in Matosinhos, Portugal. To capture the images, the
same conditions were considered through the Tuebinger Mole Analyzer system using a
20× magnification. The images were stored in an 8-bit RGB format with a resolution of
768× 560 pixels. The image bank is made up of melanocyte lesions, including common
nevi, atypical nevi, and melanomas. The PH2 database is made up of a total of 200 dermo-
scopic images developed for research purposes in order to facilitate comparative studies
on algorithms for segmentation and classification of dermoscopic images. In this work,
10 images were discarded whose segmentation was not carried out properly due to the
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lack of sharpness of the images; therefore, in this work, a total of 190 dermoscopic images
obtained in the PH2 database [36] were used. The methodology proposed to each of the
images was applied to first obtain the segmentation of the binarized lesion (the contour
and the image of the lesion in color as shown in Figure 3) then a total of 11 statistical
characteristics were extracted (as shown in Table 1), and finally, the classifier model based
on cellular automata was applied. Algorithm 1 shows the ACA model in its recovery phase;
as a structuring element, the Moore neighborhood was used. The classification of lesions
were evaluated using three metrics: sensitivity (SE), specificity (SP), and accuracy (ACC).
The evaluated metrics are obtained from the confusion matrix and are given by:

SE = TP/(TP + FN)
SP = TN/(TN + FP)

ACC = (TN + TP)/(FN + FP + TN + TP)

where, TP = True Positive, FP = False Positive, TN = True Negative, and FN =
False Negative.

Table 2 shows the values of the confusion matrix, and Table 3 shows a comparison
between the proposed model and other works using the SE, SP, and ACC metrics.

Table 2. Confusion matrix.

True Condition Status

Positive Negative

Test Result
Positive TP = 34 FP = 2

Negative FN = 2 TN = 152

Table 3. Comparison of melanoma diagnosis methods through the accuracy (ACC), sensitivity (SE),
and specificity (SP).

Method Classifier ACC SE SP

Shan et al. [14] FC-DPN 0.936 0.947 0.962

Mohammed et al. [18] TDS 0.84 0.605 0.895

Goyal et al. [37] Ensemble-S 0.938 0.932 0.929

Bi et al. [38] DCL-PSI 0.966 0.971 0.958

Eltayef et al. [39] FCM-MRF 0.94 0.932 0.980

Nida et al. [40] RCNN-FCM 0.948 0.978 0.941

Tajeddin et al. [41] RUSBoost 0.950 0.950 0.950

Al-Masni et al. [42] FrCN 0.950 0.937 0.956

Proposed ACA 0.978 0.944 0.987

Figure 4 shows the ROC plots of the models in Table 3 and the respective area under
the curve (AUC).
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5. Discussion

