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Abstract: In this article, we review the essential properties of high-temperature superconducting
cuprates, which are unconventional isotope effects, heterogeneity, and lattice responses. Since their
discovery was based on ideas stemming from Jahn–Teller polarons, their special role, together with
the Jahn–Teller effect itself, is discussed in greater detail. We conclude that the underlying physics of
cuprates cannot stem from purely electronic mechanisms, but that the intricate interaction between
lattice and charge is at its origin.
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1. Introduction

Since the discovery of high-temperature superconductivity (HTSC) in the La-Ba-
Cu-O system by J.G. Bednorz and K.A. Müller in 1986 [1], 35 years ago, the search for
room-temperature superconductivity has been enormously intensified. However, not only
experimental efforts are at play, but, theoretically, this discovery has also been taken as
evidence that BCS theory needs to be abandoned and new pairing mechanisms are required.
In this article, we provide a short review of conventional (before 1986) and unconventional
(after 1986) superconductors and concentrate on the Jahn–Teller polaron (JTP) concept,
the idea behind the 1986 discovery. We focus on the direct, observable consequences of the
JTP and possible outlooks for future HTSC research.

2. Superconductiviy before 1986

As is well known, superconductivity was discovered in 1911, more than a century
ago, by Heike Kammerlingh Onnes, together with his assistant, Gilles Holst, in ultra-pure
mercury. This discovery was accidental and caused by curiosity, namely regarding the
behavior of the resistivity of metals at low temperatures. Since Kammerlingh Onnes had
made important progress to liquefy helium, he wished to determine which properties
of metals can be explored at low temperatures. At that time, there were several theories
predicting the temperature dependence of the resistivity of metals at ultra-low temperatures.
In view of the inability to reach this temperature scale, the true dependence remained
speculative only. Kammerlingh Onnes reached 4 K with He liquefaction and chose mercury
for his experiments, since this was available in ultra-pure form, i.e., free of impurities.
The major surprise was that the resistivity of Hg dropped to zero at 4.2 K, which was
later named superconductivity. Kammerlingh Onnes received the Nobel Prize for Physics
in 1913—not, as frequently believed, for the discovery of superconductivity, but for the
liquefaction of the last gas, helium.

After this breakthrough discovery, further elemental metals were found to be super-
conducting as well, all in the low-temperature regime below 7 K. Only in 1933 was a
further characteristic effect of superconductors discovered by Meissner and Ochsenfeld,
who showed that superconductors expel a magnetic field completely from the interior.
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Further important discoveries for the development of a theory for superconductivity
by Bardeen, Cooper and Schrieffer (BCS) were the isotope effect and the concept of paired
electrons, namely the formation of Cooper pairs. Both together were finally the basis for
the BCS theory of phonon-mediated superconductivity [2,3].

In 1950, two independent research groups observed an isotope effect (IE) on the
superconducting transition temperature Tc of mercury [4,5], which played a crucial role in
the development of a theoretical microscopic model of superconductivity—in particular, of
the weak-coupling BCS theory, where the electron–phonon interaction is the paring glue
for Cooper pairs [2,3]. The isotope shift on Tc can be quantified by the following relation:

Tc ∝ M−α, α = −d ln Tc/d ln M , (1)

where M is the isotope mass, and α is the IE exponent. In the framework of weak-coupling
BCS theory, Tc ∝ M−1/2 with αBCS ' 0.5. For many conventional superconductors, values
of α ≈ 0.5 were found (Pb: α = 0.48, Hg: α = 0.50, Sn: α = 0.47). However, values much
lower than 0.5 were also reported, e.g., Os (α = 0.20) or Ru and Zr (α ' 0). Note, however,
that a zero IE does not mean that no lattice effects are involved in the pairing. We come back
to this important point later when we discuss isotope effects in cuprate superconductors.

In conclusion, the observation of an IE in conventional superconductors offers strong
support of the concept of BCS theory, where the electron–phonon interaction leads to
Cooper pairing.

3. The Jahn–Teller Effect

The discovery of high-temperature superconductivity by J.G. Bednorz and K.A. Müller [1]
was based on three important aspects related to cuprates and oxides: (1) Cu2+ is a strong
Jahn–Teller (JT) ion; (2) superconductivity in oxides was rather rare; however, if found,
their transition temperatures were unexpectedly high, despite the fact that the density of
states was low and the ratio of phonon frequency versus Fermi energy close to one; (3) this
observation led to the conclusion that the electron–lattice interaction is unusually large.
The introduction of the JT polaron offered an explanation for the above and was taken as a
possible route in the search for new oxide superconductors. For this reason, both the JT
concept and the JT polaron are discussed in further detail in the following.

The JT effect was predicted and explained by Jahn and Teller at the Washington
Physical Society Meeting in 1936 [6,7]: As a general rule the electronic state of a polyatomic
molecule can be degenerate only if the atomic configuration has a sufficiently high degree of symmetry.
If the atomic nuclei are displaced the degenerate state may split up and if the splitting is a linear
function of the displacement the original symmetrical configuration, and with it the original
degenerate state, does not correspond to an equilibrium state of the molecule.

