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Abstract: Manufacturing industries based on Internet of Things (IoT) technologies play an important
role in the economic development of intelligent agriculture and watering. Water availability has
become a global problem that afflicts many countries, especially in remote and desert areas. An
efficient irrigation system is needed for optimizing the amount of water consumption, agriculture
monitoring, and reducing energy costs. This paper proposes a real-time monitoring and auto-
watering system based on predicting mathematical models that efficiently control the water rate
needed. It gives the plant the optimal amount of required water level, which helps to save water.
It also ensures interoperability among heterogeneous sensing data streams to support large-scale
agricultural analytics. The mathematical model is embedded in the Arduino Integrated Development
Environment (IDE) for sensing the soil moisture level and checking whether it is less than the pre-
defined threshold value, then plant watering is performed automatically. The proposed system
enhances the watering system’s efficiency by reducing the water consumption by more than 70%
and increasing production due to irrigation optimization. It also reduces the water and energy
consumption amount and decreases the maintenance costs.

Keywords: agricultural development; watering management; IoT architecture; predicting models;
irrigation performance

1. Introduction

The need for efficient management irrigation systems has become crucial in many
regions worldwide due to the scarcity of water resources because of the changes in climatic
conditions, high atmosphere temperature, and the negative impact of human behavior
on the environment. The availability of water has become a global problem affecting
many countries, especially in remote and desert areas. Oman is one of the countries
with large desert areas that lack potable water sources, and the rise in temperatures also
leads to the rapid loss of water from the land. Therefore, there is a need for an efficient
irrigation system that works automatically to improve irrigation operations, reduce water
consumption, and reduce energy costs. The purpose of watering is to give the plants the
right amount of water to ensure ideal growth. Optimal irrigation management aims to
determine the timing and quantity of water suitable for irrigation to achieve the most
significant effectiveness. Developments in industry tools, information technology, and
communication have helped innovate irrigation methods that consume less water than
manual and old technologies [1]. Therefore, intelligent irrigation methods lead to less water
consumption and reduce the field’s excess water, which leads to better crop production [2].
Finding improved techniques that improve the water use efficiency and lower the energy
usage has become an affluent research area. Developing an autonomous architecture is
considered an ideal approach for processing and analyzing the sensed data for supporting
real-time monitoring of agricultural parameters. It also ensures interoperability among
heterogeneous sensing data streams to support large-scale agricultural analytics [3]. In
recent years, precision agriculture has received considerable concern due to the increasing
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demand for food production with high-quality crops, minimum cost, and reducing the
effects of environmental pollution. Wireless sensor network technologies are utilized for
providing solutions in the agricultural domain. It aims to provide an optimal tool for
collecting, processing, managing, and analyzing the relevant agricultural information and
farming activities [4]. The main advantage of these technologies is their ability to create
a network of enabled devices (i.e., sensors) that can capture environmental parameters
related to agriculture fields and transmit them to the predefined application for further
processing and analysis [5]. However, many plantations’ attributes such as soil types,
fertilizer processes, water requirements, and weather conditions in agriculture fields have
different needs and considerations [6]. Many researchers have discussed the need to
develop a self-watering mechanism to increase the efficiency of farming systems and
reduce the percentage of discharged water.

This work suggested an automatic irrigation method based on a developed mathe-
matical model derived according to the nature of the land and climatic conditions such as
temperature and humidity. The proposed model can be easily and quickly changed to meet
any changes in climatic conditions.

Additionally, the proposed model helps to manage and monitor plants’ needs in an
efficient manner. The use of sensors helps to use water efficiently and reduce the water
consumption and energy needed for irrigation, reducing the need for labor to turn the motor
ON and OFF, controlled by the automated irrigation system based on renewable energy.

Most existing systems require a connection to the Internet and external data storage to
manage and control the plant’s needs. The proposed method helps manage and control the
plants’ needs automatically without the need for the Internet. It is embedded in the field
and can easily update it for any new conditions.

2. Related Work

Many researchers have proposed autonomous methods for watering plants based on
mathematical models derived by machine learning methods.