This paper proposes a methodology that allows the detection of melanoma in dermo-
scopic images. The methodology consists of three distinguishable stages: segmentation
of the lesions, extraction of characteristics, and classification. The segmentation of the
lesions was carried out using methods in the spatial domain and morphological operators.
For the extraction of characteristics, 11 statistical characteristics shown in Table 1 were
used, and for the classification, the ACA model, an associative model based on cellular
automata, was used. Table 2 shows the confusion matrix, where it is observed that, out
of a total of 190 images considered, the model classified two cases as false positives and
two cases as false negatives. This is possibly due to the fact that these cases are on the
border classification between the lesions that present melanoma and those that do not, or
atypical situations that the model requires to know, or possibly the segmentation process
yielded sections of the image that, due to the scarce clarity, classified them erroneously.
Table 3 and Figure 4 show the values of the proposed model and its comparison with other
models that solve the same problem. Table 3 shows the evaluated metrics considered,
which are accuracy, sensitivity, and specificity, and Figure 3 also shows the ROC graphs
and the areas under the curve. As the results are observed, the value of the sensitivity
thrown by the proposed model is by the mean, which is higher than models such as those
proposed in [18,37,39,42] but lower than models such as those proposed in [14,38,40,41].
This metric refers to the ability of the model to diagnose lesions that present melanoma
adequately. As such, it is a metric that must be improved in the proposed model to obtain
better results. However, with respect to the specificity metric, the proposed model yielded
superior results to all the models with which it was compared; this metric refers to the
ability of the model to diagnose lesions that do not correspond to the presence of melanoma.
On the other hand, the proposed model also showed values of higher accuracy than the
rest of the models compared, having an accuracy of 0.978. This is also reflected in the area
under the ROC curve shown in Figure 4 of the proposed model, which is 0.965 and higher
than the area of all the ROC curves compared. The AUC reflects how good the model is
to discriminate lesions with the presence and absence of melanoma; the higher its value
approaches 1, the greater its discriminative capacity. As can be seen, the proposed model
yields competitive results and can be considered for use in the detection of skin diseases
that are not necessarily melanoma. The main limitations of this work are due to the amount
of images that the PH2 database has, in addition to the fact that the same conditions must
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be met for the acquisition of the images. It would be convenient to do tests with more
dermoscopic images obtained from various conditions that may occur when the images are
acquired by specialists who use dermoscopic images for the detection of melanoma. On
the part of the classifier, it is limited to structuring elements of the Moore neighborhood
form; however, other types of structuring elements can be considered.

6. Conclusions

In this work, a methodology was presented that allows the detection of melanoma in
dermoscopic images using a classifier based on cellular automata. The results of the metrics
evaluated (sensitivity, specificity, and accuracy) show that the proposed method is more
effective than other state-of-the-art methods for the detection of melanoma in dermoscopic
images (Table 3).

Author Contributions: Conceptualization, B.L.-B.; methodology, B.L.-B. and J.C.M.-P.; validation,
J.C.M.-P.; investigation, R.F.-C.; writing—original draft preparation, J.C.-G. and V.M.S.-G.;
writing—review and editing, B.L.-B., R.F.-C., J.C.M.-P., J.C.-G. and V.M.S.-G. All authors have read
and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Informed Consent Statement: The data sets used are the property of PH2 dataset and were devel-
oped for research purposes.

Data Availability Statement: Publicly available datasets were analyzed in this study. This data
can be found here: reference [36]; https://www.fc.up.pt/addi/ph2%20database.html (accessed on
7 December 2021).

Acknowledgments: The authors would like to thank the Instituto Politécnico Nacional (Secre-
taría Académica, COFAA, EDD, SIP, ESCOM and CIDETEC) for their financial support to develop
this work.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Zhen, M.; Tavares, J.M. Effective features to classify skin lesions in dermoscopic images. Expert Syst. Appl. 2017, 84, 92–101.
2. Chatterjee, S.; Dey, D.; Munshi, S. Optimal selection of features using wavelet fractal descriptors and automatic correlation bias

reduction for classifying skin lesión. Biomed. Signal Proccess. Control 2018, 40, 252–262. [CrossRef]
3. Craythorme, E.; Al-Niami, F. Skin cancer. Medicine 2017, 45, 431–434. [CrossRef]
4. Caini, S.; Boniol, M.; Tosti, G.; Magi, S.; Medri, M.; Stanganelli, I.; Palli, D.; Assedi, M.; Del Marmol, V.; Gandini, S. Vitamin D and

melanoma and non-melanoma skin cancer and prognosis: A comprehensive review and meta-analysis. Eur. J. Cancer 2014, 50,
2649–2658. [CrossRef] [PubMed]

5. Xu, H.; Berendt, R.; Jha, N.; Mandal, M. Automatic measurenment of melanoma Depth of invasión in skin hitopathological
images. Micron 2017, 97, 56–67. [CrossRef]