The principal statement in this work is that stability of a molecule and electronic degen-
eracy are not possible simultaneously unless the molecule is linear. Therein, they consider
all possible types of symmetry of the molecule by applying group-theory symmetrical rules
(Jahn–Teller theorem, JTT): All non-linear nuclear configurations are therefore unstable for an
orbitally degenerate state. This statement holds as long as the electrons contribute appreciably
to the molecular binding. The central issue of the theorem is that ionic displacements and
electronic motion cannot be decoupled, but form a novel vibronic state. This implies that
the Born–Oppenheimer approximation fails in systems with JT active centers, and it is no
more possible to separate the electronic wave function from the ionic one. This is very
reminiscent of the polaron problem.

Early on, the group around H. Thomas suggested that a JT polaron might form in itin-
erant electron systems [8] (Höck, Nickisch, and Thomas, HNT), which laid the groundwork
for the discovery of cuprate superconductors [1]. This theory will be discussed in more
detail in the following. As already mentioned above, the JTT states that the interaction
of an orbitally degenerate electronic state with the vibrational lattice modes destabilizes
the lattice and leads to a lower symmetry of the latter, i.e., a structural phase transition.
For a cooperative JT effect to occur, typically, insulators are considered, whereas HNT [8]
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postulated that the JT effect might also occur in certain metals—the band JT mechanism.
They considered a simplified case where a single electron with double degeneracy moves
in a lattice where a strong electron–lattice interaction is present, meaning that the electron
contributes to the binding of the molecule. The electron is allowed to hop from site to
site and interacts with a symmetry-breaking lattice coordinate. This is in contrast to con-
ventional electron–lattice coupling, where the interaction is caused by a fully symmetric
one. The energy gain and JT stabilization energies proportional to the interaction divided
by the lattice energy can reach substantial values. The case of interest for HNT [8] is
where the electronic band width and the JT energy are comparable. If the coupling is then
strong enough, the electron becomes trapped, i.e., localizes, and only together with the
surrounding lattice cloud can move in total through the lattice. A JT polaron is formed.

The study by HNT [8] assumes that a molecular complex of tetragonal symmetry is
realized in the crystalline unit cell with two-fold degenerate orbital states Ψl1, Ψl2 at lattice
site l, which form bands of local doublets. Competition between electron transfer and
localization arises when the electron–phonon interaction is switched on. Localization is
realized for strong electron–lattice coupling, whereas, in the weak-coupling limit, band
formation is favored.

In order to quantify these properties, the Hamiltonian Hpol has to consist of at least
three terms [8]:

Hpol = Hel + Hlatt + HJT (2)

with

Hel = ε0 ∑
l
(c+l1 cl1 + c+l2 cl2)−

1
2 ∑

l,l′ ,γ
tγ(l, l′) c+lγ cl′γ , γ = 1, 2 (3)

Hlatt = ∑
l
(p2

l /2M +
1
2

Mω2
0Q2

l )−
1
2 ∑

l,l′
Vl,l′QlQl′ (4)

HJT = −g ∑
l

Ql(nl1 − nl2) (5)

c+, c are electron creation and annihilation operators with c+c = n and site energy ε0. t
is the hopping integral, which is effective only for states of the same symmetry, i.e., inter-
orbital hopping is neglected, in accordance with symmetry considerations. The lattice
Hamiltonian Hlatt consists of the momentum p and conjugate displacement coordinate Q
and an intersite potential V, which couples nearest neighbor sites and accounts for an optic
mode. Otherwise, any dispersion is suppressed, since an Einstein oscillator with frequency
ω0 is assumed. The electron–lattice interaction proportional to g, as given by HJT , couples
the electrons at site l to the symmetry-breaking displacement coordinate at the same site.
The Jahn–Teller energy EJT = −g2/2M/ω2

0 is typically much stronger than conventional
electron–lattice interaction terms. The interesting problem of this scenario is realized when
the Jahn–Teller energy EJT is of the same order of magnitude as the hopping integral t,
since, in this situation, it can be expected that the electron travels with its surrounding
displacement cloud through the lattice, thus forming a JT polaron. The total object is
characterized by its momentum k and site index l, which are replaced by a single index
l in the following in order to keep the equations more transparent. Introducing phonon
creation and annihilation operators b+, b, a trial translationally invariant wave function for
the combined electron–lattice is given by:

|Ψk〉 = A ∑
l

exp(ikRl)∏
l′

exp[αl,l′(k)(b
+
l′ − bl)]∑

l′
a(k)l,l′ c+l′ |0〉 , (6)

where A is a normalization constant, and α is the shape of the total deformation, whereas a
determines the form of the electron wave packet. Both quantities A and a are variational
parameters.
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The main results are that a wave packet of the form ∑l′′ a(k)l−l′′cl′′ |0〉 refers to localized
states when its width is small and is located near the lattice site l with a deformation given
by α

(k)
l−l′ . This limit refers to EJT � t, h̄ω0 . In the opposite limit, namely α

(k)
l−l′ being small,

the state |Ψk〉 corresponds to an almost freely moving electron, which is nearly unaffected
by the lattice. However, if α

(k)
l−l′ = a = const., then |Ψk〉 represents the combined electron–

lattice bound state, where a momentum-independent electron couples to a phonon with
momentum k. In order to obtain an approximate ground-state energy E(0)

k , minimization

with respect to A and α
(k)
l−l′ has to be carried through.

