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Abstract: The virial expansion provides a non-perturbative view into the thermodynamics of
quantum many-body systems in dilute regimes. While powerful, the expansion is challenging as
calculating its coefficients at each order n requires analyzing (if not solving) the quantum n-body
problem. In this work, we present a comprehensive review of automated algebra methods, which
we developed to calculate high-order virial coefficients. The methods are computational but non-
stochastic, thus avoiding statistical effects; they are also for the most part analytic, not numerical,
and amenable to massively parallel computer architectures. We show formalism and results for
coefficients characterizing the thermodynamics (pressure, density, energy, static susceptibilities)
of homogeneous and harmonically trapped systems and explain how to generalize them to other
observables such as the momentum distribution, Tan contact, and the structure factor.

Keywords: virial expansion; cluster expansion; ultracold Fermi gases; neutron matter

1. Introduction

Quantum many-body systems are notoriously difficult to compute. Whenever interac-
tions play an important role, in atomic, condensed matter, or nuclear physics, most analytic
approaches (if not all) are unable to give quantitatively reliable results and numerical
methods often face challenges of their own as well, such as the infamous sign problem
(notwithstanding remarkable progress over the last few years) [1].

The virial expansion (VE) (see, e.g., Reference [2] for an introduction to both the
classical and quantum cases and Reference [3] for a comprehensive review) aims to tackle
the finite-temperature quantum many-body problem by breaking it down into contribu-
tions from subspaces of the full Fock space corresponding to a fixed (and small) particle
number. In this sense, the VE is effectively an expansion around a dilute limit in which
the interparticle distance is much larger than every other scale in the system, in particular
the thermal wavelength λT =

√
2πβ, where β = 1/T is the inverse temperature and we

have used units such that h̄ = kB = m = 1. With this being a high-temperature regime
(as λT is in the above sense small), one might expect that interaction effects would play a
quantitatively minor role; this, however, is not necessarily the case, as we will see. Another
misconception is that quantum effects play a small role in such a regime, which is also not
generally true. Both interaction and quantum effects are central in the calculation of the
virial expansion and leave a clear imprint in the expansion coefficients. It is for that reason
that such calculations are challenging and that specialized techniques are required to carry
them out, as we explain in this review. However, we are getting ahead of ourselves; let us
start from the beginning.

The origin of the VE is the classical cluster expansion of Mayer et al., developed
in the 1930s [4], in which the classical grand-canonical partition function Z of a three-
dimensional gas is expanded in powers of the fugacity z = exp(βµ), where µ is the
chemical potential, namely
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Z =
∞

∑
N=0

(
z

λ3
T

)N
QN
N!

, (1)

where

QN =
∫ N

∏
i=1

drie
− β

2 ∑i 6=j Vij , (2)

is the classical canonical partition function and Vij is the pairwise interaction potential
between particle i and particle j.

An expansion of both the pressure P and the number density n in powers of z is thus
obtained, namely

βP =
1

λ3
T

∞

∑
k=1

bkzk, (3)

n =
1

λ3
T

∞

∑
k=1

kbkzk, (4)

where the bk, originally called ‘cluster coefficients’, typically depend on temperature and
the specific form of Vij. Substituting the density expansion into the pressure expansion,
order by order in z, one obtains the old virial expansion of the imperfect gas equation of
state in powers of the density, i.e.,

P = nkBT
∞

∑
k=1

akxk−1, (5)

where x = nλ3
T and the ak are in older literature called ‘virial coefficients’ (more recently,

that nomenclature has been used for the bk coefficients instead). Calculating the ak requires
knowing all the b coefficients up to order k, which in turn requires calculating the canonical
partition functions of up to k particles, as we will show in more detail below. The original
work of Mayer et al. proposed a diagrammatic technique for calculating the classical case,
which is naturally simpler than its quantum counterpart simply because of the well-known
fact that kinetic and potential energies are commuting numbers in the classical case and non-
commuting operators in the quantum case. The quantum virial expansion was first explored
by Kahn and Uhlenbeck [5] and further developed by Lee and Yang [6–10]. As we review
below, the calculation of bk for the quantum case is so challenging in practice that efforts to
calculate the third-order coefficient and beyond were not successful until the 21st century,
when computers became powerful enough to apply exact diagonalization techniques. From
this point on, we focus entirely on the VE in the context of quantum systems.

Historically, applications of the VE have followed the above paradigm and thus
centered on equations of state. However, since the VE is an expansion of the grand-
canonical partition function, it is possible to apply it to any physical quantity. We will
show techniques to calculate the VE for applications to pressure and density but also to the
Tan contact [11–13] (relevant for systems with short-range interactions), the momentum
distribution, and response functions such as the compressibility and the structure factor.