Abrishambaf et al. proposed an autonomous approach to improving the irrigation
efficiency based on water needs through field data such as temperature, wind, soil mois-
ture, and soil evapotranspiration estimation. The results show that the proposed approach
schedules irrigation efficiently and lowers the cost periods and energy price [7]. Munir
et al. suggested a smart watering system (SWS) based on a Fuzzy Logic controller using an
Android to optimize water waste in small and medium-scale fields. They deployed a set of
sensors based on Blockchain technology that allows trusted devices to capture plants’ real-
time data and environmental conditions such as soil moisture, humidity, temperature etc.
The Fuzzy Logic method is used to control the watering requirements and make the right
decisions for turning water tunnels ON/OFF [8]. Similarly, Kolias et al. proposed the
GreenIQ Smart Garden system that schedules the watering plan for plants based on the
current and historical forecasted weather conditions. The proposed approach provides a
friendly user interface that allows users to select weather forecasting services and instru-
ments. The proposed algorithm compensates for lacking the correct weather information.
It helps save water accurately by managing the duration of the irrigation cycle, taking into
account the weather variables such as the humidity, temperature, wind speed, etc. [9]. Pien-
aar et al. presented an automated irrigation scheme with a low cost using an impedance
moisture sensor method. The proposed Arduino technology is implemented for controlling
the irrigation process of the greenhouse. An efficient algorithm is proposed to determine
and optimize the water level by comparing the plant environmental data such as the
temperature, humidity, and soil level with the statistical results [10].

Harun et al. introduced an enhanced indoor farming IoT monitoring system for remote
monitoring the growth of the Brassica Chinensis plant. Light sensors were used to monitor
the spectrum from a distance and sensors to measure carbon dioxide content, ambient
temperature, humidity, and leaf area index. The watering method is controlled by the pulse-
width modulated (PWM) actuator using an IoT embedded device. The study demonstrated
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the light spectrum and intensity effect on Brassica Chinensis in determining the optimal
plant physiology and morphology, such as water use efficiency, leaf photosynthesis, and
chlorophyll rate [11]. Ashton K. [12] suggested the interconnection method between
different devices using the Internet of things (IoT), which provided a facility for sensing,
processing, and analyzing environmental information. These devices are commonly using
standard network protocols to perform intercommunication with each other. Ashton’s
approach aimed to develop devices that self-generated reports in a real-time manner for
enhancing the efficiency and accumulating relevant information. Ofrim et al. [13] used
the ZigBee wireless sensor network for developing an automating irrigation system for
managing irrigation timing and watering needs in different soil moisture conditions. The
irrigation process is considered one of the essential issues in the agriculture domain, where
different irrigation approaches are used for managing water wastage in conventional
irrigation methods. Damas et al. [14] proposed a remote-controlled water irrigation system
for several agricultural regions. They used computer networks to connect all the areas
with the central controller to automate the irrigation process. The empirical results have
shown that the proposed system saved up to 30–60% of the consumed water. In addition,
the method proposed by Evans and Bergman [15] controlled the irrigation process by using
wireless sensors to collect the surrounding environmental information to help produce an
irrigation schedule.

Various sensor-based systems have been proposed to help control irrigation water and
improve the utilization of water resources and production. Basu et al. [16] presented an
automatic irrigation control system based on sensors for sensing environmental-related
agriculture parameters and storing the sensed information for further statistical analysis.
Kim et al. [17] also proposed an irrigation system that remotely monitors environmental
parameters such as soil moisture using GPS and Bluetooth technologies. They deployed a
sensor-based system that helps to increase the productivity of the crop and reduce water
consumption. Kim and Evans [18] developed a site-specific sprinkler irrigation system
using remote sensors based on Bluetooth wireless radio communication. They integrated a
site-specific controller to support real-time decision-making on irrigation processes. Using
wireless sensors in the agriculture domain is currently the focus area of research. Fourati
et al. [19] proposed a wireless sensors system to measure environmental attributes such
as humidity, temperature, and solar radiation to develop a web-based decision support
system that provides irrigation scheduling in agriculture fields.