The above problem has been solved for a 1D chain where ion–ion interactions (≈ Vl,l′ )
are suppressed, the electron hopping is restricted to nearest neighbors and the lattice
spectrum consists of an Einstein oscillator. The ground-state energy for the Jahn–Teller
polaron is then given by:

E(0)
k = E(0)

0 +
h̄2k2

2me f f
, (7)

with me f f being enlarged as compared to the bare electronic mass. Limiting cases of this
simplified model yield, however, the relevant physics of the problem as outlined above,
namely EJT � t. The distortion due to the coupling to the electronic motion is small
and the electron motion through the lattice is almost unaffected, i.e., free-electron-like.
With increasing JT energy, the distortion also increases, and for EJT � t, an isolated JT
molecular complex results. The competition between localization and itineracy is thus an
inherent property of the JT polaron problem.

One might ask, what is the distinction between the “conventional” Holstein-type
polaron [9–11] and the JT polaron [8]? While, in the former case, a fully symmetric
distortion pattern is formed, in the latter, a distorted lattice is involved. In addition,
in the first case, electronic degeneracy is not a prerequisite, whereas, in the JT scenario, it is
necessary, since the lifting of the degeneracy causes an important energy gain. Related to
the Lang–Firsov transformation [12], a variational ansatz is made, where analogous effects
on the electronic and vibrational states are obtained—namely, the electronic wave function
(kinetic energy) is exponentially renormalized by the lattice, whereas the lattice energy
experiences a rigid shift due to the coupling to the degenerate electronic state.

With respect to cuprates, limitations of the applicability of the JTT are readily apparent:
namely, the superconducting cuprates are doped materials. Correspondingly, the valency
of the copper ion is not unique, but changes inhomogenously within the system. Thus,
depending on the local copper valency, a JT effect might be possible or not. In addition,
the changing valency of copper goes hand in hand with lattice responses, inducing locally
distorted regions in coexistence with undistorted ones. From the above, the most important
message is that heterogeneity coupled with lattice responses is intrinsic and essential to
cuprate superconductivity. This aspect has been emphasized early on by K.A. Müller [13],
and, in conjunction with poorly understood experiments, he suggested that cuprates do
not have a single d-wave order parameter, but that two coupled-order parameters with
s + d symmetry need to be considered [14].

4. Heterogeneities and Mixed-Order Parameters in Cuprate Superconductors

Clear experimental evidence for intrinsic heterogeneity in the cuprates has been given
by extended X-ray absorption fine structure (EXAFS) spectroscopy and pair distribution
function analysis, where a stripe-like ordering of these regions has been detected [15].
Again, it must be concluded that, in view of the symmetry lowering in the distorted
regions, charge-rich areas and the fully symmetric undistorted charge-poor regions occur,
where, in the latter, the efficiency of the JT effect as a global player is absent. However,
the strong lattice responses observed experimentally cannot be ignored in a theoretical
approach of cuprate superconductivity, and various suggestions have been made that
polaron physics and bipolaron pairing scenarios are relevant for its understanding [11,16].
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In the majority of the community, it is assumed that cuprate superconductors have a
pure d-wave order parameter (see, e.g., [17–19]). However, based on experimental findings
and theoretical considerations, K.A. Müller proposed that cuprate superconductors must
have a mixed s + d-order parameter [14,20] (see above) that reflects the intrinsic inhomo-
geneities (hole-rich and hole-poor stripe-like regions) in these systems [13]. In order to test
this scenario, detailed muon-spin rotation (µSR) experiments on various families of cuprate
superconductors were performed, since, with this technique, it is possible to directly mea-
sure the magnetic penetration depth (superfluid density) and its temperature dependence,
which provides unique clues for s-, respectively, d-wave order parameters [21–23].