The recent developments of automated algebra, led by our group [14–21], have
enabled the precise calculation of high-order coefficients (meaning beyond the third order,
which can currently be addressed numerically). With such orders in hand, it becomes
practical and meaningful to implement resummation techniques which, uncertainties
notwithstanding, have been shown to substantially extend the domain of applicability of
the virial expansion [18,19].

The remainder of this work is organized as follows. We begin in Section 2 by reviewing
the formal elements of the virial expansion of the grand thermodynamic potential, as that
is the simplest case, which also allows us to establish the basic identities and notation. In
Section 3, we provide a brief review of conventional calculation methods for the virial
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coefficients. In Section 4, we present our method by example using a homogeneous system
of Fermion gases with attractive interaction changing from the non-interacting limit to the
unitary limit. Encouraged by the agreements with and improvements over existing results,
we further generalize the method to other systems in Section 5, including harmonically
trapped systems in Section 5.1, neutron matter in Section 5.2, and the unitary Bose gas
in Section 5.3. Finally, Section 6.2 demonstrates the applications to more complicated
observables. Namely, one-body operators such as density or momentum distributions are
discussed in Section 6.2, and two-body operators, which are of interest to quantities such
as the structure factor or viscosity, are shown in Section 6.3.

2. Basic Formalism

As mentioned above, the VE is an expansion in powers of the fugacity z

z = eβµ, (6)

where β is the inverse temperature and µ is the chemical potential. In the presence of spin
or other internal degrees of freedom, there will naturally be a fugacity attached to each
(conserved) particle number. In this section, we present the formalism for a single flavor
for simplicity, but in upcoming sections we will generalize it to spin-1/2 fermions.

The thermodynamics is encoded in the grand-canonical partition function, which for
a quantum system is given by

Z = Tr
[
e−β(Ĥ−µN̂)

]
, (7)

where Ĥ is the Hamiltonian, N̂ is the particle number operator, and µ is the chemical
potential. Expanding Z in powers of the fugacity, we obtain

Z =
∞

∑
N=0

zNQN , (8)

where
QN = trN

[
e−βĤ

]
, (9)

is the canonical N-particle partition function.
Then, the grand thermodynamic potential is expanded in powers of z using the above

expressions to obtain the conventional expression

− βΩ = βPV = lnZ = Q1

∞

∑
k=1

zkbk, (10)

where bk is the k-th order virial coefficient, which is an intensive, dimensionless quantity.
Through Equations (8) and (10), the bk are related to the canonical partition functions; for
example, the first few bk are

b1 = 1,

b2 =
Q2

Q1
− Q1

2!
,

b3 =
Q3

Q1
− b2Q1 −

Q2
1

3!
,

b4 =
Q4

Q1
−
(

b3 +
b2

2
2

)
Q1 − b2

Q2
1

2!
−

Q3
1

4!
.

(11)

For a system of non-interacting, non-relativistic fermions in d dimensions, the virial
coefficients are

b(0)k = (−1)k+1k−(d+2)/2, (12)
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whereas for bosons the result is simply k−(d+2)/2. In the presence of interactions, one
usually expands the ratio of Z to its non-interacting counterpart Z0, to obtain

− β∆Ω = ln(Z/Z0) = Q1

∞

∑
k=1

zk∆bk, (13)

where ∆bk = bk − b(0)k captures the interaction effects and is the quantity most often
reported. In practice, the ∆bk coefficients are determined by the interaction-induced change
in Qj for 1 < j ≤ k, and therein lies the difficulty: those Qj must be determined with
enough accuracy to cancel out all the volume dependence (which contains terms that scale
with power up to j) and obtain a volume-independent ∆bk. As we will see below, some
methods focus on extracting ∆bk directly from grand-canonical quantities (typically the
density), where the volume cancellations have already happened, while others such as ours
(and similarly exact diagonalization) propose to calculate the interaction effects on Qj and
use those to calculate ∆bk.

The above is the VE as applied to the pressure; from it, the expansion for the density is
easily derived. As mentioned above, the VE can, in fact, be applied to any observable such
as Tan contact, the momentum distribution, and the structure factor (see Section 6.3). We
will return to those in a later section.

3. Calculation Methods for the Virial Expansion
3.1. Second Order

In addition to the trivial one-body contribution, fully captured by Q1 and factored
out of the expansion, the leading contribution accounting for interaction effects appears
at second order, i.e., the two-particle subspace. The interaction effects on the two-particle
spectrum are captured by the scattering properties (binding energies and phase shifts), and
in those terms, the second-order virial coefficient b2 was first calculated analytically by Beth
and Uhlenbeck in the 1930s [22,23]. Specifically, their result relates the interaction change
∆b2 to the two-body scattering phase shift δ(E) such that, for a spin-1/2 Fermi gas in three
spatial dimensions (3D),

∆b2 =
√

2 ∑
i

e−βEi
B +
√

2 ∑
l

2l + 1
π

∫ ∞

0
dp

dδl
dp

e−
λ2

T p2

2π (14)

where the first summation is overall bound states and the second summation is overall
partial waves.

