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Abstract: We provide a detailed presentation of the functional renormalisation group (FRG) approach
for weakly-interacting Bose–Bose mixtures, including a complete discussion on the RG equations.
To test this approach, we examine thermodynamic properties of balanced three-dimensional Bose–
Bose gases at zero and finite temperatures and find a good agreement with related works. We also
study ground-state energies of repulsive Bose polarons by examining mixtures in the limit of infinite
population imbalance. Finally, we discuss future applications of the FRG to novel problems in
Bose–Bose mixtures and related systems.
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1. Introduction

The experimental realisation of Bose–Einstein condensation (BEC) with cold alkali
atoms [1–3] has greatly increased the interest in degenerate low-temperature quantum gases
in the past two decades [4]. Weakly-interacting one-component Bose gases [5] received
significant theoretical attention after those first experiments. Even though one-component
Bose gases have been theoretically studied for more than fifty years with perturbative
approaches [6–8], accurate descriptions were only achieved more recently with more robust
approaches [9–15]. Thanks to these developments, both experimental and theoretical efforts
have shifted towards more sophisticated systems such as quantum mixtures [4].

In cold atom physics, quantum mixtures refer to gases with atoms in two or more
internal states or with different atom species. The most prominent and maybe obvious
example corresponds to two-component spin 1/2 Fermi gases such as BCS superfluids [16].
In recent years two-component Bose gases, or Bose–Bose mixtures, have attracted significant
attention. Because of the bosonic nature of both species, Bose–Bose mixtures can show
a plethora of rich phenomena non-present in their fermionic counterparts. On top of
having two separate superfluids at low temperatures, Bose–Bose mixtures can show phase
separation [17,18], droplet and liquid phases [19], spin drag [20,21], spin-orbit coupling [22],
amongst other phenomena. Experimentally, Bose–Bose mixtures were rapidly achieved
after the first BEC experiments, both using atoms in two different spin states [23–25] and of
two different atom species [26]. However, only more recent experiments have been able to
observe the novel droplet phases [27–29].

Perturbative calculations within Bogoliubov’s theory can give a good description of
homogeneous weakly-interacting Bose–Bose mixtures at low temperatures [17,19,30–33].
Improvements to perturbative calculations for finite-temperature mixtures have been
provided by means of Popov’s theory [34–36], while strongly-interacting Bose–Bose liquids
have been qualitatively explored with the introduction of pairing fields [37,38]. Other
employed approaches include Monte Carlo (MC) simulations [39,40], Beliaev theory [41],
N-expansion [42], and time-dependent Hartree-Fock theory [43,44]. Despite the recent
efforts, Bose–Bose mixtures are by no means yet consistently described. There are still open
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questions, such as the phase diagram at finite temperatures and the onset of clustering in
attractive mixtures.

Closely related is the problem of impurities immersed in dilute one-component Bose
gases, which in the case of a single impurity is referred to as a Bose polaron. Experimentally,
Bose polarons have been recently achieved with Bose–Bose [45] and Bose-Fermi [46,47] mix-
tures with huge population imbalances. Theoretically, Bose polarons have been intensively
studied in the past few years with a variety of approaches [48–57]. In particular, many
recent studies have focused on the role of multi-body correlations and the appearance of
Efimov states [50,58,59], as well as on their behaviour at finite temperatures [60–63]. Aside
from being interesting problems by themselves, the physics of Bose polarons can help
elucidate analogous problems in Bose–Bose gases, such as the importance of multi-body
correlations in attractive Bose–Bose mixtures and the formation of multi-body bound states.

One promising approach to study Bose–Bose mixtures is the functional renormalisation
group (FRG) based on the effective average action [64–66]. The FRG is a field-theory
technique where fluctuations, both quantum and thermal, are taken into account non-
perturbatively by solving a RG equation, making it particularly suitable to study strongly-
correlated systems and phase transitions. In the context of cold atom physics, the FRG
has proved a powerful tool to study homogeneous cold quantum gases [67], including
one-component Bose gases [68–70], Fermi gases in the BCS-BEC crossover regime [71–73],
Bose-Fermi mixtures [74], as well as related O(2)-models [75–77]. Similarly, strongly-
correlated lattice systems have been studied with both fermionic [78] and bosonic [79,80]
atoms. Recently, some of us have successfully applied the FRG to the study of both
balanced repulsive Bose–Bose mixtures [81] and strongly-interacting Bose polarons [82],
both in homogeneous configurations at zero temperature. These results make the FRG a
promising approach to give a consistent and unified description of Bose–Bose gases and
Bose polarons.

In this work, we provide a detailed presentation of the FRG formalism for weakly-
interacting Bose–Bose mixtures to motivate further FRG studies. To illustrate this approach,
we examine thermodynamic properties of three-dimensional attractive and repulsive mix-
tures at both zero and finite temperatures, going beyond what was presented in our
previous works [81,82]. Even though we do not explore new physics in this work, we
narrow exciting new directions where the FRG could provide more robust descriptions
than currently used approaches.

This article is organised as follow. In Section 2, we present the microscopic model for
Bose–Bose mixtures. In Section 3, we provide a general presentation of the FRG approach,
while in Section 4, we detail the application of the FRG for Bose–Bose mixtures. We present
results for balanced Bose–Bose gases in Section 5, and for repulsive Bose polarons in
Section 6. Finally, in Section 7, we present conclusions and an outlook for future directions.

2. Microscopic Model for Bose–Bose Mixtures

We consider a uniform gas with two species of bosons, A and B, of masses mA and mB
and chemical potentials µA and µB, and that interact through weak short-range interactions.
We consider that the interatomic interactions are dominated by s-wave scattering , and
thus, we can model the interactions with contact two-body potentials of strength gab. The
strengths gab are connected to their respective s-wave scattering lengths aab via the two-body
T-matrices (see Section 4.4). Within the grand-canonical ensemble, such two-component
gas is described by the Euclidean microscopic action [31]

S [ϕ] =
∫

x

[
∑

a=A,B
ϕ∗a(x)

(
∂τ −

∇2

2ma
− µa

)
ϕa(x) + ∑

a,b=A,B

gab
2
|ϕa(x)|2|ϕb(x)|2

]
, (1)

where we use the notation x = (τ, x), with τ = −it the imaginary time, and∫
x
=
∫ β

0
dτ
∫

ddx , (2)
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where β = 1/T is the inverse temperature. Note that even though in this work we focus
on three-dimensional gases (d = 3), the formalism is general. The microscopic action S is
a functional of the fields ϕ = (ϕA, ϕ∗A, ϕB, ϕ∗B) which describe the two species of bosons
(The complex fields ϕ∗a and ϕ correspond to the field-theory formulation of the creation
and annihilation operators, respectively. For a detailed formulation see Ref. [83].). The
potential strengths gAA and gBB are associated with the intra-species interactions, whereas
gAB = gBA is associated with the inter-species interaction. Note that we use natural units
h̄ = kB = 1.

The microscopic action defines the grand-canonical partition function as a path integral
over all configurations of the fields [83]

Z [ϕ] =
∫
Dϕ e−S [ϕ] , (3)

from which we can obtain the grand-canonical potential

ΩG = −β−1 lnZ . (4)

Its differential is given by

dΩG = −PdVd − SdT − ∑
a=A,B

〈Na〉dµa , (5)

where P is the pressure of the gas, Vd is the d-dimensional volume, S is the entropy, and
〈Na〉 is the average number of particles of species a in the thermodynamic limit. By
differentiating ΩG we can extract the thermodynamic properties of interest. In particular,
the energy density is obtained from

ε = −P + sT + ∑
a=A,B

naµa , (6)

where na = 〈Na〉/Vd is the atom density of species a and s = S/Vd is the entropy density.
The energy per particle is then obtained from E/N = ε/(nA + nB).

The microscopic action (1) shows a UA(1)×UB(1) symmetry associated with the
conservation of particles of each species. The Ua(1) symmetry is spontaneously broken
at low temperatures in three dimensions and at zero temperature in two dimensions,
signalling the condensation of species a. In this case, species a develops a finite expectation
value ϕa,0 = 〈ϕa〉, which takes the role of the order parameter.

Throughout this article, we largely work in momentum space q = (ωn, q), where
ωn = 2πnT are the bosonic Matsubara frequencies. We employ the convention

ϕ(q) =
∫

q
ei(ωnτ+q·x)ϕ(x) , (7)

where (Note that at zero temperature the Matsubara sum becomes the usual contour
integral T ∑∞

n=−∞ →
∫ ∞
−∞

dω
2π ).