6. El Abbad, N.; Faisal, Z. Detection and analysis of skin cancer from skin lesion. Int. J. Appl. Eng. Res. 2017, 12, 9046–9052.
7. Boespflug, A.; Perier-Muzet, M.; Phan, A.; Dhaille, F.; Assouly, P.; Thomas, L.; Petit, A. Dermatoscopia de las lesiones cutáneas no

neoplásicas. EMC-Dermatología 2018, 52, 1–9. [CrossRef]
8. Rao, B.K.; Ahn, C.S. Dermatoscopy for melanoma and pigmented lesion. Dermatol. Clin. 2012, 30, 413–434. [CrossRef]
9. Gallegos-Hernández, J.F.; Ortiz-Maldondado, A.L.; Minauro-Muñoz, G.G.; Arias-Ceballos, H.; Hernández-Sanjuan, M. Der-

moscopy in cutaneous melanoma. Cirugía Y Cir. 2015, 83, 107–111. [CrossRef]
10. Pastar, Z.; Lipozencic, J. Significance of dermoscopic in genital dermatoses. Clin. Dermatol. 2014, 32, 315–318. [CrossRef]
11. Barata, C.; Celebi, M.E.; Marques, J.S. Development of a clinically oriented system for melanoma diagnosis. Pattern Recognit. 2017,

69, 270–285. [CrossRef]
12. Torkashvand, F.; Fartash, M. Automatic segmentation of skin lesion using markov random field. Can. J. Basic Appl. Sci. 2015, 3,

93–107.
13. Dalila, F.; Zohra, A.; Reda, K.; Hocine, C. Segmentation and classification of melanoma and benign skin lesions. Optik 2017, 140,

749–761. [CrossRef]
14. Shan, P.; Wang, Y.; Fu, C.; Song, W.; Chen, J. Automatic skin lesion segmentation based on FC-DPN. Comput. Biol. Med. 2020, 123,

103762. [CrossRef] [PubMed]
15. Mahbod, A.; Tschandl, P.; Langs, G.; Ecker, R.; Ellinger, I. The effects of skin lesion segmentation on the performance of

dermoscopic image classification. Comput. Methods Programs Biomed. 2020, 197, 105725. [CrossRef]

https://www.fc.up.pt/addi/ph2%20database.html
http://doi.org/10.1016/j.bspc.2017.09.028
http://doi.org/10.1016/j.mpmed.2017.04.003
http://doi.org/10.1016/j.ejca.2014.06.024
http://www.ncbi.nlm.nih.gov/pubmed/25087185
http://doi.org/10.1016/j.micron.2017.03.004
http://doi.org/10.1016/S1761-2896(18)88282-6
http://doi.org/10.1016/j.det.2012.04.005
http://doi.org/10.1016/j.circir.2015.04.004
http://doi.org/10.1016/j.clindermatol.2013.08.016
http://doi.org/10.1016/j.patcog.2017.04.023
http://doi.org/10.1016/j.ijleo.2017.04.084
http://doi.org/10.1016/j.compbiomed.2020.103762
http://www.ncbi.nlm.nih.gov/pubmed/32768035
http://doi.org/10.1016/j.cmpb.2020.105725


Computers 2022, 11, 8 13 of 13

16. Pereira, P.M.M.; Fonseca-Pinto, R.; Paiva, R.P.; Assuncao, P.A.A.; Tavora, L.M.N.; Thomaz, L.A.; Faria, S.M.M. Dermoscopic skin
lesión image segmentation based on Local Binary Pattern Clustering: Comparative study. Biomed. Signal Process. Control 2020, 59,
101924. [CrossRef]

17. Rigel, D.S.; Russak, J.; Friedman, R. The evolution of melanoma diagnosis: 25 years beyond the ABCDs. CA Cancer J. Clin. 2010,
60, 301–316. [CrossRef]

18. Mohammed, E.; Jadhav, M. Analysis of dermoscopic images by using ABCD rule for early detection of skin cancer. Glob. Transit.
Proc. 2021, 2, 1–7.