One may take the above expression in different dimensions and relate it to the pa-
rameters of the corresponding effective range expansion (i.e., scattering length, effec-
tive range, etc.) and obtain, for a zero-range interaction (see, e.g., [24,25] for results in
1D, [26,27] for 2D, and [28] for 3D):

∆b1D
2 = − 1

2
√

2
+

eλ2
1/4

2
√

2
[1 + erf(λ1/2)],

∆b2D
2 = eλ2

2 − 2
∫ ∞

0

dp
p

2e−λ2
2 p2

π2 + 4 ln2(p2)
,

∆b3D
2 =

eλ2
3
√

2
[1 + erf(λ3)],

(15)
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where λd is the physical coupling strength in d dimensions, defined as

λ1 = 2

√
β

a0
,

λ2 =
√

βEB,

λ3 =

√
β

a0
,

(16)

where a0 is the s-wave scattering length and EB is the binding energy of the single two-body
bound state of the 2D case.

While the above results are sufficient for simple systems such as dilute gases of
ultracold atoms, where the interaction can be modeled very precisely as being purely zero-
range s-wave, a deeper analysis is needed to account for the complexities of nuclear systems
(such as neutron and nuclear matter). References [29,30] presented such an extension of
the 3D case to the richer scattering properties found in nuclear physics. There, one must
account for not only a finite range but also angular momentum channels beyond the
simplest case of pure s-wave. For pure neutron matter, References [29,30] integrate by parts
to rewrite the Beth–Uhlenbeck result as

∆b2 =
1

21/2πT

∫ ∞

0
dE e−βE/2δtot

neutrons(E), (17)

where δtot
neutrons(E) is the sum of all the scattering phase shifts at laboratory energy E, whose

contributions from different angular momentum channels enter as

δtot
neutrons(E) = ∑

S,L,J
(2J + 1)δ2S+1LJ

(E), (18)

where the partial wave terms δ2S+1LJ
(E) are obtained from partial wave analyses of experi-

mental data such as Nijmegen’s [31].
For nuclear matter, on the other hand, one must account for the deuteron bound state,

such that
∆b2 =

3
21/2

(
eEd/T − 1

)
+

1
23/2πT

∫ ∞

0
dE e−βE/2δtot

nuc(E), (19)

where Ed is the binding energy of the deuteron and the −1 term comes from partial
integration when accounting for the phase shift at zero energy being π times the number
of bound states (see also Reference [32]). The work of References [29,30] also analyzed
the contributions due to pure alpha-particle scattering and nucleon-alpha scattering, thus
obtaining all possible contributions to the second-order virial expansion for nuclear matter
composed of neutrons, protons, and alpha particles.

3.2. Third Order and Beyond

The complexity of the quantum many-body problem for three particles and beyond
forces one to switch to a combination of analytic and numerical approaches to calculate
virial coefficients beyond the second order. In cases of great interest such as spin-1/2
fermions, one has to further break up the problem into the subspaces of fixed particle
number; for example, calculating ∆b4 requires solving the problem of 3 + 1 particles
(i.e., 3 spin up and 1 spin down, and vice versa) as well as 2 + 2 particles. The number of
such subspaces naturally proliferates with higher total particle number, and furthermore
each subspace may present its own difficulties.

To calculate ∆b3 there is only one distinct subspace that matters, namely 2 + 1 par-
ticles (assuming that both particles have the same mass), and impressive exact analytic
progress was made by several authors, notably the work of Leyronas [33], Kaplan and
Sun [34], and Castin and colleagues [35–38], as well as the large effective range expansion
of Ngampruetikorn et al. [39] (see also the early work of Reference [40] focusing on the
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unitary limit). There are other works focusing on this area, but they are omitted from this
review as their methods or formalism are beyond our scope. Readers may be interested in
References [41,42], which discuss related work.

Leyronas organizes the calculation of ∆bk around the VE of the density equation of
state, itself expressed as an integral over all momenta of the equal-time single-particle
Green’s function in momentum space (i.e., the momentum distribution). Diagrams of
various types are then identified at each order in z (up to order z3), where contributions
from the 2- and 3-body T matrix appear (the latter describing the atom-dimer scattering).
The resulting time integrals are converted into energy integrals, which are then evaluated
analytically where possible and otherwise numerically. The resulting approach is thus for
the most part analytic and in principle exact and is in remarkable agreement in the unitary
limit with prior purely numerical results for b3 [43].