Kaewmard and Saiyod [20] also proposed an automation agriculture approach based
on long-term sustainability. The connected sensors can be moved in the vegetable fields
to record all possible changes in the environmental parameters. Hashim et al. [21] devel-
oped an Arduino-based system for measuring and monitoring soil moisture and temper-
ature parameters through a smartphone application. They compared the advantages of
small-scale and large-scale agriculture-related architectures. It claimed that small-scale
systems do not cost as much as large-scale systems that require expensive components.
Srbinovska [22] proposed another aspect of real-time monitoring in the agricultural fields
to improve the quality of products using wireless sensor network architecture. They are
focused on the faulty tolerance and energy efficiency of employed sensors in sensing
agriculture-related parameters.

Nawandar et al. [23] proposed a low-cost intelligent irrigation system using a neural
network method for determining the sensor input based on the irrigation schedule for
efficient irrigation. The proposed devices offered several facilities, such as irrigation
schedule estimation, decision making, and remote data monitoring. Sarkar et al. [24]
developed a virtual sensing framework (VSF), which helped to reduce the network’s data
traffic and transmission. They deployed a cross-correlation method for predicting multiple
consecutive sensed data and achieved an accuracy of 98%. Benyezza et al. [25] developed
an automated irrigation embedded system based on Arduino for optimizing water use and
monitoring the field.
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The analysis of the literature survey indicates the gaps that need to be addressed:

• There is no suitable control and management model that determines the water level
needed for irrigation.

• Provide the scalability, privacy, and reliability of sensing data using cloud computing
and Blockchain technologies.

• Lack of a customizable model that can determine the water conditions based on the
type of plant, even in the same soil and weather conditions.

• Lack of correct weather information such as humidity, temperature, and wind speed
is used accurately to determine the level of needed water and manage the irrigation
cycle’s duration.

On the other hand, there is a need for an automatic irrigation model with the
following features:

• Simple and easy to install and configure.
• Save energy and time to water at the correct time, utilizing anywhere with less effort.
• Use the needed amount of water and reduce the amount of overwatering to improve

the crop performance.
• Reduce the need for labor to turn the motor ON and OFF, controlled by the automated

irrigation system.
• Reduce human error elimination in adjusting available soil moisture levels.
• This manuscript introduces an IoT embedded system for an auto-watering and real-

time monitoring approach to improving the efficiency of irrigation needs based on
mathematical models that determine the plantations’ water requirement.

3. Materials and Methods

This section describes the proposed IoT architecture based on experimental and math-
ematical models for auto watering and real-time monitoring of heterogeneous sensing
agricultural parameters.

This manuscript deployed a model-based design (MBD) and experimental research
methods for developing an embedded automatic irrigation control system. The MBD
performs verification and validation by testing the proposed mathematical model and
algorithms developed to control the Arduino microcontroller, sensors, running motor,
pump, and solar energy. The experimental design ensures that the proposed model controls
and monitors the automated irrigation system to obtain feedback from sensors, water levels,
and activate the watering motor automatically ON/OFF.

Figure 1 shows the main components of the proposed architecture.

3.1. System Set-Up and Instalation

The proposed experimental system was installed, tested, and evaluated in Sohar city,
Oman—located at latitude: 24◦21′0.79′′ N, longitude: 56◦42′27.54′′ E—to evaluate its per-
formance and effectiveness. The proposed agriculture-related architecture is implemented
using a Libelium Smart Agriculture Vertical Kit, including various agricultural-related
sensors [26]. This architecture consists of five layers: data source layer, data collection layer,
data transmission layer, data processing layer, and data viewing layer. Unlike existing
cloud-based architectures, whereas the connection to the cloud platform is essential for
receiving analyzed information, the proposed architecture allows the farmers to remotely
measure and monitor the agricultural parameters in real time directly via wireless com-
munication technologies. The data source layer is responsible for sensing agricultural
parameters (data) using different types of sensors.