∫
q
= T

∞

∑
n=−∞

∫ ddq
(2π)d . (8)

Therefore, when species a is condensed we have ϕa(q) = ϕa,0(2π)d+1δ(q).
To compute the partition function (3) we need to consider all the paths created by

both quantum and thermal fluctuations (for detailed reviews on functional integration and
field theory for quantum gases we refer to Refs. [83–85]). A commonly used approximation
is to consider perturbative fluctuations around a mean-field (MF) solution [30,31]. A
non-perturbative alternative is to employ the FRG. In the following, we present the FRG
framework, which we then use to study Bose–Bose mixtures.
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3. The Functional Renormalisation Group

Fluctuations are encoded in the paths that are followed by the microscopic action. As
previously mentioned, these fluctuations can be taken into account with a perturbative
expansion. An alternative is to work instead with an effective action that already contains
the effect of fluctuations. In the following, we present a short overview on how we can
compute the effective action from the FRG. For detailed reviews on the FRG we refer to
Refs. [65–67].

3.1. The Effective Action

In order to define the effective action we first generalise the partition function (3) by
introducing source fields J,

Z [J] = eW[J] =
∫
Dϕ e−S [ϕ]+

∫
x J·ϕ , (9)

which enables us to generate the n-point correlation functions from functional differen-
tiation. Note that for a Bose–Bose mixture we have J = (JA, J∗A, JB, J∗B). However, the
formalism is general.

We introduce classical fields φ from the 1-point function

φ(x) = 〈ϕ(x)〉 = δW[J]
δJ(x)

. (10)

The effective action Γ is then defined in terms of the classical fields by means of a
Legendre transformation

Γ[φ] =

[
−W[J] +

∫
x

J ·φ
]

J=J0

, (11)

where J0 satisfies φ = (δW[J]/δJ)J0 . It is easy to check that Γ is independent of J. Here it
is important to stress that because Γ depends only on the classical fields φ, the effective
action is a classical action that respects the stationary-action principle [65].

The effective action is also referred to as the generator of the one-particle irreducible
diagrams, and thus it encodes the solution of the theory. In particular, for vanishing source
fields we have that the grand-canonical potential

ΩG = T Γ[φ0] , (12)

where (δΓ/δφ)φ0 = 0. Therefore, we can easily extract the thermodynamic properties of a
many-body system from the knowledge of Γ.

There are different ways to generate the effective action. For example, in a perturbative
expansion we have

Γ[φ] = S [φ] +
1
2

tr lnS (2)[φ] + . . . . (13)

In the following, we show how to generate Γ from the FRG.

3.2. The FRG Flow Equation

Within the FRG we introduce an infrared (IR) cutoff to the theory

Sk[ϕ] = S [ϕ] + ∆Sk[ϕ] , (14)

where ∆Sk is defined as

∆Sk =
∫

q
ϕ†(q)Rk(q)ϕ(q) . (15)

Here, k is a momentum scale and Rk is referred to as the regulator function. The
regulator can be chosen freely as long as its matrix elements Rk satisfy
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Rk(q)
k→∞−−−→ ∞,

Rk(q)
k→0−−−→ 0. (16)

This ensures that for large scales k the fluctuations in the path integral are suppressed,
whereas for a vanishing cutoff at k = 0 we have S0 = S . For convenience, we generally
choose Rk(q) ∝ k2 for small q so the scale k acts as a mass term.

Analogously to the last section, we define the k-dependent partition function as

Zk[J] = eWk [J] =
∫
Dϕ e−Sk [ϕ]+

∫
x J·ϕ , (17)

where Sk is defined in Equation (14). The k-dependent flowing effective action is then
defined as

Γk[φ] =

[
−Wk[J] +

∫
x

J ·φ
]

J=J0

− ∆Sk[φ] . (18)

Note that ∆Sk does not depend on J. Γk is the central object of the FRG. It connects the
known microscopic physics in the ultraviolet (UV) for large k with the macroscopic physics
in the IR for small k. Indeed, for larges scales k = Λ, all fluctuations are suppressed by the
cuttoff and so the effective action is simply the original microscopic action: Γk = S . On the
other hand, for k→ 0 all fluctuations are included, and thus Γ0 corresponds to the physical
effective action (11). We refer k→ 0 as the physical limit where we extract the solution of
the model.

To determine the flow of Γk as a function of k we employ the Wetterich equation [64]

∂kΓk =
1
2

∫
q

tr[∂kRk(Γ
(2)
k + Rk)

−1] , (19)

where the matrix Γ(2) corresponds to the second functional derivative of Γk,

Γ
(2)
k (q,−q) =

δ2Γk[φ]

δφ†(−q)φ(q)
. (20)

The Wetterich equation dictates the flow of Γk as a function of k. It has a one-loop
structure where Gk = (Γ

(2)
k +Rk)

−1 is the propagator and ∂kRk is an insertion (see Figure 1).
By choosing a regulator Rk, and provided an initial condition ΓΛ = S , we can solve
Equaiton (19) from k = Λ to k→ 0. We provide a short derivation of the Wetterich equation
in Appendix A.

∂kRk(q)

Gk(q)

q

Figure 1. Diagrammatic representation of the Wetterich Equation (19). The solid line represents the

propagator Gk = (Γ
(2)
k + Rk)

−1 and the square represents the insertion ∂kRk.

We illustrate the FRG flow in Figure 2. Note that Equation (19) is exact. Therefore,
even though Γk has distinct flows for different regulator choices, in principle we should
obtain the same physical effective action for k → 0 (solid lines). However, this picture
is only correct if we solve the FRG flow exactly. In most applications, Γ depends on an
infinite number of couplings, and thus, we cannot solve the Wetterich equation exactly. In
general, one proposes a truncated ansatz for Γk which enables us to obtain an approximate
solution for the effective action (dashed lines). Nevertheless, the Wetterich equation is
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non-perturbative and even simple approximations can provide accurate results for several
problems. For more details see Refs. [86,87].

ΓΛ=S

Γ0=Γ

...

Γ0≈Γ

exact
approx.

Γ0≈Γ

Figure 2. Illustration of the RG flow of Γk in parameter space [66]. The solid curves represent exact
flows with different regulator choices. The dashed curves represent flows with a truncated ansatz.

In the following, we propose an ansatz for the effective action of a Bose–Bose mixture
based on a derivative expansion(DE). Within a DE we expand Γk in terms of the fields
and their derivatives, always respecting the symmetries of the underlying theory. We
truncate the expansion to a small number of k-dependent terms, and so the Wetterich
equation becomes a set of coupled differential equations for the k-dependent couplings.
These equations can be then solved numerically using standard methods. The DE has
proved to be a robust approximation to study the thermodynamics of quantum gases and
can even provide reasonable estimates for critical exponents [88]. However, in order to
provide accurate descriptions of few-body physics and critical phenomena we need to
employ a more sophisticated approximation, such as a vertex expansion. For more details
see Ref. [65,66].

4. The FRG for Bose–Bose Mixtures

To study a Bose–Bose mixture with the FRG we propose an ansatz based on a DE. In
this work, we employ a generalisation of the ansatz used in Ref. [81] to imbalance mixtures

Γk[φ] =
∫

x

[
∑

a=A,B
φ∗a (x)

(
Sa∂τ −

Za

2ma
∇2 −Va∂2

τ

)
φa(x) + U(ρA(x), ρB(x))

]
, (21)

where ρa(x) = φ†
a (x)φa(x), and Sa, Za and Va are k-dependent renormalisation factors

which we consider as field-independent. Ansatz (21) of course builds upon the microscopic
action (1), containing the leading terms in momenta and fields. The terms and couplings
not present in the original action (1) capture the effect of fluctuations during the RG flow.
In particular, note that we add quadratic-frequency terms Va∂2

τ which are not present in
the microscopic theory. These are necessary to correctly describe the IR regime where the
theory develops phonons with linear dispersion [68]. We truncate the k-dependent effective
potential U up to fourth-order in the fields

U(ρA(x), ρB(x)) = −P + ∑
a

ua(ρa(x)− ρa,0) + ∑
a,b=A,B

λab
2

(ρa(x)− ρa,0)(ρb(x)− ρb,0) , (22)

where the minima of the potential ρa,0 = 〈ρa〉 are the order parameters associated with
each species. In addition to the renormalisation factors, the couplings P, ua, and λab, as
well as ρa,0, all depend on k. Therefore, each k-dependent function has an associated flow
equation. Note that λAB = λBA.

The effective potential evaluated at the minima satisfies
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∂U
∂ρa

∣∣∣∣∣
ρ0

= 0 , (23)

for all k [see Equation (12)], where the subscript ρ0 denotes that the expression is evaluated
at ρa = ρa,0 (a = A, B). Therefore, when the Ua(1) symmetry is broken we have that
ρa,0 > 0 and ua = 0, whereas when the symmetry is unbroken we have that ρa,0 = 0 and
ua > 0. In a Bose–Bose gas the symmetry is always broken in the UV (see Section 4.4) with
a flowing ρa,0 > 0. However, at finite temperatures the flow can undergo a transition to a
symmetric phase for k < k∗ where ua > 0 flows with k. The physical state of the system is
dictated by the phase at k = 0. Indeed, in a mixture gas we have that species a is condensed
if ρa,0 > 0 for k→ 0, whereas it is non-condensed otherwise (Note that in some problems
the flows can undergo several transitions between symmetric and broken phases, such as
in the pseudogap regime of Fermi gases [73]. However, in a Bose gas if the flow is in the
symmetric phase it remains there down to k→ 0). In particular, the phase transition occurs
when ρa,0 flows to zero exactly at k = 0. We examine some RG flows in Section 4.5.