Other diagrammatic approaches also made interesting contributions. The work of
Kaplan and Sun [34], which preceded Leyronas, starts from the density equation-of-state
written as a momentum integral over the single-particle Green’s function (as Leyronas
does), but rather than carrying out the Matsubara sum from the outset, it uses a Poisson
summation to express the propagator directly as a power series in z. The latter is then
interpreted as a sum over the winding number of worldlines around the compact imaginary
time direction. The diagrams associated with each term in that expansion are referred to
as ‘chronographs’. Adding the contributions from such chronographs and accounting for
systematic effects by extrapolation, very good agreement with prior numerical results [43]
for b3 was obtained in the unitary limit.

Ngampruetikorn et al. [39] used an expansion around large effective range R∗ (com-
pared to the thermal wavelength λT), which allows them to examine up to the four-particle
subspace diagrammatically, thus obtaining numerical estimates for up to ∆b4. They focused
on the unitary Fermi gas by interpolating between R∗ � λT and λT/|a| � 1, where a is the
scattering length, and applied their method to the pressure, density, entropy, and spectral
functions. Their interpolation results for ∆b3 and ∆b4 at unitarity agree with those obtained
by other groups, including those presented here. In Reference [44], Ngampruetikorn et al.
also studied the pairing correlations of the 2D Fermi gas up to third order in the virial
expansion, additionally obtaining Tan contact (we return to the expansion of this and other
quantities below).

In Reference [45], Werner and Castin analyzed the (2 + 1)-body problem of harmoni-
cally trapped spin-1/2 fermions at unitarity, obtaining their exact spectrum and eigenstates.
Generalizing that work to the problem of 3 + 1 and 2 + 2 particles, Endo and Castin [36,37]
(see also [38]) calculated the value of ∆b4 as a function of the trapping frequency βω. As we
will show in Section 5.1, our non-perturbative determination turned out to be in remarkable
agreement with their result, which they considered to be only a conjecture.

On the numerical side, some of the early works used exact diagonalization in hyper-
spherical coordinates [35,43], whereby a large number of eigenstates can be calculated
and their energies summed over to calculate canonical partition functions, thus providing
access to b3 (and to some extent b4, and with low accuracy b5) for systems of cold atoms
with short-range interactions.

In an outstanding numerical feat, Yan and Blume [46,47] designed an ad hoc Monte
Carlo method to tackle the calculation of ∆b4 for fermions at unitarity, resulting in the
first determination of this quantity with stochastic methods. Their calculation featured
a harmonic trapping potential, which induces a temperature dependence in ∆b4, which
is expected to be temperature-independent in the unitary limit. (Below we will show a
comparison between Yan and Blume’s results and ours, when our method is generalized
to include a harmonic trap). The only important drawback of this work was the large
uncertainty in the final result, induced by the increased stochastic noise as the trapping
potential is removed. We will return to a discussion of this result below.

In spite of all of the above remarkable progress, it is evident that, due to the complexity
of the n-particle quantum mechanical problem, a different kind of approach is needed if
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one is to determine high-order virial coefficients with well-controlled systematic error. In
particular, stochastic methods tend to have too large uncertainties to yield the accurate
estimates needed to implement resummation techniques (we return to these below). On the
other hand, direct numerical methods such as exact diagonalization can be very powerful
in providing detailed information (furnishing not only energies but also the associated
eigenstates), but have not yet succeeded in accurately determining virial coefficients beyond
the third order. One of the main objectives of this paper is to present our work in developing
and applying a non-perturbative, semi-analytic, computational approach that is free of
stochastic effects, beginning in the next section.

4. Homogeneous Fermi Gases with a Zero-Range Interaction

In this section, we explain our method in detail and review its application to the
simplest case, namely that of Fermi gases in homogeneous space, focusing on the VE for
the pressure.

4.1. Factorizing the Transfer Matrix

The cornerstone of the approach is the Suzuki–Trotter factorization of the transfer
matrix (i.e., the quantum version of the Boltzmann weight). To that end, the Hamiltonian is
split into kinetic and potential energy terms, i.e.,

Ĥ = T̂ + V̂, (20)

such that the simplest symmetric Suzuki–Trotter factorization is

e−τĤ = e−τT̂/2e−τV̂e−τT̂/2 + O(τ3), (21)

where τ is in principle an arbitrary parameter, but we will define it such that for some
integer Nτ , one has β = τNτ , i.e., τ defines the imaginary time discretization. Note that,
since our interest is in taking the trace of powers of e−τĤ , the same accuracy is obtained for
the symmetric decomposition as for its asymmetric counterpart

e−τĤ = e−τT̂e−τV̂ + O(τ2). (22)

(Note: When calculating expectation values of operators, not mere traces, using the sym-
metric decomposition does make a difference.) The above factorization step is always
needed in our method, regardless of whether the target system is in homogeneous space or
in a trapping potential; in this section, we focus on the former, returning to the latter in a
later section.