19. Singh, L.; Ram, R.; Prakash, S. Designing a Retrieval-Based Diagnostic Aid using Effective Features to Classify Skin Lesión in
Dermoscopic Images. Procedia Comput. Sci. 2020, 167, 2172–2180. [CrossRef]

20. Zakeri, A.; Hokmabadi, A. Improvement in the diagnosis of melanoma and dysplastic lesions by introducing ABCD-PDT features
and a hybrid classifier. Biocybern. Biomed. Eng. 2018, 38, 456–466. [CrossRef]

21. Monisha, M.; Suresh, A.; Bapu, B.R.; Rashmi, M. Classification of malignant melanoma and benign skin lesión by using back
propagation neural network and ABCD rule. Clust. Comput. 2019, 22, 12897–12907. [CrossRef]

22. Alfed, N.; Khelifi, F. Bagged textural and color features for melanoma skin cancer detection in dermoscopic and standar images.
Expert Syst. Appl. 2017, 90, 101–110. [CrossRef]

23. Stoecker, W.; Wronkiewiecz, M.; Chowdhury, R.; Stanley, R.; Xu, J.; Bangert, A.; Shrestha, B.; Calcara, D.; Rabinovitz, H.; Oliviero,
M.; et al. Detection of granularity in dermoscopy images of malignant melanoma using color and texture features. Comput. Med.
Imaging Graph. 2011, 35, 144–147. [CrossRef]

24. Pathan, S.; Gopalakrishna, K.; Siddalingaswamy, P. Automated detection of melanocytes related pigmented skin lesión: A clinical
framework. Biomed. Singal Process. Control 2019, 51, 59–72. [CrossRef]

25. Amin, J.; Sharif, A.; Gul, N.; Almas, M.; Wasif, M.; Azam, F.; Ahmad, S. Integrated design of deep features fusion for localization
and classification of skin cancer. Pattern Recognit. Lett. 2020, 131, 63–70. [CrossRef]

26. Hosseinzadeh, S.; Hosseinzadeh, P. A comparative study of deep learning architectures on melanoma detection. Tissue Cell 2019,
58, 76–83. [CrossRef]

27. Ganster, H.; Pinz, P.; Rohrer, R.; Wildling, E.; Binder, M.; Kittler, H. Automated melanoma recognition. IEEE Trans. Med. Imaging
2001, 20, 233–239. [CrossRef] [PubMed]

28. Luna-Benoso, B.; Flores-Carapia, R.; Yáñez-Márquez, C. Associative Memories Based on Cellular Automata: An Application to
Pattern Recognition. Appl. Math. Sci. 2013, 7, 857–866. [CrossRef]

29. Gonzalez, R.C.; Woods, R.E. Digital Image Processing, 2nd ed.; Prentice-Hall: Hoboken, NJ, USA, 2002.
30. Shih, F.; Cheng, S. Adaptative mathematical morphology for Edge linking. Inf. Sci. 2004, 167, 9–21. [CrossRef]
31. Bloch, I. On links between mathematical morphology and rough sets. Pattern Recognit. 2000, 33, 1487–1496. [CrossRef]
32. Luna-Benoso, B.; Yáñez-Márquez, C.; Figueroa-Nazuno, J.; López-Yañéz, I. Cellular Mathematical Morphology. In Proceedings

of the IEEE Sixth Mexican International Conference on Artificial Intelligence, Aguascalientes, Mexico, 4–10 November 2008;
pp. 105–112.

33. Zhang, P.; Verma, B.; Kumar, K. Neural vs statistical classifier in conjunction with genetic algorithm based feature selection.
Pattern Recognit. Lett. 2005, 26, 909–919. [CrossRef]

34. Subashini, T.S.; Ramalingam, V.; Palanivel, S. Automated assement of breast tissue density in digital mammograms. Comput. Vis.
Image Underst. 2010, 114, 33–43. [CrossRef]

35. Santiago-Moreno, R.; Sossa, H.; Gutierrez-Hernández, D.A.; Zamudio, V.; Hernández-Bautista, I.; Valadez-Godínez, S. Novel
mathematical modelo f breast cancer diagnostics using an associative pattern classification. Diagnostics 2020, 10, 136. [CrossRef]

36. Mendonca, T.; Ferreira, P.M.; Marques, J.; Marcal, A.R.S.; Rozeira, J. PH2-A dermoscopic image database for research and
benchmarking. In Proceedings of the 35th Internacional Conference of the IEEE Engineering in Medicine and Biology Society,
Osaka, Japan, 3–7 July 2013.