The order parameters ρa,0 also correspond to the k-dependent condensate densities,
giving their physical values for k→ 0. In addition, we can define the superfluid stiffness
ρa,s = Zaρa,0 from ρa,sv2

s /(2ma) [4], where vs = ∇θa is the superfluid velocity and θa is the
phase of the condensate ϕ = ρ1/2

a,0 eiθa . In two and three dimensions ρa,s corresponds to the
superfluid density of species a [84], giving its physical value for k→ 0. In Bose gases we
have that ρa,s > ρa,0. In particular, in quasicondensates gases we have that for k → 0 the
system is superfluid ρa,s > 0, but the symmetry is unbroken ρa,0 = 0 [89].

Another important ingredient in the model is the regulator choice. A commonly used
choice for several problems is the optimised Litim regulator [90]. For Bose–Bose mixtures
this regulator takes the form

Ropt
k,a (q) = Za

k2 − q2

2ma
Θ(k2 − q2) , (24)

where Θ is the Heaviside step-function (Note that Rk,a correspond to the diagonal elements
in the regulator matrix Rk. The off-diagonal elements are zero.). The optimised regulator
enables us to perform the momentum integrals

∫
q analytically before solving the flow equa-

tions, greatly easing the numerical calculations. Even though this regulator is independent
of ωn, and therefore it does not regulate the energies, it has proved successful in describing
the thermodynamics of quantum gases [70]. For a complete review on optimised flows see
Ref. [91]. Another commonly used choice is an exponential regulator

Rexp
k,a (q) = Za

q2/2ma

exp(q2/k2)− 1
, (25)

which has the benefit of having a smooth decay around k instead of a sharp cutoff. In
this work we employ only the optimised regulator (24). For a detailed review on the
dependence of the FRG flow on the regulator see Ref. [92].

Finally, it is important to stress that, naturally, the accuracy of the results depends on
the level of truncation of the ansatz. As we show later in this work, the current truncation
gives accurate results at low temperatures. However, the accuracy decreases slightly as
the temperature increases. Such accuracy can be improved by considering higher-order
couplings in the fields and momenta. An analysis of the truncation level for one-component
Bose gases can be found in Ref. [68].

4.1. Thermodynamics

As previously discussed, the RG flow enables us to obtain the condensate and super-
fluid densities of the gas from ρa,0 and Zaρa,0. To extract the thermodynamics, we need to
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examine the grand-canonical potential ΩG. From Equation (12), we have that the physical
(k = 0) effective potential U evaluated at ρa = ρa,0 gives the density of ΩG,

U
∣∣∣
ρa,0,k=0

= ΩG/Vd , (26)

which enables us to extract thermodynamic quantities from differentiating the effective
potential. From Equations (5) and (22) it is easy to see that the value of P for k→ 0 simply
corresponds to the physical pressure.

To obtain the atom densities we can differentiate U with respect to µa. Alternatively,
an elegant and convenient way to extract the densities is to consider that the couplings
depend on the chemical potentials (see Ref. [68] for details). If we consider that only the
momentum-independent couplings depend on µa, we can expand them as

−P→− P− ∑
a=A,B

na(µ̃a − µa) , (27)

ua →ua − ∑
b=A,B

n(1)
a,b (µ̃b − µb) , (28)

λab →λab − ∑
c=A,B

n(2)
ab,c(µ̃c − µc) , (29)

where µ̃a is a k-independent shift to the physical chemical potential µa. Note that the
superscripts (1) and (2) indicate that the couplings correspond to the first and second order
terms in the expansion of ρa, respectively. We can identify na as the k-dependent atom
density of species a,

na =
∂U
∂µ̃a

∣∣∣∣∣
ρ0,µ

, (30)

where we have evaluated at ρa = ρa,0 and µ̃a = µa (a = A, B). The physical values of the
densities are obtained from the values of na for k→ 0. Note that the densities flow with k,
whereas the chemical potentials are fixed physical inputs. This is consistent with the fact
that we work in the grand-canonical ensemble. Similarly, we can define the k-dependent
entropy-density from (Note that because the complete finite-temperature behaviour of the
flowing functions is encoded into the Matsubara sums, we do not need to consider an
expansion around the temperature as with the chemical potential.)

s =
∂U
∂T

∣∣∣∣∣
ρ0,µ

, (31)

where the T−derivative is taken after performing the Matsubara sums.
As mentioned, the physical pressure is obtained from the value of P for k → 0.

However, if we employ frequency-independent regulators the high energy modes of the
zero-point function are not regulated, and so the Matsubara sums in the flow of the pressure
do not converge properly [70]. To solve this issue we can set the renormalisation factors to
their bare values in the UV [70]. Alternatively, we can calculate P from the physical values
of na and s. From the Maxwell relations, the zero-temperature pressure can be obtained by
integrating the zero-temperature densities

P(µa, T = 0) = ∑
a

∫ µa

0
dµ′ana(µ

′
a, T = 0) , (32)

where we have used that the pressure in the vacuum is zero P(µa = 0, T = 0) = 0. The
finite-temperature pressure is then obtained from integrating the entropy density

P(µa, T) = P(µa, T = 0) +
∫ T

0
dT′s(µa, T′) . (33)
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By using the last two equations we can compute the pressure for any value of µa and
T. The energy per particle can be then obtained from Equation (6).

4.2. Propagator

To solve the RG flow we need the k-dependent propagator Gk = (Γ
(2)
k + Rk)

−1. When
we deal with a U(1) broken-symmetry it is convenient to introduce orthogonal real fields
φa,1 and φa,2,

φa(x) =
1√
2
(φa,1(x) + iφa,2(x)) . (34)

We fix the order parameters of both species at the same direction. Therefore, by im-
posing real background fields [68], φa,1(x) =

√
2ρa and φa,2(x) = 0, the inverse propagator

takes the form

G−1
k (q) =

(
G−1

k,A(q) Σk,AB

Σk,BA G−1
k,B(q)

)
, (35)

where

G−1
k,a (q) =

(
Ea,1(q; ρA, ρB) + VBω2

n Saωn
−Saωn Ea,2(q; ρA, ρB) + Vaω2

n

)
, (36)

Σk,AB = Σk,BA =

(
2
√

ρaρbλAB 0
0 0

)
, (37)

and

Ea,1(q; ρA, ρB) =Ea,2(q; ρA, ρB) + 2ρa∂2
ρa U(ρA, ρB) , (38)

Ea,2(q; ρA, ρB) =Za
q2

2ma
+ ∂ρa U(ρA, ρB) + Rk,a(q) , (39)

where under our truncation U is defined in Equation (22). The propagator Gk is obtained
by inverting G−1. This is then employed in the RG flow equations.

Here, we stress that because we fix both order parameters at the same direction, we
do not take into the account the difference between the phases of the two condensates.
Therefore, we do not describe the superfluid drag within the current approximation.

4.3. Flow Equations

The flow equations are obtained from projecting the flowing functions by functional
differentiation. The flow of the effective potential U, including its couplings, is simply
dictated by the flow of Γk: ∂kU = ∂kΓk [see Equation (21)]. Therefore, ∂kU is given by
the one-loop Wetterich Equation (19), where for our model Gk is given by the inverse of
Equation (35) and ∂kR is obtained from differentiating our regulator choice (24). The flow
equations for the couplings in the expansion of U are obtained by differentiating ∂kU,

∂kua − λaa∂kρa,0 − λAB∂kρb,0 =
∂

∂ρa
(∂kU)

∣∣∣
ρ0,µ

, a 6= b (40)

∂kλab =
∂2

∂ρa∂ρb
(∂kU)

∣∣∣
ρ0,µ

, (41)

∂kna − n(1)
a,a ∂kρa,0 − n(1)

b,a ∂kρb,0 =− ∂

∂µ̃a
(∂kU)

∣∣∣
ρ0,µ

, a 6= b (42)

∂kn(1)
a,b − n(2)

aa,b∂kρa,0 − n(2)
AB,b∂kρb,0 =− ∂2

∂ρa∂µ̃b
(∂kU)

∣∣∣
ρ0,µ

, a 6= b (43)

∂kn(2)
ab,c =−

∂3

∂ρa∂ρb∂µ̃c
(∂kU)

∣∣∣
ρ0,µ

, (44)
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where all the equations are evaluated at ρa = ρa,0 and µ̃a = µa (a = A, B) after differentiat-
ing. We provide ∂kU in Equation (A5). Note that Equation (40) dictates the flow of both ua
and ρa,0, which at a first sight it might suggest that we need an additional equation. How-
ever, in the broken phase we allow ρa,0 > 0 to flow while we simply set ∂kua = ua = 0. On
the other hand, in the symmetric phase we allow ua to flow while we set ∂kρa,0 = ρa,0 = 0.