Using the above factorization, the objective is to calculate QN for the desired particle
content at progressively larger values of Nτ . The resulting QN is then used to calculate
the bk, and the limit of large Nτ is taken at the end by extrapolation. The latter is an
extrapolation to the continuous imaginary-time limit.

The fundamental building blocks in the calculation of QN are the matrix elements of
the factorized transfer matrix. For homogeneous non-relativistic spin-1/2 fermions with a
zero-range interaction, one has

T̂ = ∑
σ=↑,↓

∑
p

p2

2m
n̂σ(p), (23)

where n̂σ(p) is the number density operator for particles of spin σ and momentum p, and
we use m ≡ 1 for simplicity; moreover,

V̂ = −g`3 ∑
r

n̂↑(r)n̂↓(r), (24)
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where the minus sign is for convenience for attractive interactions, n̂σ(r) is the number
density operator for particles of spin σ at position r, and we have regularized the problem
by putting it on a spatial lattice of spacing `. In practice, we renormalize this interaction
by tuning it to reproduce the exact value of b2, as set by the Beth–Uhlenbeck formula
reviewed above.

To calculate Q2, for example, the desired matrix elements are given by

M11 = 〈p1p2|e−τT̂e−τV̂ |q1q2〉
= K(p1)K(p2)

[
δq1,p1 δq2,p2 + C δq1+q2,p1+p2

]
,

(25)

for the (1 + 1)-particle problem, where K(p) is the non-interacting, factorized Boltz-
mann weight

K(p) = e−τp2/(2m), (26)

C is the coupling strength
C = eτg/`3 − 1, (27)

and we use the notation

|P〉 = |p1p2 · · · papa+1 · · · pa+b〉, (28)

for the (a + b)-particle system, where p1 to pa are for spin-↑ particles and pa+1 to pa+b for
spin-↓ particles.

Similarly, for the (2 + 1)-particle problem, which enters in calculating Q3, one obtains

M21 = 〈p1p2p3|e−τT̂e−τV̂ |q1q2q3〉
= K(p1)K(p2)K(p3)

[
δq1,p1 δq2,p2 δq3,p3 + C

(
δq1+q3,p1+p3 + δq2+q3,p2+p3

)]
.

(29)

Naturally, the complexity of the above matrix elements results mainly from the inter-
action elements 〈P|e−τV̂ |Q〉 and rises rapidly with the particle number.

Another example is the (2 + 2)-particle problem, which pertains to Q4, for which
we obtain

M22 = 〈p1p2p3p4|e−τT̂e−τV̂ |q1q2q3q4〉
= K(p1)K(p2)K(p3)K(p4)

×
[
δq1,p1 δq2,p2 δq3,p3 δq4,p4

+ C
(
δq1+q3,p1+p3 + δq2+q3,p2+p3 + δq1+q4,p1+p4 + δq2+q4,p2+p4

)
+ C2(δq1+q3,p1+p3 δq2+q4,p2+p4 + δq1+q4,p1+p4 δq2+q3,p2+p3

)]
.

(30)

4.2. From Transfer Matrices to Canonical Partition Functions

In the above expressions forM21 andM22, we have not implemented any symmetriza-
tion or antisymmetrization, which is needed to account for quantum statistics. Without
approximation or loss of generality, that operation can be carried out at the end of the
calculation, i.e., upon taking the Nτ-th power of the desired transfer matrixMab, because
the operators involved preserve the particle statistics. For example, in the fermionic case,
the antisymmetrization yields

QF
21 = trF

[
MNτ

21

]
=

1
2! ∑

abc

{[
MNτ

21

]
abc,abc

−
[
MNτ

21

]
abc,bac

}
, (31)

whereas in the bosonic case one would have a symmetric form, namely

QB
21 = trB

[
MNτ

21

]
=

1
2! ∑

abc

{[
MNτ

21

]
abc,abc

+
[
MNτ

21

]
abc,bac

}
. (32)
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To take the Nτ-th power as shown above, we use automated tensor algebra (further
details on this automation are presented below). Although the resulting number of terms is
very large (on the order of 109 for the cases we have explored), it is manageable. Further-
more, each term is given by a multidimensional Gaussian integral (once the continuum
and large-volume limits are taken) with an easily identifiable quadratic form. Since those
integrals are easily evaluated using determinants, the entire process of algebraic manipula-
tion and evaluation can be farmed out to massively distributed computing architectures as
a large set of independent processes. In practice, we have been able to explore subspaces
with up to nine particles with several days of calculations on the Open Science Grid [48,49].
The number of particles one can analyze is of course limited by Nτ ; for instance with
106 CPU hours, it is possible to study up to Nτ = 23 for three particles, but only up to
Nτ = 4 for nine particles.