37. Goyal, M.; Oakley, A.; Bansal, P.; Dancey, D.; Yap, M.H. Skin lesion segmentation in dermoscopic images with ensemble deep
learning methods. IEEE Access 2019, 8, 4171–4181. [CrossRef]

38. Bi, L.; Kim, J.; Ahn, E.; Kumar, A.; Feng, D.; Fulham, M. Step-wise integration of deep class-specific learning for dermoscopic
image segmentation. Pattern Recognit. 2019, 85, 78–89. [CrossRef]

39. Eltayef, K.; Li, Y.; Liu, X. Detection of melanoma skin cancer in dermoscopic images. J. Phys. Conf. Ser. 2017, 787, 012034.
[CrossRef]

40. Nida, N.; Irtaza, A.; Javed, A.; Yousaf, M. Melanoma lesion detection and segmentation using deep región based convolutional
neural network and fuzzy C-means clustering. Int. J. Med. Inform. 2019, 124, 37–48. [CrossRef] [PubMed]

41. Tajeddin, N.Z.; Asl, B.M. Melanoma recognition in dermoscopic images using lesion’s peripheral región information. Comput.
Methods Programs Biomed. 2018, 163, 143–153. [CrossRef]

42. Al-Masni, M.A.; Al-Antari, M.A.; Choi, M.T.; Han, S.M.; Kim, T.S. Skin lesion segmentation in dermoscopic image via deep full
resolution convolutional networks. Comput. Methods Programs Biomed. 2018, 162, 221–231. [CrossRef]

http://doi.org/10.1016/j.bspc.2020.101924
http://doi.org/10.3322/caac.20074
http://doi.org/10.1016/j.procs.2020.03.267
http://doi.org/10.1016/j.bbe.2018.03.005
http://doi.org/10.1007/s10586-018-1798-7
http://doi.org/10.1016/j.eswa.2017.08.010
http://doi.org/10.1016/j.compmedimag.2010.09.005
http://doi.org/10.1016/j.bspc.2019.02.013
http://doi.org/10.1016/j.patrec.2019.11.042
http://doi.org/10.1016/j.tice.2019.04.009
http://doi.org/10.1109/42.918473
http://www.ncbi.nlm.nih.gov/pubmed/11341712
http://doi.org/10.12988/ams.2013.13077
http://doi.org/10.1016/j.ins.2003.07.020
http://doi.org/10.1016/S0031-3203(99)00129-6
http://doi.org/10.1016/j.patrec.2004.09.053
http://doi.org/10.1016/j.cviu.2009.09.009
http://doi.org/10.3390/diagnostics10030136
http://doi.org/10.1109/ACCESS.2019.2960504
http://doi.org/10.1016/j.patcog.2018.08.001
http://doi.org/10.1088/1742-6596/787/1/012034
http://doi.org/10.1016/j.ijmedinf.2019.01.005
http://www.ncbi.nlm.nih.gov/pubmed/30784425
http://doi.org/10.1016/j.cmpb.2018.05.005
http://doi.org/10.1016/j.cmpb.2018.05.027

	Introduction 
	Motivation 
	Related Jobs 

	Basic Concepts 
	Digital Image 
	Mathematical Morphology 
	Cellular Automata 

	Materials and Methods 
	Image Segmentation 
	Feature Extraction 
	Classification 

	Experiments and Results 
	Discussion 
	Conclusions 
	References