These sensors can be installed in the soil and the surrounding environment. Soil
sensors are mainly water-resistant and usually sensing parameters related to soil mois-
ture, temperature, and other soil properties. Surrounding environment sensors, however,
measure environmental parameters such as air temperature, air humidity, atmospheric
pressure, rain level, wind speed and direction, solar radiation, and leaf wetness [27].
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Figure 1. The main components of the proposed architecture.

The sensors are connected directly with a sensor node consisting of a wireless antenna,
the ports panel for interfacing with the sensors, and a built-in solar energy source, as shown
in Figure 2. This experiment configured each sensor node to send a frame of collected data
to the data processing layer approximately every 15 min through the LoRa communication
channel. This is because it helps reduce the power consumption and save its associated
charged battery using an external solar panel. The installed weather station used three
types of wireless communication technologies to connect the data collection and processing
layers: LoRa, WIFI, and ZigBee. LoRa is used to achieve long-range connections, and
Wi-Fi provides a decent communication range up to 100 m with a data transmission rate
of 2 to 54 Mbps at 2.4 GHz radiofrequency. ZigBee is a short-range radio communication
technology used for transmitting data frames over long distances using LoRa technology.
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Table 1 summarizes the communication technologies that are used in the proposed
agriculture-related architecture.
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Table 1. A comparative of the used communication technologies.

Communication
Technology

Data Rate
(Bandwidth)

Transmission
Range Operating Frequency

LoRa 0.3–50 Kbps 2–5 km 433,868,780,915 MHz
WiFi 2–54 Mbps 20–100 m 2.4 GHz

ZigBee 20–250 Kbps 10–20 m 868/915 MHz, 2.4 GHz

3.2. Experemintal Set-Up and Instalation

This experiment’s agricultural system and its components are all based on the flow
chart in Figure 3. Firstly, the weather station is installed. The scenario involves two weather
station nodes, each in different plant pots (5 kg soil per pot). The experiments are made
using two sensor nodes, as depicted in Table 2.
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The amount of water that is given in each interval is half a liter (0.5 L). The in-
stalled components of the proposed system are shown in Figure 4. The first sensor node
(node 1—Figure 4a) was watered based on the information captured by the associated
moisture sensor that shows the need for water. The second node (node 2—Figure 4b) was
watered manually once per day when needed.
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Table 2. The specifications of installed sensor in nodes 1 and 2.

Sensor Node 1 Sensor Node 2

Temperature, humidity, and pressure probe Temperature, humidity, and pressure probe
Soil moisture 30 cm probe Soil moisture 30 cm probe
Soil moisture 10 cm probe Solar radiation probe

Soil/water temperature (Pt-1000) probe Soil/water temperature (Pt-1000) probe
Leaf wetness probe

Leaf wetness probeWS-3000 (anemometer, wind-vane,
pluviometry) probe
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Data relating to the plant’s environment, such as the temperature, humidity, pressure,
wind speed, and soil moisture, were gathered using the weather station for 51 days. This
weather station uses the LoRa radio (XBee protocol) under the frequency of 2.4 GHz for
communication between sensors node and system gateway (Figure 4c). A receiver (system
gateway) is connected to the user’s computer to receive and access the required data. Then,
these data were used to create mathematical models that can be used to accurately and
efficiently predict the plant’s environmental requirements for future use. The values that are
generated from these mathematical models are then implemented in the independent auto-
watering system. Additionally, the weather station continues sending the recorded data,
which is used for real-time monitoring of the environmental conditions of the two plants.
In case of any irregular situation, a proper solution needs to be taken to solve this issue.