The µSR technique is a powerful and highly sensitive tool for investigating the mag-
netic properties of superconductors and magnetic systems. The positive muon µ+ (spin
S = 1/2) serves as a microscopic magnetic probe to detect local magnetic fields in the
bulk of a solid, even with no external magnetic field applied (zero-field µSR). This bulk
sensitivity makes µSR superior to APRES and STM, which are surface-sensitive and do not
probe the bulk properties of the sample. We will discuss this important point later. More-
over, in contrast to most standard experimental techniques (e.g., neutron scattering, NMR,
ARPES), µSR allows us to determine the magnetic volume fraction in a sample, which
is unique and of particular relevance for cuprates and related systems (e.g., coexistence
of superconductivity and magnetism). µSR has provided important information on the
microscopic magnetic properties of these materials, which are difficult to obtain with any
other experimental technique. Some examples are:

- Direct determination of the local magnetic field distribution p(B) and the magnetic
penetration depth in type II superconductors;

- Study of the complex vortex-phase diagram (flux–lattice melting, 3D–2D crossover,
vortex fluctuations) of cuprate superconductors;

- Coexistence of superconductivity and magnetism (magnetic phase diagram) in cuprate
and iron-based superconductors;

- Detection of spontaneous magnetic fields (orbital currents) in the pseudogap phase of
cuprate superconductors;

- Study of spin stripe order in cuprate systems.

µSR is an ideal method to determine the pairing symmetry (s, d, s+ d, etc.) of a cuprate
superconductor in the bulk of a single-crystal sample by measuring the temperature de-
pendence of the magnetic penetration depths (superfluid densities) λa, λb and λc along the
three principal crystallographic axes, a, b and c. Such experiments were performed on three
different cuprate systems, La1.83Sr0.17CuO4 [21], YBa2Cu3O7−δ [22] and YBa2Cu4O8 [23],
in order to demonstrate that the observed behavior is generic for cuprates, which indeed
was found to be the case.

As an example, Figure 1 shows the temperature dependences of the µSR relaxation
rates σa ∝ λ−2

a , σb ∝ λ−2
b and σc ∝ λ−2

c of single-crystal YBa2Cu3O7−δ [22]. Note that
σc(T) ∝ λ−2

c (T) is consistent with a pure s-wave order parameter, in agreement with c-axis
tunneling experiments [24]. However, both σa(T) ∝ λ−2

a (T) and σb(T) ∝ λ−2
b (T) show a

characteristic “up-turn” at a low temperature. A theoretical analysis of the data with a
phenomenological model of a coupled s + d-wave order parameter [25] reveals that, in
the CuO2 plane, a small s-wave order parameter (small gap) coexists with a dominant
d-wave order parameter (large gap); the contribution of the d-wave gap to the total in-plane
superfluid density is ≈75% [22]. This behavior is generic for all cuprate superconductors
investigated [21–23], and also manifests the intrinsic inhomogeneity of the cuprates [13,26].

Several experimental studies using various techniques (e.g., ARPES, phase-sensitive
tunneling experiments, NMR, µSR, magnetization experiments, etc.) were conducted to
test the pairing symmetry in cuprate superconductors. However, controversial results
concerning the gap symmetry (d, s, s + d) were obtained [20]. This is due to the fact
that some techniques (ARPES, phase-sensitive tunneling, etc.) probe the gap symmetry
near the surfaceof the sample, whereas other methods (µSR) probe the order parameter
in the bulk of the sample. Based on these experimental findings and group theoretical
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considerations, K.A. Müller [26,27] proposed that the order parameter has a mixed s + d
symmetry, changing from a dominant d-wave character near the surface to a more s-
wave character in the bulk of the superconductor. This scenario of coexisting s + d order
parameters is clearly supported by recent AC magnetization and µSR studies of the in-
plane (λab) and out-of-plane (λc) magnetic field penetration depths near the surface and in
the bulk of the electron-doped cuprate superconductor Sr0.9La0.1CuO2 [28].

Figure 1. Temperature dependences of the µSR relaxation rates σa ∝ λ−2
a , σb ∝ λ−2

b and σc ∝ λ−2
c of

single-crystal YBa2Cu3O7−δ measured along the principal crystallographic axes a, b and c. The solid
lines are the results of model calculations described in [22]. (Reprinted with permission from Ref.
[22]. Copyright 2007 APS).

5. The Two-Band Model

The above-described experimental data can be modeled by a two-band extended BCS
Hamiltonian, where both bands are characterized by different pairing symmetries. The
Hamiltonian HTB for the two-band model in its simplest form reads [29,30]:

HTB = H0 + H1 + H2 + H12 (8)
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with
H0 = ∑

k1,σ
εk1

c+k1σ ck1σ + ∑
k2,σ

εk2
d+k2σ dk2σ , (9)

where εki
is the band energy εk = ε̃− εk − µ, and ε̃i denotes the position of the c and d in

bands i = 1, 2, and c+, c, d+, d are electron creation and annihilation operators in band 1,
2, with spin index σ. The interband and intraband interactions Hi and H12 are explicitly
given by [29,30]:

H1 = − ∑
k1,k′1,q

V1(k1, k′1) c+k1+q/2↑ c+−k1+q/2↓ c−k′1+q/2↓ ck′1+q/2↑ (10)

H2 = − ∑
k2,k′2,q

V2(k2, k′2) d+k2+q/2↑ d+−k2+q/2↓ d−k′2+q/2↓ dk′2+q/2↑ (11)

H12 = − ∑
k1,k2,q

V12(k1, k2) [c+k1+q/2↑ c+−k1+q/2↓ d−k2+q/2↓ dk2+q/2↑ + h.c.] (12)