The flows of the renormalisation factors are dictated by the flow of the two-point
function Γ(2). We have that [see Equation (35)]

∂kSa =
∂

∂νn
(∂kΓ(2)

a1,a2)
∣∣∣
ρ0,µ,p=0

, (45)

∂kZa =2m
∂

∂p2 (∂kΓ(2)
a2,a2)

∣∣∣
ρ0,µ,p=0

, (46)

∂kVa =
∂

∂ν2
n
(∂kΓ(2)

a2,a2)
∣∣∣
ρ0,µ,p=0

, (47)

where p = (νn, p) is an external momentum that is taken to zero after differentiating. The
flow equation of Γ(2) is illustrated by the diagrams in Figure 3. We discuss the expressions
for ∂kΓ(2) in Equation (A7).

p

p

p+q

q
p p

qq q

Figure 3. Diagrams that contribute to the flow of the 2-point function Γ
(2)
k . The internal lines

correspond to propagators Gk, while the black squares correspond to insertions of ∂kRk.

4.4. Initial Conditions and Physical Inputs

The RG flow is started in the UV at a high scale k = Λ. At this scale, we impose that
ΓΛ = S to obtain the MF-like initial conditions

Sa(Λ) = Za(Λ) = 1 , Va(Λ) = 0 ,

na(Λ) = ρa,0(Λ) , n(1)
a,b (Λ) = δa,b , n(2)

ab,c(Λ) = 0 . (48)

In the Bose–Bose gas phase we have

ua(Λ) = 0 , ρa,0(Λ) =
1

1− ∆(Λ)

[
µa

λaa(Λ)
− µbλAB(Λ)

λaa(Λ)λbb(Λ)

]
, a 6= b (49)

where µA
µB

> λAB(Λ)
λBB(Λ)

and µB
µA

> λAB(Λ)
λAA(Λ)

, µA, µB > 0, and

∆(Λ) =
λ2

AB(Λ)

λAA(Λ)λBB(Λ)
.

Note that we choose ∆(Λ) < 1 to prevent phase-separation and collapse at the starting
scale. In the Bose polaron phase [82]

ua(Λ) = 0 , ρa,0(Λ) = µa/λaa(Λ) ,

ub(Λ) = −µb + µa
λAB(Λ)

λaa(Λ)
, ρb,0(Λ) = 0 , a 6= b (50)
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where µa > 0 and µb
µa

< λAB(Λ)
λaa(Λ)

. Here we can set λbb = 0 to impose a single impurity (For
the case of a single impurity the statistics is not important. Therefore, our approach is valid
for both bosonic and fermionic impurities.). Note that in this phase we can set λAB > λaa,
in contrast to the Bose–Bose phase. Finally, in the vacuum we have

ua(Λ) = −µa , ρa,0(Λ) = 0 , (51)

where µA, µB < 0 are the single-atom energies. In the vacuum na = 0 for all k, as expected.
We stress that to study the Bose–Bose liquid phase [19,39], where λAB < −(λAAλBB)

1/2

and µA, µB < 0, we need a more sophisticated ansatz. Moreover, the MF-like initial condi-
tions might not be appropriate to describe a liquid phase. Therefore, we leave the study of
Bose–Bose liquids to future works.

The starting UV scale Λ has to be chosen much larger than the physical many-body
scales of the system where fluctuations do not play a role yet. Two of these scales cor-
respond to the thermal scales pa,T =

√
maT. The remaining two scales are set by the

chemical potentials µA and µB. In a balanced mixture (m = mA = mB, µ = µA = µB,
g = gAA = gBB), these are just the density and spin healing scales [31]

ph,± =

(
4mµ

g± gAB
g + gAB

)1/2
, (52)

whereas for the Bose polaron phase these are given by ph,a = (4maµagaa)1/2 for a = A, B.
For general expressions for imbalanced mixtures see Ref. [36]. Note that in the previous
expressions gab just correspond to the two-body T-matrices, defined below.

To connect the microscopic theory with physical scattering we need to renormalise the
interaction couplings λab [68]. Because at high scales many-body effects are not important,
the RG flows in the UV in both the vacuum (In vacuum ρ

(v)
a,0 = n(v)

a,0 = 0 for all k for both
species.) and in-medium are indistinguishable. We use this property to generate initial
conditions λab(Λ) from the known physics in vacuum. We illustrate this process in Figure 4.

ΓΛ

Γ0
(v)

T=μa=0

μa>0

...

Γ0

Figure 4. Illustration of the RG flow of Γk in theory space in vacuum T = µa = 0 (dashed line) and

in-medium µa > 0 (solid line). The flow is solved from the known vacuum solution Γ(v)
0 at k = 0 up

to k = Λ. The latter is used as the initial condition in-medium.

In vacuum (T = µa = 0) only the couplings λab flow with k, whereas all the other
functions remain at their microscopic values (48). We impose that in vacuum the physical
couplings λab correspond to the known two-body T-matrices [68]

λ
(v)
ab (k = 0) = T2B

ab . (53)

In three dimensions these have the known form

T2B
ab =

2πaab
mab

, (54)
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where mab = mamb/(ma + mb) is the reduced mass between particles a and b, and aab are
the s-wave scattering lengths. Note that maa = ma/2.

For frequency-independent regulators, we can perform the contour integrals analyti-
cally. We obtain that the flows of λab in vacuum are dictated by

∂kλ
(v)
ab =

λ
(v)
ab
4

∫
q

[
∂kRk,a(q)

(q2/2ma + Rk,a(q))2 +
∂kRk,b(q)

(q2/2mb + Rk,b(q))2

]
, (55)

which can be solved in closed-form

1

λ
(v)
ab

∣∣∣∣∣
k=Λ

− 1

λ
(v)
ab

∣∣∣∣∣
k=0

=
1
2

∫
q

[
1

q2/2ma + RΛ,a(q)
− 1

q2/2ma + R0,a(q)

+
1

q2/2mb + RΛ,b(q)
− 1

q2/2mb + R0,b(q)

]
. (56)

By imposing (53) we can obtain λ
(v)
ab (Λ), which we use as their initial conditions

in-medium. For the optimised cutoff (24) we obtain

λ
opt
ab (Λ) =

(
mab

2πaab
− 2mab

3π2 Λ
)−1

. (57)

By using (48)–(50) and (57) the initial conditions of the RG flow are completely defined
in terms of the physical inputs ma, µa, aab and T. Initial conditions in lower dimensions can
be obtained by using the corresponding T-matrices.

For a positive scattering length aab > 0, we see that Equation (57) diverges at
Λ∗ = 3π/4aab ≈ 2/a, becoming negative for larger scales (The particular value of Λ∗

is regulator-dependent.). In repulsive interactions where λab must be positive, the scatter-
ing length aab > 0 sets a lower bound to the interaction range. Therefore, for the contact
potential approximation to be valid, we must restrict the flow to distances larger than
∼ aab, hence we must choose Λ . a−1

ab , which also ensures weak interactions. Because the
intra-species interactions are repulsive, these always set an upper limit to Λ. Therefore,
we must choose a starting scale that satisfies Λ . a−1

ab (for aab > 0), but that is also much
larger than the physical scales of the system. Note that, in contrast, the scattering length
of attractive interactions does not set a lower bound to the interaction range, and thus
attractive inter-species interactions do not restrict Λ.

Finally, it is worth mentioning that an effective range ra,e f f , as defined from the two-
body T-matrix, can be included within the FRG by considering an additional term in the
ansatz with the form Yaρa∇2ρa. The effective range would appear in the initial condition
for Ya [68,83].

4.5. RG Flow Examples

To provide an example of how the couplings flow, in Figure 5, we show the flows of
the condensate density ρ0, the superfluid density ρs = Zρ0, and the atom density n for a
balanced (m = mA = mB, µ = µA = µB, a = aAA = aBB) repulsive mixture (aAB/a > 0).
Note that in a balanced mixture, we have n = nA = nB, ρ0 = ρA,0 = ρB,0, and Z = ZA = ZB.
We show flows at zero temperature (T = 0), at a finite temperature below the superfluid
critical temperature (T < Tc), and at a finite temperature in the normal phase (T > Tc).
Solving one RG flow for a balanced mixture takes a few seconds for zero temperature in a
modern laptop, whereas it takes at most a few minutes for finite temperatures.
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(a) (b) (c)

T=0 T<Tc T>Tc

Figure 5. Example flows of n (blue, solid), ρ0 (orange, dashed), and ρs = Zρ0 (green, dotted) as a
function of k for a balanced mixture with a repulsive inter-species scattering length aAB = 0.5a and
the same chemical potential µma2 = 0.1. All the flows are normalised to the value of n(k = 0) at
T = 0. Panel (a) shows flows at zero temperature, panel (b) shows flows at a finite temperature
T < Tc, and panel (c) shows flows at a finite temperature T > Tc, where Tc is the critical temperature
of the superfluid phase transition. The vertical lines correspond to the corresponding thermal scales
pT =

√
mT.