The amount of irrigated water in each required irrigation time is half a liter for both
plant pots. The two plant pots were placed in the exact location under the same weather
condition during the experimental process, taking 51 days of data recording (i.e., started
on 24 April 2019, where the total sensed data were 4893 XBee frames). Figure 5 shows
the environmental parameters (e.g., temperature “TC” and humidity “Hum”) around
the installed plant pots that are located and irrigated under the same weather condition.
The Hum_ node 2 is the humidity values, and TC_ node 2 is the Centigrade temperature
values (◦C) recorded by the Sensor Node 2. Additionally, Hum_ node 1 is the humidity
values, and TC_ node 1 is the Centigrade temperature values recorded by Sensor Node 1.
Figure 5b shows the daily amount of irrigated water for each plant in the experimental
time in the two pots.
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Several statistical methods for describing statistics analysis results include minimum
and maximum values, median, different quartile status, mean, variance, and standard devi-
ation. Table 3 presents the descriptive analysis information regarding the soil moisture (Hz)
parameters for both installed plant pots (node 1, node 2). Soil_C_ node 2 represents the soil
moisture information of the plant under node 2, whereas Soil_C_ node 1 represents the soil
moisture information of the plant under node 1.

The first quartile (Q1) is the middle value between the minimum amount and the
median of the dataset. The third quartile (Q3) is the central value between the median and
the maximum number of the dataset. The results show that the minimum and maximum
statistical values for plants under sensor nodes node 2 and node 1 are 0, 20.25, 111.11, and
51.68, respectively. It can also be seen that the median statistical value for plants under
sensor nodes node 2 is 87.71 and 32.87 for the plant under sensor node 1.
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Figure 5. (a) Environment condition of the two installed plant pots; (b) amount of water and irrigation
time for sensor node 1 and node 2.

3.3. Proposed Auto-Watering System

The proposed auto-watering system is an independent auto-watering system con-
trolled by Arduino IDE, which is used to write the code and for all of the testing data. The
sensed data collected from the weather station is used to predicate the mathematical mod-
els. The flowchart of the embedded Arduino IDE model that manages and monitors the
auto-watering system is presented in Figure 6. The soil moisture content can be presented
in the percent of volume as in Equation (1).

soil moisture content (SMC) =
Depth m3

Volume m3 × 100 (1)
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Table 3. Descriptive statistics using several statistical analysis methods.

Statistic Soil_C_ Node 2 Soil_C_ Node 1 Hum_ Node 2 TC_ Node 2 Hum_ Node 1 TC_ Node 1

No. of
observations

(stored frames)
4893 4893 4893 4893 4893 4893

Minimum 0.0000 20.25 7.00 19.20 3.91 20.01
Maximum 111.11 51.68 99.60 45.03 100.00 47.57

1st Quartile 64.10 28.87 29.51 28.99 28.09 29.64
Median 87.71 32.87 42.61 31.91 40.85 32.78

3rd Quartile 96.15 38.18 60.41 35.24 59.02 36.20
Mean 78.59 33.69 46.18 32.17 45.22 33.03

Variance (n−1) 590.72 34.86 424.14 20.00 474.14 21.74
Standard

deviation (n−1) 24.30 5.90 20.59 4.47 21.77 4.66
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In this experiment, the soil depth is 0.5 m3, the volume is 1 m3, and the soil amount is
50%. Several depth readings can be obtained by using a multi-depth soil moisture probe.
The first sensor can be at (10 cm) below the surface; additional sensors should be installed
at (25–30 cm). The standard level of the water amount is determined significantly based on
the soil texture and structure, as presented in Figure 7.

The proposed auto-watering system shown in Figure 8 has a negative feedback loop
to keep the soil moisture at acceptable levels. When the soil moisture is below a certain
threshold, the Arduino automatically activates the valve and lets the water pour into the
soil. Once the soil moisture reaches an acceptable level, the valve is deactivated. The
system is based on a soil moisture sensor planted inside the soil to monitor the water levels
every 15 min. Based on the soil moisture value, a 12 V solenoid valve was used to control
the water flow in the soil automatically. An external 12 V power supply (solar panel) is
used to power the valve and the Arduino (using a DC-DC 5 V converter). A relay (along
with the external power supply) connects the Arduino and the valve. During testing, to
ensure no irregularities in the plant’s environmental conditions, arching occurred when
the wires were connected directly, which caused the relay’s burning. A flyback diode
was implemented parallel to the relay and the valve, so the relay was used without any
problems. Other types of equipment such as a basic breadboard and jumper wires were
used to connect everything. The weather station will continue to operate alongside the
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auto-watering system to ensure no irregularities in the plant’s environmental conditions.
If there were, a signal could be sent to the user, alerting them of any changes to carry out
appropriate actions to the auto-watering system and maintain its efficiency.
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4. Results and Discussion

This section reviews the obtained results and discusses the main contribution of the
proposed experimental architecture and mathematical models’ implementation.
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4.1. Performance Evaluation Measures

Several standard performance evaluation metrics were proposed to evaluate the
accuracy of prediction results, such as the coefficient of determination (R2), mean squared
error (MSE), root mean square error (RMSE), mean absolute percentage error (MAPE), and
mean absolute error (MAE) [28].