By performing a BCS mean-field analysis of the above equations, the gap equations are
derived and the superconducting transition temperature evaluated self-consistently. Af-
ter applying standard techniques, one obtains:

〈c+k1↑ c+−k1↓〉 =
∆̄∗k1

2Ek1

tanh
Ek1

2kBT
= ∆̄∗k1

Φk1 (13)

〈d+k2↑ d+−k2↓〉 =
∆̄∗k2

2Ek2

tanh
Ek2

2kBT
= ∆̄∗k2

Φk2 (14)

with E2
k1

= ε2
k1
+ |∆̄k1 |

2, ∆̄k1 = ∆k1 + Ak1 and E2
k2

= ε2
k2
+ |∆̄k2 |

2, ∆̄k2 = ∆k2 + Bk2 , which
results in the following self-consistent set of gap equations:

∆̄k1 = ∑
k′1

V1(k1, k′1) ∆̄k′1
Φk′1

+ ∑
k2

V12(k1, k2) ∆̄k2 Φk2 (15)

∆̄k2 = ∑
k′2

V2(k2, k′2) ∆̄k′2
Φk′2

+ ∑
k2

V12(k1, k2) ∆̄k1 Φk1 (16)

from which the temperature dependencies of the two gaps (Figure 2a) and the supercon-
ducting transition temperature Tc have to be determined [31]. The effect of the interband
coupling on Tc is demonstrated in Figure 2b for the case of two isotropic s-wave gaps
(green circles) and the combination of s + d symmetry (blue circles), where a substantial
increase in Tc takes place as compared to the s + s case. The largest effect on Tc is, however,
clearly due to the interband interaction itself, which rapidly changes the system from
non-superconducting (V12 = 0) to finite values of Tc (Figure 2b).

The above-described model has been used to calculate the penetration depth and
compared to results obtained experimentally, with apparently very good agreement with
the experiment [25].

A further challenge of the above modeling is the understanding of the unconventional
isotope effects observed in cuprates. These are presented in the following.
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Figure 2. (a) Self-consistently derived coupled gaps with s- (blue diamonds) and d-wave symmetry
(blue squares) with interband coupling V12 = 0.4. (b) Superconducting transition temperature Tc as a
function of the interband interaction V12. The green circles refer to s + s, and the blue circles to s + d
pairing symmetry. (After [31]).

6. Unconventional Isotope Effects in Cuprate Superconductors

The discovery of high-temperature superconductivity in the cuprates [1] with transi-
tion temperatures Tc ' 100 K, much higher than for conventional low-temperature super-
conductors, raised some fundamental questions: What is the origin of the electron–hole
pairing mechanism in these superconductors? Is it the electron–phonon pairing as in con-
ventional superconductors, or are purely electronic effects at play? In order to explore the
origin, an oxygen (16O/18O)-isotope effect (OIE) study in optimally doped YBa2Cu3O7−δ

was performed in 1987, but no appreciable OIE on Tc could be detected [32]. From this
finding, the majority of researchers concluded erroneously that the electron–phonon in-
teraction, or, more generally, lattice effects, are not responsible for superconductivity in
the cuprates, and alternative models—mainly of purely electronic origin—were proposed
to explain the high-temperature superconductivity in the cuprates. Consequently, lattice
effects were almost completely ignored. However, soon after the first OIE study [32], it
was demonstrated that all cuprate superconductors exhibit a finite OIE on Tc at all doping
levels, increasing substantially with reduced doping (see, e.g., [33,34]), which is a generic
trend, as shown by the examples presented in Figure 3. These IE results clearly indicate
that lattice effects are essential to understand the basic physics of cuprate high-temperature
superconductors.

Having the JT polaron concept in mind, K.A. Müller was convinced early on that
the isotope effect also plays a vital role in understanding the nature of high-temperature
superconductity in the cuprates [35]. Consequently, in 1990, he initiated a new project, “Iso-
tope Effects in Cupate Superconductors”, at the University of Zurich [36–39]. The primary
aim of this project was to perform a so-called site-selective oxygen isotope effect (SOIE)
study on Tc in optimally doped YBa2Cu3O7−δ [40]: Which oxygen atoms (planar (p), apical
(a) or chain (c) oxygens) in the lattice contribute most to the OIE shift of Tc? The results
of this investigation, together with complementary SOIE studies of Y1−xPrxBa2Cu3O7−δ

(x = 0, 0.3, 0.4) [41,42], are displayed in Figure 4. It is obvious from the figure that, for all
doping levels x, the main contribution (≥80%) to the isotope shift of Tc arises from the
oxygen atoms in the CuO2 planes. This is opposite to what was expected by K.A. Müller in
his original proposal, where he attributed large anharmonicity to the apical oxygen ions
and a major contribution of them to the OIE on Tc [35].
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Figure 3. Oxygen isotope effect exponent αO for various families of cuprate high-temperature
superconductors (red, blue and green data points) vs. reduced temperature Tc/Tm

c (Tm
c is the

maximum Tc for a particular family of cuprates). This behavior of αO(Tc/Tm
c ) is generic for all

families of cuprate superconductors. The black stars refer to the calculated α when only the nearest
neighbor hopping integral (t1) is renormalized. The purple stars are theoretically derived where both
the second nearest neighbor (t2) and the interplanar (t4) hopping integrals are renormalized. Note
that in order to achieve the depicted dependence of α as a function of Tc/Tm

c , the inclusion of t4 is
essential, thereby emphasizing the 3D nature of superconductivity. (From [43]).