Combining the results for the Qab, one obtains the desired bk. It should be noted that,
in practice, one does not use these quantities directly but rather the changes induced by the
interaction as given by ∆Qab and ∆bk.

The main advantage of this method is that it is not a stochastic approach; in fact, it
is closer to an analytic approach, as it amounts to an automated, direct evaluation of a
lattice field theory calculation. The automated algebra allows us to resolve the volume
cancellations that plague the evaluation of virial coefficients, which stem from combining
Qab for varying a and b. As the latter scale as Va+b plus sub-leading terms, whereas the bk
are volume independent, resolving those cancellations is both crucial and very difficult to
achieve with stochastic approaches.

4.3. Computational Details of Automated Algebra

In this section, we present a more detailed technical discussion of our automated
algebra method to capture the general idea represented in our code. The ultimate goal of the
method is to evaluate the canonical partition functions as shown in Equations (31) and (32),
which involves three steps:

1. Term generation: Expand the product MNτ
mj symbolically, which will yield a large

number of terms as Nτ is increased.
2. Delta crunch: Contract indices to saturate all Kronecker deltas, thus simplifying each

term into a product of Gaussian functions, namely the propagator K(p), by integrating
out a subset of variables. This is the most computationally expensive step.

3. Gaussian integration: For each term, take the summation over the rest of the variables
and take the continuum limit, ultimately turning each term into a multidimensional
Gaussian integral whose results are analytically available as the well-known formula

∫
D~x exp

(
−1

2
~xT A~x

)
=

√
(2π)n

det A
, (33)

where n is the dimension of vector ~x.

We now proceed to elaborate on the above steps.

Step 1

As shown, for instance, in Equation (30), the kinetic energy appears in our transfer
matrix expressions as a prefactor, fully factorized across particles. The complexity of the
problem lies in the interaction operators, of course. In this first step, we expand the product
that results from such operators when Nτ factors are present:

Nτ

∏
i=1

〈
P(i)
∣∣∣e−τV̂

∣∣∣P(i+1)
〉
=

Nτ

∏
i=1

[1 + C f1(P(i), P(i+1)) + C2 f2(P(i), P(i+1)) + · · · ] (34)

where
P(i) = {p(i)

1 , p(i)
2 , · · · p(i)

M , p(i)
M+1, · · · p(i)

M+N}, (35)
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is the i-th complete set inserted, fi(·) is a function containing Kronecker δ’s that implement
all possible interactions (that result from the original two-body force) along imaginary time,
and the ellipses in Equation (34) indicate a polynomial of degree at most min(M, N), where
M and N are the numbers of spin-up and spin-down particles, respectively. The result of
this step is a high-degree polynomial in the coupling strength C.

To evaluate the matrix sums with different subscripts (e.g., as in Equation (31)), thus
implementing the pertinent quantum statistics, we implement different boundary con-
ditions on P(1) and P(Nτ). For example, in Equation (31), the first term on the right-
hand side is a normal trace, which we obtain by imposing a periodic boundary condition
p(1)

i = p(Nτ)
i , ∀i = 1, 2, 3. On the other hand, the second term is a kind of “shifted” trace,

obtained by setting the boundary condition p(1)
1 = p(Nτ)

2 , p(1)
2 = p(Nτ)

1 and p(1)
3 = p(Nτ)

3 .
We have considered so far the complete expansion of the product. However, thanks

to the cyclic property of the trace, only a subset of the complete expansion needs to
be evaluated. For example, for Nτ = 2, there are two terms f1(P(1), P(2)) f2(P(2), P(3))
and f2(P(1), P(2)) f1(P(2), P(3)) at O(C3), which are equivalent under the cyclic variable
substitution P(1) → P(2), P(2) → P(3), P(3) → P(1). Such a property defines a mathematical
object called “combinatorial necklace”, and the goal of this first step is then to generate
all possible necklaces of functions fi, for which we used the algorithm developed in
Reference [50].

Step 2

Once we have expanded the product of interaction operators, each term is in the form
of a product of propagators and δ’s as

K(P(1))K(P(2))K(P(3)) · · · × ∆(P(1), P(2), P(3), · · · ) (36)

where K(P(i)) is a shorthand for the kinetic-energy product K(p(i)
1 )K(p(i)

2 ) · · ·K(p(i)
M+N),

and ∆(P(1), P(2), P(3), · · · ) is a product of Kronecker δ’s from the combination of
fi(P(i), P(i+1)) functions. Equations (25), (29) or (30) exemplify what one would obtain in
the simplest case of Nτ = 1. Thus, the output of this step is effectively the tensor contrac-
tion (for all internal indices; not the trace indices) of such Nτ = 1 results for Nτ as large
as needed.