The coefficient of determination (R2) is considered one of the important measures for
verifying the performance of predicting models, which has an approximate value from 0
to 1. The closest (R2) value to 1 is indicated as the best performance result, and it can be
defined as in Equation (2):

R2 = 1− ∑n
i ( yi − fi)

2

∑n
i ( yi − yi)

2 (2)

where yi is the experimental data and ӯi is the mean of the experimental data. fi is the
predicted data of yi and n is the sample size. In some cases, the coefficient of determination
is misleading when its value is negative, confusing with a squared letter with negative
values. Therefore, the adjusted R-squared is used for examining the performance of
predicting data, in which its value is increased if extra variables are involved in the model.
The adjusted R-squared is computed as in Equation (3):
where n is the sample size and k is number of variables in the model.

The mean squared error (MSE) is the average cost (i.e., squared difference) between
real value and the obtained values, which is calculated as in Equation (4):

R2
adj = 1−


(

1− R2
)
(n− 1)

(n− k− 1)

 (3)

MSE =
∑

p
j−0 ∑n

i−0

(
dij − yij

)2

np
(4)

where p is the number of processing elements, n is the sample size, yij is processing output
exemplar (i) at processing element (j) and dij is the experimental output for exemplar (i) at
processing element (j).

Another related metric that has been used in our experiments to evaluate the obtained
results is the root mean square error (RMSE), as defined in Equation (5):

RMSE =

√
1
N

+ ∑N
i=1 (yi − fi)

2 (5)

4.2. Proposed Mathematical Models

Both plants were in good condition during the experimental time between 24 April
2019 and 13 June 2019. The total amount of water consumed under sensor node 1 (water-
ing on demand) was 7.5 L, whereas the plant under sensor node 2 (watering manually)
consumed 14.5 L of water. This indicates that half of the irrigated water was wasted at the
plant irrigated daily (node 2). Therefore, the experiment proves that wasting water can
be reduced by improving the efficiency of collecting important sensed information in a
proper automatic monitoring system. Moreover, the moisture level of node 2 reaches a high
percentage of 85–90%, which could negatively affect the plant’s growth, while the level of
moisture of node 1 is about 25–35%, as shown in Figure 9. The good conditions of the two
plants indicate that the adequate soil moisture level is between 25% and 35%.
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Figure 9. Comparison of experimental results and proposed mathematical models (Model 1, Model 2).
(a) Simulation output; (b) predicting output.

The classification and regression trees methods are used to determine the conditions
of both, which devised two clusters according to the following two rules:

If S_ node 1 in [0, 0.25) then node 1 = 0 (R1)

If S_ node 1 in [0.25, 0.5] then node 1 = 0.5 (R2)

R1 indicates that if the soil moisture has a value less than 0.25, then watering is required.
R2 indicates that if the soil moisture has a value between 0.25 and 0.5, then watering is

not required.
These two rules are used to control the auto-watering system, which is embedded

in Arduino IDE. The regression technique is used to analyze the relationships between
a set of independent and dependent variables. The regression equation contains several
coefficients that explain the relationship between each independent variable and the depen-
dent variable, which enables the prediction of future values. Several types of regression
are introduced, mainly distributed into linear and nonlinear techniques. Most of them
construct linear regression estimates between X and Y as Y = XB + B0, X is the rank of the
matrix, and the algorithm will yield the least-squares regression estimates for B and B0.