Figure 4. Total (t) and partial (p,ac) oxygen isotope exponent αO as a function of Tc for
Y1−xPrxBa2Cu3O7−δ (t = total: all oxygen sites, p: planar oxygen sites, ac: apex and chain oxy-
gen sites). Solid and dashed lines are visual guides. (After [36]).

Besides the OIE and SOIE on Tc discussed above, doping-dependent unconventional
OIEs were also observed on various physical quantities, such as the magnetic penetration
depth λ, the spin-glass transition temperature Tg, the spin-stripe ordering tempertaure Tso
and the pseudogap temperature T∗ [36–39,43–45]. In the following, we only discuss the
OIEs on λ and T∗, which both demonstrate the polaronic character of the supercarriers in
the cuprates.

In weak-coupling BCS theory (Migdal adiabatic approximation), the effective mass
m∗ of the supercarriers is independent of the mass M of the lattice atoms. However, in the
JT polaron concept, the adiabatic approximation is no more fulfilled, and m∗ depends on
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M. A direct test of this is the observation of an IE on the magnetic penetration depth λ,
which is absent in a weak-coupling BCS superconductor. For a cuprate high-temperature
superconductor, the zero-temperature in-plane magnetic penetration depth λab is given
by [36]:

λab(0) =

√
1

µ0e2

m∗ab
ns

, (17)

where ns is the superconducting carrier density and m∗ab is the in-plane effective mass of
the carriers. It is convenient to express the OIE on λab(0) in terms of the in-plane superfluid
density ρs ∝ 1/λ2

ab(0), yielding:

∆ρs/ρs = ∆λ−2
ab (0)/λ−2

ab (0) = ∆ns/ns − ∆m∗ab/m∗ab. (18)

This implies that any OIE shift of the superfluid density ρs arises from an OIE shift of
ns and/or m∗ab.

OIE studies of the magnetic penetration were performed on a number of families of
cuprates by means of different experimental techniques (magnetization measurements,
torque magnetometry, muon-spin rotation (µSR)) and on various kinds of samples (fine-
grained powder samples, microcrystals, thin films) (see, e.g., [36–39]). All these studies
show a clear OIE on the magnetic penetration depth, which increases with decreasing dop-
ing (decreasing Tc) for all investigated cuprates. As an example, we show in Figure 5 some
of these results obtained on microcrystals of underdoped La2−xSrxCuO4 (x = 0.080, 0.086)
using high-sensitivity torque magnetometry [46]. A large OIE on the in-plane magnetic
penetration depth λab(0) was detected: ∆λ−2

ab (0)/λ−2
ab (0) = −9(3)% for x = 0.080 and

−7(1)% for x = 0.086, respectively [46]. Moreover, a site-selective OIE (SOIE) study of λab
in underdoped Y0.6Pr0.4Ba2Cu3O7−δ revealed that the planar oxygens mainly contribute
(' 100%) to the OIE shifts of Tc and λab (see also Figure 4) [42].

Figure 5. Normalized in-plane superfluid density ∆λ−2
ab (0)/λ−2

ab (0) for microcrystals of
La2−xSrxCuO4: (a) x = 0.080; (b) x = 0.086. The reproducibility of the oxygen exchange procedure
was checked by backexchange (crosses). (Reprinted with permission from Ref. [46]. Copyright
2000 APS).
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For comparision, the boron isotope (10B/11B) effect on Tc and the magnetic penetration
depth λ were also investigated in the conventional two-gap superconductor MgB2 [47].
As expected, a substantial isotope effect on Tc was observed, but no isotope effect on λ
could be detected in this BCS-type superconductor.