At the starting scale k = Λ (the right of each panel), all the densities are equal. This
comes directly from the initial conditions (see the previous subsection). As k is lowered,
the RG flow incorporates fluctuations into the flowing functions, and thus, the densities
flow to different values. We extract the physical values of the densities for the chosen input
parameters (a, aAB, µ and T) from the values of the densities for k → 0 (the left of each
panel). Note that we do not solve the flow down to k = 0. Instead, one solves the flow
only till the flows converge at a small scale k smaller than the physical many-body scales.
Also note that generally, one solves the flow in terms of the RG time t = ln(k/Λ) to better
capture the coarse-graining at different scales.

At zero temperature both ρs and n have indistinguishable flows, and so ρs = n. This
is consistent with the fact that in zero-temperature Bose gases all the bosons are superfluid.
In contrast, the condensate density ρ0 flows to a slightly smaller value, consistent with the
known depletion of the condensate [7,8].

For T < Tc we have that n > ρs > ρc at k→ 0 due to the effect of thermal fluctuations.
Indeed, around the thermal scale pT =

√
mT (vertical line) there is an important depletion

of both the superfluid and the condensate. Nevertheless, both ρs and ρ0 flow to positive
finite values for k→ 0, and so the gas is still condensed. In contrast, for T > Tc both ρs and
ρ0 flow to zero at a finite scale k∗ due to the stronger thermal fluctuations. As previously
mentioned, from k∗ the coupling ua (not shown) starts to flow. Because ρs = ρ0 = 0 for
k → 0, the gas is not condensed. On the other hand, the atom density n0 still flows to a
finite value, as expected.

Similar flows are obtained for other parameters. For detailed examples of the RG flows
of the other couplings we refer to Refs. [68,81,82].

4.6. Limitations of the Ansatz and Outlook

The level of truncated used here [Equations (21) and (22)] is able to provide accurate
results for Bose–Bose mixtures in two and three dimensions, particularly at low tempera-
tures. However, it is important to briefly stress the limitations of the current truncation and
how it can be improved in future works.
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First, ansatz (21) is not able to correctly describe quasicondensates where kinetic terms
of all orders in the fields become relevant in the IR [89]. This includes two-dimensional
superfluids at finite temperatures and one-dimensional superfluids at zero temperature.
This issue results in unstable flows where the superfluid density incorrectly decays for
small k. Nevertheless, superfluid two-dimensional gases at finite temperatures can still
be described because thermodynamic properties converge before these instabilities [69].
Moreover, the RG flow signals the BKT transition as quasi-fixed points [76]. On the other
hand, in one dimension phase fluctuations have an even stronger effect, and thus, the RG
flow becomes unstable before observables can be extracted [89]. Therefore, the current
ansatz is only applicable to two- and three-dimensional gases.

As previously mentioned, for Bose–Bose gases, another missing effect in the ansatz
is that of the superfluid or spin drag [20,21]. This corresponds to the interaction between
the phases of the two condensates. The effect of the superfluid drag increases as the
temperature increases, having an important impact on the phase transition in two dimen-
sion [93]. Therefore, the current ansatz has a limited application for finite-temperature
two-dimensional Bose–Bose gases.

Finally, even though the current ansatz can describe attractive inter-species interactions
for arbitrary scattering lengths, we can only expect it to give a good description for weak
interactions. For stronger attractive interactions, the account of bound states becomes
important. A commonly used approach to deal with strong attractive interactions is to
introduce pairing fields via a Hubbard–Stratonovich transformation. Such approach is the
standard way to describe the BCS-BEC crossover with the FRG [71,72], and we recently
used it to describe strongly-interacting attractive Bose polarons [82]. The description
of Bose–Bose mixtures with strong attractive inter-species interactions, particularly the
Bose–Bose liquid regime, is left to future work.

5. Balanced Bose–Bose Gases

We first examine the application of our formalism to balanced (m = mA = mB,
µ = µA = µB, a = aAA = aBB) three-dimensional Bose–Bose mixtures. In a balanced
mixture the couplings associated with the different species are equal (SA = SB, ZA = ZB,
etc), greatly reducing the number of flow equations. Moreover, the flow equations have a
much simpler form. Therefore, the numerical calculations for balanced gases are much less
demanding.

In Figure 6 we show the energy per particle and chemical potential as a function of
the gas parameter na3, where n is the atom density of one species, for a few choices of
inter-species scattering lengths. We compare our results with the perturbative solutions for
balanced mixtures [17]

E
N

=
2πn

m
(a + aAB) +

128
√

π

15
n3/2a5/2

m
f (aAB/a) , (58)

µ =
4πn

m
(a + aAB) +

64
√

2π

3
n3/2a5/2

m
f (aAB/a) , (59)

where f (x) = (1 + x)5/2 + (1 − x)5/2. The first terms on the right-hand-sides (RHS)
correspond to the MF solutions, whereas the second terms to the LHY corrections. Note
that we scale our results in terms of the critical temperature of an ideal Bose gas

Tc0 =
2π

m
(n/ζ(3/2))2/3 . (60)

We obtain an excellent agreement with the LHY corrections, which are known to
correctly describe three-dimensional mixtures at zero temperature for the employed gas
parameters. We find that the FRG works well for both repulsive and attractive inter-species
interactions. Indeed, we have found that we obtain similar agreements for other choices of
|aAB/a| < 1. Note that the case aAB = 0 simply reduces the problem to two independent
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one-component Bose gases. For analogous comparisons for two-dimensional repulsive
mixtures see Ref. [81].

x10-4

aAB=0.5a
aAB=0.0
aAB=-0.5a

aAB=0.5a
aAB=0.0
aAB=-0.5a

(a)

(b)

T=0

T=0

Figure 6. Energy per particle E/N (a) and chemical potential µ (b) at zero temperature for a balanced
mixture as a function of the gas parameter na3, where n = nA = nB is the density of one species. The
blue lines correspond to results for aAB = 0.5a, the orange lines to results for aAB = 0, and the green
lines to results for aAB = −0.5a. The thin dotted lines correspond to the MF solutions (58) and (59),
the thin dashed lines include the LHY corrections (58) and (59), and the solid lines correspond to
FRG calculations.

As explained previously, we can explore the finite-temperature regime by employing
Matsubara sums. In Figure 7 we show the energy per particle, pressure and entropy at
finite temperatures for two chosen gas parameters up to the superfluid phase transition. To
benchmark our calculations, we compare with MC simulations for the one-component gas
from Ref. [11]. Note that S/N is dimensionless because we use kB = 1.

First, in the one-component gas limit (aAB = 0), at low temperatures (T/Tc0 . 0.75)
there is an excellent agreement between the FRG calculations and MC simulations, whereas
we obtain small deviations near the superfluid phase transition. This is due to the simple
ansatz used in this work. Our results can be improved by employing an ansatz that includes
higher-order couplings and better regulator choices [68,70,77].

For finite choices of aAB, we obtain that both the energy per particle and the pressure
roughly maintain their effect from zero-temperature, with an almost constant displacement
with respect to the case of aAB = 0 for different temperatures. Nevertheless, these results
are in reasonable agreement with what has been found with perturbative calculations [30].
On the other hand, the entropy is not much affected by the inter-species interaction, with
only minor differences between the different curves. This behaviour agrees with what has
been obtained by other works [30].

Overall, the FRG can provide a good description of three-dimensional mixtures at finite
temperatures, including the region around the phase transition. From the shown results,
additional thermodynamic properties, such as compressibilities and sound velocities, can
be easily extracted by using thermodynamic identities. Such complete examination of the
thermodynamics of Bose–Bose mixtures is left for future work. Furthermore, even though
here we have examined the thermodynamics for T < Tc, the normal phase is equally easy
to access with the FRG. This will be examined in the future.
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aAB=0.5a
aAB=0.0
aAB=-0.5a

aAB=0.5a
aAB=0.0

aAB=-0.5a

aAB=0.5a
aAB=0.0
aAB=-0.5a

aAB=0.5a
aAB=0.0
aAB=-0.5a

aAB=0.5a
aAB=0.0

aAB=-0.5a

aAB=0.5a
aAB=0.0
aAB=-0.5a

(a)na3=10-4

(c)na3=10-4

(e)na3=10-4

(b)na3=10-6

(d)na3=10-6

na3=10-6

Figure 7. Energy per particle E/N (a,b), pressure over total density P/nT (c,d), and entropy per
particle S/N (e,f) for a balanced mixture as a function of the temperature for gas parameters
na3 = 10−4 (left panels) and na3 = 10−6 (right panels), where n = nA = nB is the density of
one species and nT = nA + nB. The blue lines correspond to results for aAB = 0.5a, the orange lines
to results for aAB = 0, and the green lines to results for aAB = −0.5a. The solid lines correspond
to FRG calculations, while the squares are MC simulations for a one-component gas aAB = 0 from
Ref. [11].