Figure 10a presents the soil humidity level based on the two irrigation methods (node 1
and node 2). Figure 10b shows the proposed mathematical model results for controlling the
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irrigate amount compared to the previous two methods (node 1 and node 2). It indicates
that the watering amount is reduced to a quarter of a liter, which reduces the amount of
water needed.
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Figure 10. (a) Soil humidity level of the two irrigation methods (node 1 and node 2); (b) water amount
model (node 1)—Equation (6).

Additionally, a linear regression method (Lin-M0) is proposed to determine the amount
of soil humidity obtained by Equation (6).

Prop (soil-node 1) = 0.51724 * soil-node 2 (6)

Sensitivity analysis helps to analyze the effect of different values of a set of indepen-
dent variables on a particular dependent variable under specific settings. The results of
the sensitivity analysis proved that the temperature (TC) and humidity (Hum) are the
variables with the highest impact on the level of soil moisture (soil_C). Table 4 presents
the correlation relationship between the dependent variables (temperature (TC_ node1),
humidity (Hum_ node1), and an independent variable (soil moisture (soil _C_ node1))



Computers 2022, 11, 7 14 of 17

using automatic irrigation (sensor node 1). It indicates that the soil moisture is affected
more by the temperature based on the positive relationship of (0.805). At the same time,
the humidity parameter has adverse effects on soil moisture results based on the negative
correlation relationship of (−0.5039).

Table 4. Correlation relationship between the model variables.

Variables TC_ Node 1 Hum_ Node 1 soil_C_ Node 1

TC_ node 1 1.0000 −0.5039 0.8053
Hum_ node 1 −0.5039 1.0000 −0.1547

Soil_C_ node 1 0.8053 −0.1547 1.0000

For a real-time monitoring system, we should follow and check the sensed data from
the weather station (temperature, humidity) to determine any irregulating environmental
conditions. So, it will send an alert message in case of irregulating conditions. Additionally,
for the sake of a real-time monitoring system, two models were proposed to predicate the
level of humidity level in node 1, which will be used to compare with online sensed data
from the weather station to alert when irregulated data is obtained from the weather station
(low or high humidity).

4.3. Mathematical Regression Models

Three mathematical regression models (linear and nonlinear) were developed to
analyze and monitor the current values’ behavior and predict future conditions. The
temperature (TC_ SA01) and humidity (Hum_ SA01) were used as input variables for pre-
dicting the future requirements of the soil moisture (soil_C_ SA01). Model 1 used two input
variables—temperature (TC_ SA01) and humidity (Hum_ SA01)—whilst Model 2 used
only one input variable—the temperature (TC_ SA01). Model 3 is a nonlinear regression
model that uses temperature (TC_ SA01) as an input variable, as shown in Figure 10a. The
following are the three models as defined in Equations (7)–(9):

Model 1: linear regression.

(Lin_soil_C_ SA01) = −6.52 + 1.11446 * temperature +0.09873 * humidity (7)

Model 2: linear regression.

(Lin_soil_C_ SA01) = 3.34 + 0.92065 * temperature (8)

Model 3: nonlinear regression.

(NoN_Lin_soil_C_ SA01) = 63.63 − 6.72748 * temperature + 0.31339 * temperature ˆ2 − 0.00434 * tempera-
ture ˆ3 + 6.25652E − 6 * temperature ˆ4

(9)

The goodness of fit statistics of the proposed models are presented in Table 5. The coef-
ficient of determination (R2) values of the three models is (0.73, 0.64, and 0.67), respectively,
which means the predicted values are a 70% close fit to the experimental datasets.

Table 5. Goodness of fit statistics of the proposed models.

Model 1 Model 2 Model 3

R2 0.73 0.64 0.65
R2_adj 0.73 0.64 0.65
MSE 5.97 7.85 0.132

RMSE 2.44 2.80 0.363

The value of the adjusted R-squared is precisely equal to the coefficient of determina-
tion (R2), which means that the predicted values are in the correct direction of experimental
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data. The mean squared errors are less in Model 1 (5.97) than in Models 2 and 3 (7.85 and
7.24), respectively. Figure 10b shows the graph of experimental datasets and the predicting
datasets of proposed models (Model 1 and Model 2).