The second step of the method is to carry out the sums on such a term over all
momentum variables from P(2) to P(Nτ−1), i.e., all intermediate complete sets inserted.
This operation is called “Delta crunch” as it will reduce the ∆ function by substituting all
available momentum variables, i.e., “crunching” the δ’s into the K factors. To this end, we
loop through the δ’s in the ∆ function one at a time, and perform variable substitution
in both K and ∆. To provide efficiency in variable substitutions, the K and the δ’s are
represented as a hashmap, which offers a O(1) time in lookup and modification.

Step 3

Once the Delta crunch step is complete, the resulting expression will be a product of
kinetic energy factors with corresponding variable substitutions, e.g.,

K(p(1)
1 )K(p(1)

2 )K(p(1)
3 )K(p(1)

1 + p(1)
2 − p(1)

3 ) · · · . (37)

Recalling that K(p) is a Gaussian function, the evaluation of the summation over the
remaining momentum variables is easiest carried out in the continuum limit. To that end,
we convert the above product into a quadratic form

exp
(
− τ

2m
~pTA~p

)
(38)

where ~p contains all the momentum variables. The matrix A is symmetric and positive-
definite, such that one can use Cholesky decomposition to evaluate the determinant, which
is computationally more efficient and numerically more stable than LU decomposition.
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Parallelization

Before concluding this section, we want to add one more technical note on the paral-
lelization of our method. Compared to more conventional methods such as QMC, ours is
much easier to parallelize. All the terms generated in the first step are independent from
each other, which means they can be evaluated in fully parallel fashion with little or no
communication overhead among processes. Moreover, the evaluation of each term is cheap
as it does not involve complicated linear algebra operations, and so it is suitable to run on
any number of CPU cores. These features make our method ideal to run on a distributed,
heterogeneous computing cluster, such as the Open Science Grid or the Folding@home
project, where the computational power is unevenly distributed across nodes, in contrast
with traditional supercomputers, where the number of available cores can be much higher.

4.4. Selected Results

Using the method presented above, which resulted from a sequence of prior
studies [14–17], we tackled the problem of calculating, with as high precision as possible,
the virial coefficients up to ∆b5 for homogeneous spin-1/2 Fermi gases with an attractive
contact interaction, for varying coupling strengths. For illustrative purposes, we focus here
on the 3D case [18], but extensions to other dimensions were also studied [19].

In Figure 1, we present the coefficients ∆bk for k = 3, 4, 5 (left panel) and the corre-
sponding subspace contribution ∆bij (right panel). The inset on the left panel shows a
comparison with experiments [51,52] and theory [36,39,47].

0.0 0.2 0.4 0.6 0.8 1.0
b2/ bUFG

2

0.3

0.2

0.1

0.0

0.1

b n

a0 0 a0
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b5
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Leyronas b3

0.0 0.2 0.4 0.6 0.8 1.0
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a0 0 a0

n = 3
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n = 5

Figure 1. (Left): ∆bn for n = 3, 4, 5, from weak coupling (scattering length a0 → 0) to unitarity
(a0 → ∞) as parameterized by ∆b2/∆bUFG

2 , where ∆bUFG
2 = 1/

√
2 is the value of ∆b2 at unitarity.

The inset shows a zoom into the region around unitarity, where several experimental and theoretical
estimates are shown for comparison (see main text and Reference [18] for details). (Right): Subspace
contributions ∆bij.

In addition to the excellent agreement with the ∆b3 results of Reference [33], the above
provides a precise non-perturbative, non-stochastic determination of ∆b4 and ∆b5. The
results show that, due to the competing subspace contributions (right panel), both ∆b4
and ∆b5 are non-monotonic as a function of the coupling strength. In addition, when
approaching the unitary limit it is evident that ∆b5 becomes comparable in magnitude to
∆b4. It is this property that complicates the experimental determination of ∆b4 at strong
coupling (dashed error bars in the inset of the left panel), as one is forced to assume
that ∆b5 is comparatively small, which is not the case. The agreement for ∆b4 with the
estimates of References [36,39,47], which use entirely different methods (among them and
with the present work), further supports the accuracy and precision of the method. Note,
however, the wide disparities in results for ∆b22 compared to ∆b31, which indicate that
the (2 + 2)-particle subspace is a considerably more difficult problem to tackle than the
polarized (3 + 1) subspace.
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5. Generalization to Other Systems
5.1. Harmonic Traps

Beyond the homogeneous system discussed above, systems in external harmonic traps
are also of great interest [53,54] as a connection between theories (typically in homogeneous
space) and the practical experimental realizations (which are to a good approximation in
harmonic traps).