6. Repulsive Bose Polarons

We now turn our attention to the limiting case of infinite population imbalance, where
one species has a macroscopic finite density nB = n > 0, whereas the other species forms
a gas of impurities with infinitesimal density nI = 0. As explained in Section 4.4, this
corresponds to the Bose polaron problem. In the following, we refer to the bosons in the
Bose bath with the subscript B and to the impurity with the subscript I. Moreover, here
we focus only on the repulsive branch of the Bose polaron, where the boson-impurity
interaction is repulsive and aBI > 0.

One of the most relevant properties of a polaron is its energy. This corresponds to the
energy needed to add an impurity to the Bose bath. In our model, this energy corresponds
to the impurity chemical potential µI [see Equation (1)]. However, µI is the physical ground-
state energy only if it is the pole of the impurity propagator or, equivalently, the spectral
function [94]. In our formalism, the condition G−1(0)k=0,I = 0 [Equation (35)] means that
for k → 0 the coupling uI must vanish (Note that for Bose polarons ρ0,I = 0, so uI flows
instead.). Therefore, to find the physical polaron energy EI = µI , we must find the choice
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of µI that gives a vanishing uI for a chosen set of parameters (aBB, aBI , µB and T), which
can be done self-consistently. For a more detailed discussion we refer to Ref. [82].

We show polaron energies at zero temperature for different impurity masses (Bose
polarons with equal masses mB = mI have been achieved experimentally with 39K atoms
in two different spin states [45]. The mass imbalance mI = mB/2.2 has been achieved with
40K impurities in a gas of 87Rb atoms [46], whereas mI = 1.7mB has been achieved with 40K
impurities in a gas of 23Na atoms [47]. The imbalance mI = mB/1.4 and mI = 3.8mB could
be achieved in the future with 23Na and 87Rb atoms.) and fixed gas parameter in Figure 8.
We compare with MC simulations for mI = mB from Ref. [48] and with the perturbative
solution [51]

EI =
2πaBIn

mR

[
1 +

24
3
√

π

mR
mI

√
na3

BB
aBI
aBB

I(γ)
]

, (61)

where n = nB is the density of the Bose bath, γ = mB/mI , and

I(γ) =
1 + γ

γ

∫ ∞

0
dk

[
1− (1 + γ)k2
√

1 + k2(
√

1 + k2 + γk)

]
.

mI=mB/1.4
mI=mB/2.2
mI=mB

mI=1.7mB

mI=3.8mB

I

T=0

Figure 8. Polaron energy EI at zero temperature as a function of (n1/3aBI)
−1 for na3

BB = 10−5, where
n is the density of the bath. The different colours correspond to energies of impurities with different
masses. The thin dotted lines correspond to the MF solution (61), the thin dashed lines include
the first perturbative correction (61), the solid lines correspond to FRG calculations, and the circles
correspond to MC simulations for mI = mB from Ref. [48].

Note that for equal masses mB = mI , this takes the value I(1) = 8/3. The first
term on the RHS of Equation (61) is the MF solution, whereas the second term is a LHY-
type correction.

As reported previously in Ref. [82] for equal masses, the FRG calculations give a good
agreement with the perturbative corrections and the MC simulations. In contrast, there
are some deviations between the FRG and the perturbative results for heavier impurities
mI > mB. Results for repulsive two-dimensional Bose polarons [82] suggest that the FRG
performs better than perturbative solutions at the current truncation level. However, it
is still difficult to give a conclusive conclusion without having simulations to compare
with. Therefore, it is necessary to perform FRG calculations with additional higher-order
couplings to check the convergence of our results.

In Figure 9, we now show polaron energies at finite temperatures for mB = mI . We
observe that the energy decreases as the temperature increases, consistent with the trend
predicted by recent MC simulations for similar gas parameters [62]. Therefore, the FRG
seems to give, at least, a good qualitative description of finite-temperature polarons.

It is important to note that we present fewer results with increasing temperature.
As discussed in Section 4.4, the starting scale Λ must be chosen much larger than the
many-body scales associated to µB and T, but also it must satisfy Λ . min(a−1

BB , a−1
BI ). In
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the regime studied in Figures 8 and 9 we have that aBI � aBB. Therefore, Λ is restricted
in the UV by aBI only. At zero temperature, the many-body restriction set by µB means
that we can only explore (n1/3aBI)

−1 & 5. However, finite temperatures increasingly
restrict Λ to higher values, decreasing the region of aBI accessible. Therefore, with our
current FRG formulation we can study relatively strong boson-impurity interactions at low
temperatures only.

Despite the mentioned shortcoming, the obtained results for finite temperatures makes
the FRG a promising tool to study attractive Bose polarons at finite temperatures. As
discussed in Section 4.4, in attractive interactions the scattering length does not set an
upper bound to Λ. Therefore, by extending the pairing-fields approach for attractive
Bose polarons employed in our previous work [82] to finite temperatures, we could study
resonant Bose polarons for a wide range of temperatures.

naBB=10
-5

mB=mI
3

T/Tc0=0.0
T/Tc0=0.1
T/Tc0=0.2
T/Tc0=0.3
T/Tc0=0.4

Figure 9. Polaron energy EI obtained from the FRG as a function of (n1/3aBI)
−1 for mB = mI and

gas parameter na3
BB = 10−5, where n is the density of the bath. The different curves correspond to

calculations at different temperatures T.

7. Conclusions

In this work, we give a detailed presentation of the FRG framework for weakly-
interacting Bose–Bose mixtures by generalising previous works on balanced repulsive
mixtures and Bose polarons. We apply this approach to study three-dimensional mixtures
with both attractive and repulsive inter-species interactions, and also to study repulsive
Bose polarons.

We find that the FRG gives a good description of three-dimensional mixtures at zero
and finite temperatures in the cases studied. At finite temperatures, we expect deviations
from exact calculations, which is expected from the simple ansatz employed in this work.
Nevertheless, even with the current ansatz, we expect that the FRG gives a better descrip-
tion than perturbative approaches for mixtures around the superfluid phase transition.
Similarly, we find that the FRG gives a good description of repulsive Bose polarons at
finite temperatures.

Having demonstrated that the FRG is capable of describing Bose–Bose mixtures, we
devise several extensions of the current work that could study novel physics in quantum
mixtures. The most straightforward extension is to study imbalanced Bose–Bose gases
at zero and finite temperatures in both two and three dimensions. Even though the flow
equations become much more complicated than with balanced mixtures, these should
still be manageable for personal computers. Aside from the thermodynamics, it would be
particularly interesting to study the phase-separation condition. Recent perturbative calcu-
lations have predicted that the phase separation depends strongly on the mass imbalance,
and have also predicted novel mixed-bubble phases [95]. Such physics could be studied
with the current FRG formalism by examining the behaviour of the healing scales, which
could provide a more robust picture than that from perturbative calculations. The study
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of the phase-separation condition at finite temperatures is also of interest, as it has been
predicted that the temperature plays an important role [35].

Future studies should also consider better truncations with higher-order couplings.
Standard higher-order couplings in the fields and momenta could be included to improve
the accuracy of the presented results around the phase transition temperature. However,
maybe more relevant is the inclusion of couplings that couple the phases of the two
condensates in order to incorporate the effect of the superfluid drag. This could enable
the FRG to accurately describe the superfluid phase transition in both two and three
dimensions. In addition, in the case of polarons, it is relevant to include couplings that
describe the feedback of the impurity onto the bath. This is particularly important to study
heavy impurities.

The study of strongly-attractive Bose–Bose mixtures is of particular interest. The
equation of state of Bose–Bose liquids, the onset of dimerisation and clustering, and the
role of multi-body correlations are still open questions. The success of the FRG in the study
of several resonant quantum gases makes it a promising tool to study these phenomena. In
principle, strongly-attractive Bose–Bose mixtures could be studied with the FRG by simply
proposing an ansatz with pairing fields as with Fermi gases [71]. However, the presence of
the liquid phase could require more sophisticated ansatzë and initial conditions.

A more straightforward related extension is the study of resonant attractive Bose
polarons at finite temperatures. This can be done by simply employing Matsubara sums
over the approach presented in Ref. [82]. Several works have studied finite-temperature
Bose polarons in the past few years with different approaches, sometimes leading to
contradicting results. Therefore, FRG studies could help to provide a more definite answer.
Moreover, it could be particularly interesting to study two-dimensional Bose polarons at
finite temperatures in order to examine the impact of the BKT transition on the impurity.