The predicting datasets fit the experimental datasets smoothly, which means that
we could examine the behavior of the independent variable soil moisture (Soil_C_ SA01)
quickly and at a low cost. This will help farmers and decision-makers evaluate the required
water rate for a specific time (monthly, annually, every 5 years, etc.). Comparing the
results with other researchers is one of the important ways to verify the effectiveness of
the extracted results compared to other studies. The results should be compared under
the same conditions to give credibility to the results extracted. However, one of the most
significant obstacles that we face when carrying out the comparative study is the disparity
of the work environment and the conditions of input and outputs. Therefore, we often try
to find some common parameters and compare them based on them.

Table 6 presents the results of the proposed methods compared to some studies,
which show that most of the proposed methods and these studies have achieved high
accuracy. They significantly reduce the percentage of water and energy consumption,
which indicates the success of the current experiments. The proposed models reduced the
water consumption by about 50–65% compared to 30–60% in [14] and 12.5% in [23]. In
addition, another study [24] reduced the energy consumption by up to 69% compared with
the proposed models that reduce the energy by using a solar panel to charge the battery.

Table 6. The comparison results of the proposed methods with other studies.

Model 1 Model 2 Model 3 [23] [14] [24]

R2 0.73 0.64 0.65 0.98 - -
R2_adj 0.73 0.64 0.65 - - -
MSE 5.97 7.85 0.132 0.06 - 0.22

RMSE 2.44 2.80 0.363 0.77 - 0.47
Saving Water 50–75% 50–75% 50–75% 12.5% 30–60% -

Saving Energy Yes Yes Yes - - 69%

5. Conclusions

This paper proposed an autonomous sensor-enabled architecture using different self-
powered wireless sensors that support real-time monitoring of agricultural parameters
over various heterogeneous sensing data streams. The proposed architecture allows the
farmers to measure and monitor their farms remotely without a need to access third-party
platforms. The architecture is tested and evaluated using real scenarios encompassing
the various aspects of the precision agriculture process. The empirical results show that
the proposed architecture can be used in a variety of agricultural activities, including
the control of irrigation water and the monitoring of agrarian conditions. Sensing and
monitoring soil moisture play a significant role in the agriculture domain for assisting
farmers in controlling and managing their irrigation methods more efficiently.

The empirical experiments proved that the proposed architecture could efficiently
control and monitor the agricultural conditions, minimize water waste, and maximize the
growth rates of the plants. Therefore, developing an automatic-sensor-enabled architecture
system provides a potential solution for managing the farm accurately. The proposed
approach helps maintain the irrigation effectively, uses suitable amounts of water, and
enhances productivity. In addition, three mathematical regression models were developed
to predict the agricultural activities’ future behavior under specific conditions and scenarios.

The main contributions of this work are:

• A critical survey and empirical study conducted to analyze the impact of implementing
an autonomous sensor-enabled architecture in Oman to reduce consumed water
consumption in irrigation and enhance plants productivity.

• The proposed method helps to manage and monitor plant needs in an efficient manner.
The use of sensors helps to control more than one field at a time.
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• Most of the existing systems used in managing and controlling plants require a con-
nection to the Internet and external data storage. The proposed method helps manage
and control the plants’ needs automatically without the need for the Internet.

• The proposed method uses an internal wireless network covering several adjacent
fields, which reduces the expenses needed to manage the farms.

• The proposed method works without an energy source, as it generates the energy
needed for self-operation by solar panels. It can also work in distant areas where there
is no power source. It proposed three mathematical models that simulate irrigation
time and plant needs. Moreover, they can predict the amount of water needed for
irrigation at any time.

The validity and effectiveness of the proposed methods have been tested mathemati-
cally, as well as their conformity with the actual data. However, certain restrictions on the
work presented in this paper need to be addressed to improve the proposed architecture’s
effectiveness. The proposed architecture needs to be implemented in a large-scale field,
which will allow the analysis of the impacts of the different weather conditions on the
irrigation process in Oman.
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