It is generally accepted that the pseudogap temperature T∗ plays a crucial role in
understanding the complex physics of cuprates. However, from an experimental point
of view, the temperature T∗ is ill-defined. It is more a “crossover temperature” rather
than a phase transition temperature, and depends on the time and length scales of the
experimental technique (see, e.g., [48]). Here, we define T∗ as the temperature where
deviations from the average local structure set in (charge ordering or charge-stripe ordering
temperature). Note that, for this definition of T∗, magnetic effects are unimportant. Thus,
a possible OIE on T∗ reflects the presence of lattice/polaron effects. Up to now, several
studies on the OIE on T∗ on different cuprate systems have been performed by means
of X-ray absorption near-edge structure (XANES) studies [48,49] and neutron crystal-
field spectroscopy (NCFS) studies [50–54]. All these studies show a large negative OIE
on T∗. The results of all present OIE studies of T∗ and Tc of La2−xSrxCuO4 obtained
by XANES [48,49] together with the NCFS results for La1.96−xHo0.04SrxCuO4 [53,54] are
presented in Figure 6. Note that the OIE exponent αT∗ is sign-reversed to αTc and increases
almost linearly from αT∗ ≈ −5 to −0.6 with increasing doping x. On the other hand,
the doping dependence of the OIE exponent αTc shows the characteristic behavior with
the anomaly at x ' 1/8 (Figure 6). Moreover, T∗(x) decreases linearly with increasing
x with different slopes for 16O and 18O (see Figure 6a). The limit T∗ = 0 K is tentatively
identified as a “quantum critical point xc” [55,56]. Since xc exhibits a pronounced OIE [48],
this “special point” thus cannot be of purely electronic origin, as widely assumed.

Furthermore, additional NCFS studies of the 63Cu/65Cu isotope effect of T∗ in double-
layer HoBa2Cu4O8 [52] and in single-layer La1.81Ho0.04Sr0.15CuO4 [53] revealed a large
negative isotope shift of T∗ for the double-layer compound, but no isotope shift for the
single-layer compound. Whereas oxygen and copper JT-type modes are both relevant for
the double-layer compound, the so-called umbrella-type copper modes are absent in the
single-layer compound, consistent with the observed oxygen and copper isotope effects on
T∗ [53].

A theoretical explanation of the above-described IE has been given in [43], where the
renormalizations of the hopping integrals through polaron formation have been inves-
tigated in detail. In order to reproduce the band structure of cuprates with a minimum
model, the nearest (t1) and second nearest (t2) neighbor hopping together with the interpla-
nar (t4) one are sufficient [57]. Their exponential narrowing has been treated variationally
and as a function of isotopic replacement. As depicted in Figure 3, only t2 and t4 contribute
correctly to the IE, whereas t1 is counterproductive. By combining these results with the
corresponding lattice displacements (Figure 7), it is apparent that only the Q2-type lattice
mode is essentially involved in the OIE, thereby confirming the original viewpoint of JT
polaron formation. Note that the interplanar hopping t4 plays an important role in the
correct derivation of the OIE on Tc (see Figure 3), and thus demonstrates that the CuO
planes are not the only relevant structural elements for HTSC, but that the interplanar
coupling (3D) needs to be included as well.
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Figure 6. (a) The superconducting transition temperature Tc and the pseudogap temperature T∗ of
La2−xSrxCuO4 as a function of doping x for 16O (red symbols) and 18O (blue symbols). The solid
lines are obtained from a linear fitting. The dashed line is a visual guide. The data are results from
XANES and NCFS experiments (see [48]). (b) Doping dependence of the isotope effect exponent αTc

and αT∗ for La2−xSrxCuO4. The data of αT∗ are obtained by various XANES and NCFS experiments
and the data of αTc are from magnetization measurements (see [48]). The dashed lines are a visual
guide. (Reprinted with permission from Ref. [48]. Copyright 2017 APS).

Figure 7. The relevant ionic displacements in the CuO2 plane dominated by the nearest (t1) and or
second nearest (t2) hopping integrals, giving rise to a Q2-type phonon mode visualized by the yellow
areas. Note that the interplanar hopping integral t4 is not depicted in this 2D scheme, even though it
is important for the OIE on Tc, as is evident from Figure 3. (From [43]).
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In the following, we concentrate on the correlated effect arising from the lattice
degrees of freedom and evaluate its response to polaron formation. Since the above-
described isotope experiments support directly the eminent role played by the lattice, it is of
importance to see which effects result in the lattice response. Polaron formation has coupled
consequences for the electronic and lattice degrees of freedom. While, as pointed out above,
the electronic hopping is renormalized by it, the lattice displacements experience a rigid,
electronically induced shift. This means that the lattice-related Hamiltonian transforms
to [12]:

H̃ = ∑
q,j

h̄ω̃q,j (b̃+q,j b̃q,j + 1/2) (19)

with
b̃+q = b+q + ∑

q
γi(q) c+i ci , b̃q = bq + ∑

q
γi(q) c+i ci , (20)

where the momentum q and branch j-dependent renormalized frequencies ω̃q,j are given
by [58,59]:

ω̃2
q,j = ω

(0)
q,j

2
−

γ2
q,j

N(EF)
∑
k

1
ε(k)

tanh
ε(k)
kBT

(21)

with ε(k) being the Fourier transform of the site representation and ω
(0)
q,j the bare un-

renormalized frequency. The coupling to the electronic degrees of freedom introduces an
important temperature-dependent softening of this coupled mode, which is no longer a
pure lattice mode, but represents the combined distortion of lattice and electronic degrees
of freedom. The momentum k-dependent electronic dispersion is given by:

ε(k) = −2t1[cos(kxa) + cos(kyb)] + 4t2 cos(kxa) cos(kyb)∓ t4[cos(kxa)− cos(kyb)]2 − µ, (22)

where t1, t2 and t4 account for the hopping integrals defined above, and µ is the chemical
potential, which controls the band filling. Below Tc, ε(k) has to be replaced by E(k) =√

ε(k)2 + ∆(k)2, where ∆(k) is the superconducting energy gap, which can be of d-wave or
s-wave symmetry, or be represented by a mixed (s+ d)-wave order parameter, as suggested
from µSR experiments [21–23] discussed above (see Figure 1). As mentioned above, ω̃2

q,j
gains a substantial temperature dependence due to its coupling to the charge and softens
with decreasing temperature at finite momentum q, which defines the periodicity of a
modulated structure [58,59]. When this softening is complete, a dynamic superstructure in
the polaron spatial distribution appears, which we identify here with the so-called stripe
pseudogap phase [60,61]. Within this description, the onset temperature T∗ is determined

by the coupling constant γ and the energy of the unrenormalized mode frequency ω
(0)
q,j

2
,

which is given by the following implicit relation:

ω
(0)
q,j

2
=

γ2
q,j

N(EF)
∑
k

1
ε(k)

tanh
ε(k)
kBT∗

(23)

γ is the relevant control parameter, which systematically grows upon approaching the un-
derdoped regime, where localization sets in and a metal to insulator transition takes place.
Note that the pseudogap temperature T∗ is isotope-dependent through the coupled effects
of the isotope dependence of the bare lattice frequency and the polaronic renormalizations
of the band energies. The isotope effect on T∗ is sign-reversed as compared to the one on Tc,
and it is huge, in full agreement with the XANES and NCFS experiments presented above
(see Figure 6), demonstrating the importance of polaron formation. Above T∗, the polarons
are transient, dynamic and randomly distributed over the lattice forming around the doped
hole, since the extra charge introduced by doping induces a local lattice distortion, which is
tied to this charge. At high temperatures, the dynamics of these objects exhibit rather high
frequencies. Upon approaching T∗, their dynamics slow down and are almost frozen at
T∗. Below T∗, the polarons become persistent, but are still dynamic with high frequencies
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and confined to the new patterned modulations, which are determined by the momentum
at which the local dynamics freeze in. The relative mean square displacement σ2 of the
copper–oxygen distance [58,59] as a function of temperature for γ2 = 0.25 and Tc = 40 K is
shown in Figure 8.

Figure 8. Calculated temperature dependence of the mean square displacement σ2 for an s-wave
superconductor (filled circles) and a d-wave superconductor (open squares). The inset shows experi-
mental EXAFS data for La1.85Sr0.15CuO4 [62]. (From [58]).

The filled black circles/open black squares refer to an s-wave and a d-wave order
parameter, respectively. For comparison, the bare unrenormalized mean square dis-
placement (γ = 0) is added (dashed line). The inset shows the experimental data for
La1.85Sr0.15CuO4 [62]. Note that, in the calculations, no damping or artificial line width
broadening was introduced in order to minimize the number of parameters. As is apparent
from Figure 8, the experimental data can only be reproduced by including an s-wave order
parameter that correctly models the dip/hump structure below T∗ and is absent in a pure
d-wave scenario.

7. Concluding Remarks

In the above, we have provided various experimental results that highlight the role
of special lattice effects in cuprate high-temperature superconductors. All of these have
their origin in the JT polaron concept, which is based on JT physics in combination with its
itinerant character, the JT polaron. One might argue that the picture is incomplete if we
ignore spin fluctuations, electronic effects and considering their influence for the pairing
interaction. However, in our opinion, the essential interactions must lie in this approach,
since consistent explanations for the discussed experimental results are absent in any of
the alternative models. Thereby, we close the circle initiated by K.A. Müller, who started
his successful career for new oxide superconductors with this concept in mind.

Finally, we wish to address the consequences for further work and searches regarding
high-temperature superconductivity. Following our above remarks, a reasonable under-
taking would be to look for transition metal oxides or chalcogenides where the metal
ion should be a JT active one with the tendency to valence instability, thus ensuring that
the ground state is intrinsically heterogeneous. In combination with the unconventional
large polarizability of oxygen, respectively chalcogen ions, fluctuating charge transfer is
enabled, which enhances the charge–lattice coupling locally and allows for unusual lattice
anomalies in conjunction with possible pairing instabilities. In this context, it is important
to re-emphasize that the electron–lattice interaction considered in our approach is not
the conventional BCS electron–phonon interaction, which is long-range, but a local one
outside the Born–Oppenheimer approximation. This leads to the discussed unconventional
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isotope effects, which are typically overlooked or even ignored in purely electronic or spin-
fluctuation-based pairing scenarios. Furthermore, and as outlined above, combined order
parameters are a consequence that not only leads to agreement with puzzling experiments,
but also accounts for the complexity in the electronic structure of cuprates, often avoided
in strongly simplified alternative procedures.
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