In addition to homogeneous gases, the FRG has proved successful in studying lattice
systems. In particular, it can give an accurate description of the quantum phases of the
Bose-Hubbard model [79,80], competing with MC simulations but with a much lower
computational cost. The ansatz presented in this work can be extended to work on lattices
by employing the lattice formulation of the FRG [96]. Such extension could provide robust
descriptions of Bose–Bose mixtures and Bose polarons in optical lattices in two and three
dimensions.

Finally, other related extensions include the study of coherently-coupled conden-
sates [97,98], higher multi-component Bose gases, such as SU(N) Bose gases [99], bipo-
larons [100], and impurities in superfluid Fermi gases [101,102]. Such systems can be
studied with similar techniques to those used in this work.
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Abbreviations
The following abbreviations are used in this manuscript:

BEC Bose–Einstein condensation
BCS Bardeen–Cooper–Schrieffer
MC Monte Carlo
FRG functional renormalisation group
RG renormalisation group
MF mean-field
LHY Lee-Huang-Yang
IR infrared
UV ultraviolet
DE derivative expansion
RHS right-hand-side
BKT Berezinskii–Kosterlitz–Thouless

Appendix A. The Wetterich Equation

Here we present a short sketch for the derivation of the Wetterich Equation (19) for
purely bosonic fields. For a more detailed derivation see Ref. [65].

First, we differentiate Equation (17) with respect to k,

∂kWk[J]eWk [J] =− 1
2

∫
Dϕ
(

ϕ†∂kRkϕ
)

e−Sk [ϕ]+
∫

x J·ϕ

=− 1
2

∫
q

(
δJ† ∂kRkδJ

)
eWk [J]

=− 1
2

∫
q

(
φ†∂kRkφ + tr

[
∂kRkδJφ

])
eWk [J] , (A1)

where Wk = lnZ and φ are the classical fields as defined in Equation (10). Note that we
have used Equation (15) in the first line. To continue we need an expression for both ∂kWk
and δJφ. By differentiating Equation (18) with respect to k we obtain

∂kWk = −∂kΓk[φ]− ∂k∆Sk[φ] = −∂kΓk[φ]− 1
2

φ†∂kRkφ , (A2)

whereas by taking two functional derivatives to Equation (18) with respect to φ we obtain

δJ
δφ

=
δ2Γk[φ]

δφ†δφ
+ Rk = Γ

(2)
k + Rk , (A3)

where we have once again used Equation (15) in both equations. By using the last two
equations in (A1) we obtain the Wetterich Equation (19),

∂kΓk =
1
2

∫
q

tr[∂kRk(Γ
(2)
k + Rk)

−1] . (A4)

Note that we have inverted Equation (A3). Here we stress that for fermionic fields we
need to consider Grassmann fields that anticommute. See Refs. [65,66] for more details.

Appendix B. Driving Terms

The flow equation of the effective potential is simply obtained from Equation (19). For
the current truncation it reads
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∂kU =
1
2

∫
q

[(
EA,2(q) + VAω2

n

)(
EB,1(q) + VBω2

n

)(
EB,2(q) + VBω2

n

)
+
(

EB,2(q) + VBω2
n

)[(
Ea,1(q) + VAω2

n

)(
EB,1(q) + VBω2

n

)
− 4ρAρBλ2

AB

]
+ S2

Bω2
n

(
EA,1(q) + EA,2(q) + 2VAω2

n

)]
×

∂kRk,A(q)
detAB(q)

+ (A↔ B) , (A5)

where

detAB(q) = detBA(q) =
[
S2

Aω2
n +

(
EA,2(q) + VAω2

n

)(
EA,2(q) + VAω2

n

)]
×
[
S2

Bω2
n +

(
EB,2(q) + VBω2

n

)(
EB,2(q) + VBω2

n

)]
− 4ρAρB

(
EA,2(q) + VAω2

n

)(
EB,2(q) + VBω2

n

)
λ2

AB , (A6)

and Ea,i (a = A, B, i = 1, 2) are defined in Equations (38) and (39). Note that these functions
still depend on ρa. We stress that the momentum-integral is defined as in Equation (8).

The driving terms of Equations (40)–(44), that is, their RHS’s, are simply obtained by
differentiating (A5) with respect to ρa and µ̃a and then evaluating at ρa = ρa,0 and µ̃a = µa
for a = A, B.

The driving terms for the two-point functions are dictated by the diagrams in Figure 3.
These are given by

∂kΓ(2)
ai ,bj

=
∫

q
tr
[

∂kRk(q)Gk(q)Γ
(3)
bj

(−q, p, q + p)Gk(q + p)Γ(3)
ai (−q− p, p, q)Gk(q)

− 1
2

∂kRk(q)Gk(q)Γ
(4)
bj ,ai

(−q, q, p,−p)Gk(q + p)
]

,

where in our current truncation the three-point vertices are given by

Γ
(3)
a1 =


3(2ρa)1/2λaa 0 (2ρb)

1/2λAB 0
0 (2ρa)1/2λaa 0 0

(2ρb)
1/2λAB 0 (2ρa)1/2λAB 0
0 0 0 (2ρa)1/2λAB

 , a 6= b (A7)

Γ
(3)
a2 =


0 (2ρa)1/2λaa 0 0

(2ρa)1/2λaa 0 (2ρb)
1/2λAB 0

0 (2ρb)
1/2λAB 0 0

0 0 0 0

 . a 6= b (A8)

Within the truncation employed in this work all vertices are momentum-independent,
and thus, the second diagram in Figure 3 (the term in the second line of Equation (A7))
does not depend on the external momentum p. Therefore, this term does not contribute to
the flows of Sa, Za, and Va, and so we do not need the four-point functions. Nevertheless,
we refer to Refs. [65,66] for more discussion on the hierarchy of the FRG flow equations.

To generate the driving terms for this or other FRG studies it is convenient to em-
ploy a symbolic programming language. In particular, we refer the reader to the DoFun
package [103], which automatically generates FRG flow equations for a given ansatz.
Alternatively, the reader can employ standard packages for functional differentiation.



Condens. Matter 2022, 7, 9 22 of 25

References
1. Anderson, M.H.; Ensher, J.R.; Matthews, M.R.; Wieman, C.E.; Cornell, E.A. Observation of Bose-Einstein condensation in a dilute

atomic vapor. Science 1995, 269, 198–201. [CrossRef]
2. Davis, K.B.; Mewes, M.O.; Andrews, M.R.; van Druten, N.J.; Durfee, D.S.; Kurn, D.M.; Ketterle, W. Bose-Einstein Condensation in

a Gas of Sodium Atoms. Phys. Rev. Lett. 1995, 75, 3969–3973. [CrossRef] [PubMed]
3. Bradley, C.C.; Sackett, C.A.; Tollett, J.J.; Hulet, R.G. Evidence of Bose-Einstein Condensation in an Atomic Gas with Attractive

Interactions. Phys. Rev. Lett. 1995, 75, 1687–1690. [CrossRef]
4. Pitaevskii, L.P.; Stringari, S. Bose-Einstein Condensation and Superfluidity; Oxford University Press: Oxford, UK, 2016.
5. Andersen, J. Theory of the weakly interacting Bose gas. Rev. Mod. Phys. 2004, 76, 599–639. [CrossRef]
6. Bogoliubov, N. On the theory of superfluidity. Izv. AN SSSR Ser. Fiz. 1947, 11, 77.
7. Lee, T.D.; Huang, K.; Yang, C.N. Eigenvalues and Eigenfunctions of a Bose System of Hard Spheres and Its Low-Temperature

Properties. Phys. Rev. 1957, 106, 1135–1145. [CrossRef]
8. Lee, T.D.; Yang, C.N. Many-Body Problem in Quantum Mechanics and Quantum Statistical Mechanics. Phys. Rev. 1957,

105, 1119–1120. [CrossRef]
9. Prokof’ev, N.; Svistunov, B. Two-dimensional weakly interacting Bose gas in the fluctuation region. Phys. Rev. A 2002, 66, 043608.

[CrossRef]
10. Prokof’ev, N.; Ruebenacker, O.; Svistunov, B. Weakly interacting Bose gas in the vicinity of the normal-fluid–superfluid transition.

Phys. Rev. A 2004, 69, 053625. [CrossRef]
11. Pilati, S.; Sakkos, K.; Boronat, J.; Casulleras, J.; Giorgini, S. Equation of state of an interacting Bose gas at finite temperature: A

path-integral Monte Carlo study. Phys. Rev. A 2006, 74, 043621. [CrossRef]
12. Pilati, S.; Giorgini, S.; Prokof’ev, N. Critical Temperature of Interacting Bose Gases in Two and Three Dimensions. Phys. Rev. Lett.

2008, 100, 140405. [CrossRef] [PubMed]
13. Astrakharchik, G.E.; Boronat, J.; Casulleras, J.; Kurbakov, I.L.; Lozovik, Y.E. Equation of state of a weakly interacting two-

dimensional Bose gas studied at zero temperature by means of quantum Monte Carlo methods. Phys. Rev. A 2009, 79, 051602(R).
[CrossRef]

14. Astrakharchik, G.E.; Boronat, J.; Kurbakov, I.L.; Lozovik, Y.E.; Mazzanti, F. Low-dimensional weakly interacting Bose gases:
Nonuniversal equations of state. Phys. Rev. A 2010, 81, 013612. [CrossRef]

15. Capogrosso-Sansone, B.; Giorgini, S.; Pilati, S.; Pollet, L.; Prokof’ev, N.; Svistunov, B.; Troyer, M. The Beliaev technique for a
weakly interacting Bose gas. New J. Phys. 2010, 12, 043010. [CrossRef]

16. Strinati, G.C.; Pieri, P.; Röpke, G.; Schuck, P.; Urban, M. The BCS–BEC crossover: From ultra-cold Fermi gases to nuclear systems.
Phys. Rep. 2018, 738, 1–76. [CrossRef]

17. Larsen, D.M. Binary mixtures of dilute Bose gases with repulsive interactions at low temperature. Ann. Phys. 1963, 24, 89–101.
[CrossRef]

18. Suthar, K.; Roy, A.; Angom, D. Fluctuation-driven topological transition of binary condensates in optical lattices. Phys. Rev. A
2015, 91, 043615. [CrossRef]

19. Petrov, D.S. Quantum Mechanical Stabilization of a Collapsing Bose-Bose Mixture. Phys. Rev. Lett. 2015, 115, 155302. [CrossRef]
[PubMed]

20. Andreev, A.F.; Bashkin, E.P. Three-velocity hydrodynamics of superfluid solutions. Sov. Phys. JETP 1975, 42, 164.
21. Fil, D.V.; Shevchenko, S.I. Nondissipative drag of superflow in a two-component Bose gas. Phys. Rev. A 2005, 72, 013616.

[CrossRef]
22. Chen, L.; Zhu, C.; Zhang, Y.; Pu, H. Spin-exchange-induced spin-orbit coupling in a superfluid mixture. Phys. Rev. A 2018,

97, 031601. [CrossRef]
23. Myatt, C.J.; Burt, E.A.; Ghrist, R.W.; Cornell, E.A.; Wieman, C.E. Production of Two Overlapping Bose-Einstein Condensates by

Sympathetic Cooling. Phys. Rev. Lett. 1997, 78, 586–589. [CrossRef]
24. Hall, D.S.; Matthews, M.R.; Ensher, J.R.; Wieman, C.E.; Cornell, E.A. Dynamics of Component Separation in a Binary Mixture of

Bose-Einstein Condensates. Phys. Rev. Lett. 1998, 81, 1539–1542. [CrossRef]
25. Hall, D.S.; Matthews, M.R.; Wieman, C.E.; Cornell, E.A. Measurements of Relative Phase in Two-Component Bose-Einstein

Condensates. Phys. Rev. Lett. 1998, 81, 1543–1546. [CrossRef]
26. Modugno, G.; Modugno, M.; Riboli, F.; Roati, G.; Inguscio, M. Two Atomic Species Superfluid. Phys. Rev. Lett. 2002, 89, 190404.

[CrossRef]
27. Cabrera, C.R.; Tanzi, L.; Sanz, J.; Naylor, B.; Thomas, P.; Cheiney, P.; Tarruell, L. Quantum liquid droplets in a mixture of

Bose-Einstein condensates. Science 2018, 359, 301–304. [CrossRef]
28. Semeghini, G.; Ferioli, G.; Masi, L.; Mazzinghi, C.; Wolswijk, L.; Minardi, F.; Modugno, M.; Modugno, G.; Inguscio, M.; Fattori, M.

Self-Bound Quantum Droplets of Atomic Mixtures in Free Space. Phys. Rev. Lett. 2018, 120, 235301. [CrossRef]
29. D’Errico, C.; Burchianti, A.; Prevedelli, M.; Salasnich, L.; Ancilotto, F.; Modugno, M.; Minardi, F.; Fort, C. Observation of quantum

droplets in a heteronuclear bosonic mixture. Phys. Rev. Res. 2019, 1, 033155. [CrossRef]
30. Armaitis, J.; Stoof, H.T.C.; Duine, R.A. Hydrodynamic modes of partially condensed Bose mixtures. Phys. Rev. A 2015, 91, 043641.

[CrossRef]
31. Chiquillo, E. Equation of state of the one- and three-dimensional Bose-Bose gases. Phys. Rev. A 2018, 97, 063605. [CrossRef]

http://doi.org/10.1126/science.269.5221.198
http://dx.doi.org/10.1103/PhysRevLett.75.3969
http://www.ncbi.nlm.nih.gov/pubmed/10059782
http://dx.doi.org/10.1103/PhysRevLett.75.1687
http://dx.doi.org/10.1103/RevModPhys.76.599
http://dx.doi.org/10.1103/PhysRev.106.1135
http://dx.doi.org/10.1103/PhysRev.105.1119
http://dx.doi.org/10.1103/PhysRevA.66.043608
http://dx.doi.org/10.1103/PhysRevA.69.053625
http://dx.doi.org/10.1103/PhysRevA.74.043621
http://dx.doi.org/10.1103/PhysRevLett.100.140405
http://www.ncbi.nlm.nih.gov/pubmed/18518010
http://dx.doi.org/10.1103/PhysRevA.79.051602
http://dx.doi.org/10.1103/PhysRevA.81.013612
http://dx.doi.org/10.1088/1367-2630/12/4/043010
http://dx.doi.org/10.1016/j.physrep.2018.02.004
http://dx.doi.org/10.1016/0003-4916(63)90066-6
http://dx.doi.org/10.1103/PhysRevA.91.043615
http://dx.doi.org/10.1103/PhysRevLett.115.155302
http://www.ncbi.nlm.nih.gov/pubmed/26550732
http://dx.doi.org/10.1103/PhysRevA.72.013616
http://dx.doi.org/10.1103/PhysRevA.97.031601
http://dx.doi.org/10.1103/PhysRevLett.78.586
http://dx.doi.org/10.1103/PhysRevLett.81.1539
http://dx.doi.org/10.1103/PhysRevLett.81.1543
http://dx.doi.org/10.1103/PhysRevLett.89.190404
http://dx.doi.org/10.1126/science.aao5686
http://dx.doi.org/10.1103/PhysRevLett.120.235301
http://dx.doi.org/10.1103/PhysRevResearch.1.033155
http://dx.doi.org/10.1103/PhysRevA.91.043641
http://dx.doi.org/10.1103/PhysRevA.97.063605


Condens. Matter 2022, 7, 9 23 of 25

32. Ota, M.; Astrakharchik, G. Beyond Lee-Huang-Yang description of self-bound Bose mixtures. SciPost Phys. 2020, 9, 020.
[CrossRef]

33. De Rosi, G.; Astrakharchik, G.E.; Massignan, P. Thermal instability, evaporation, and thermodynamics of one-dimensional liquids
in weakly interacting Bose-Bose mixtures. Phys. Rev. A 2021, 103, 043316. [CrossRef]

34. Konietin, P.; Pastukhov, V. 2D Dilute Bose Mixture at Low Temperatures. J. Low Temp. Phys. 2018, 190, 256–266. [CrossRef]
35. Ota, M.; Giorgini, S.; Stringari, S. Magnetic Phase Transition in a Mixture of Two Interacting Superfluid Bose Gases at Finite

Temperature. Phys. Rev. Lett. 2019, 123, 075301. [CrossRef] [PubMed]
36. Ota, M.; Giorgini, S. Thermodynamics of dilute Bose gases: Beyond mean-field theory for binary mixtures of Bose-Einstein

condensates. Phys. Rev. A 2020, 102, 063303. [CrossRef]
37. Hu, H.; Liu, X.J. Consistent Theory of Self-Bound Quantum Droplets with Bosonic Pairing. Phys. Rev. Lett. 2020, 125, 195302.

[CrossRef] [PubMed]
38. Hu, H.; Wang, J.; Liu, X.J. Microscopic pairing theory of a binary Bose mixture with interspecies attractions: Bosonic BEC-BCS

crossover and ultradilute low-dimensional quantum droplets. Phys. Rev. A 2020, 102, 043301. [CrossRef]
39. Petrov, D.S.; Astrakharchik, G.E. Ultradilute Low-Dimensional Liquids. Phys. Rev. Lett. 2016, 117, 100401. [CrossRef]
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