In the presence of harmonic traps, it is convenient to split the Hamiltonian into a
non-interacting harmonic oscillator piece Ĥ0, and the interaction V̂ in order to perform the
Suzuki–Trotter factorization, such that

Ĥ = Ĥ0 + V̂, (39)

where Ĥ0 = T̂ + V̂HO and

V̂HO =
∫

d3r
1
2

mω2r2
[
n̂↑(r) + n̂↓(r)

]
, (40)

is the harmonic trapping potential, and therefore

e−τĤ = e−τĤ0/2e−τV̂e−τĤ0/2 + O(τ3). (41)

The main advantage of this choice of splitting of Ĥ is that, as we will see below,
the resulting factorization of the transfer matrices can be easily written in terms of the
so-called Mehler kernel [15]. It should be pointed out that the other possible factorization
where one combines V̂HO with V̂ rather than with T̂ is an interesting possibility that one
could explore entirely in momentum space (as in the homogeneous cases of the previous
section). However, such an approach effectively results in a more complicated interaction
made out of a one-body piece and a two-body piece with independent coupling constants,
which must be kept track of throughout the calculation, with the concomitant increase in
computational complexity. We will return to a similar situation below, namely the case of
attractive Bose gases, which require two- and three-body forces for stability reasons.

As anticipated, the transfer matrices can be written conveniently in terms of the Mehler
kernel. For example, when examining the (1 + 1)-particle subspace, we obtain

M11 = 〈x1, x2|e−τ(T̂+V̂HO)e−τV̂ |y1, y2〉
= ρ(x1, y1)ρ(x2, y2)[1+ Cδ(y1 − y2)], (42)

where ρ(x, y) is the Mehler kernel

ρ(x, y) =
1

λ3
T

[
βω

sinh(τω)

]3/2
exp

[
−ZT BZ

]
, (43)

which encodes the coordinate representation of the transfer matrix of a single-particle in
the harmonic potential V̂HO. Here, ZT = (xT/λT , yT/λT), and

B =
πβω

sinh(τω)

(
cosh(τω)1 −1
−1 cosh(τω)1

)
, (44)

where 1 is a 3× 3 unit matrix. Similarly, for the (2 + 1)-particle subspace, we find

M21 = ρ(x1, y1)ρ(x2, y2)ρ(x3, y3){1+ C[δ(y1 − y3) + δ(y2 − y3)]}. (45)

Note that, as in a previous section, we do not include any symmetrization or antisym-
metrization at this stage, as quantum statistics can be accounted for after the Nτ-th power
is taken. Further transfer matrices for up to five particles can be found in Reference [20].
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As in the homogeneous case, we rely on known analytic results for ∆b2 in order to
renormalize the interaction. In a harmonic trapping, potential ∆bT

2 is given at unitarity
by [3]

∆bT
2 =

1
4

sech
(

βω

2

)
. (46)

We note that, for arbitrary order, the trapped virial coefficients ∆bT
n in the high-

temperature (or low-frequency) limit βω → 0 are connected with their homogeneous
counterparts via

∆bk = k3/2∆bT
k (βω → 0), (47)

which is useful to know when comparing homogeneous results with low-frequency extrap-
olations from the trapped case.

Using our framework at leading order (Nτ = 1) in d spatial dimensions, it is not
difficult to obtain analytic formulas such as

∆b2 = ∆b11 =
1
2

C
λd

T

[
βω

2 sinh(βω)

]d/2
, (48)

∆b21 = − ∆b2

[2 cosh(βω) + 1]d/2 , (49)

∆b31 =
2−d/2∆b2

coshd/2(βω)[2 cosh(βω) + 1]d/2 , (50)

and

∆b22 =
2−3d/2∆b2

coshd/2(βω) coshd(βω/2)
× (51){

1 + 2d/2∆b2

[
coshd/2(βω)− 2d/2+1 coshd(βω/2)

]}
.

Following the same approach outlined in previous sections, we worked out the next-
to-leading order (Nτ = 2) formulas, which the reader can find in Reference [20]. With
automated algebra, these can be pushed to much higher Nτ to obtain estimates for ∆bk,
which are then extrapolated to large Nτ .

In Figure 2, we show our results at Nτ = 1, 2 for the full-space contribution ∆bk,
and those extrapolated to Nτ → ∞ limit for both ∆bk and the corresponding subspace
contribution ∆bij. We find very good agreement between the extrapolated results and
the Monte Carlo calculations of Reference [47] for large trapping frequency βω. As βω
approaches 0, our results are smoother compared to the Monte Carlo results, likely due
to the volume cancellations that we are able to resolve analytically but which induce
noise in the Monte Carlo method. Although the leading- and next-to-leading-order results
deviate from the expected curve, they capture most qualitative features and may shed
light on higher-order virial coefficients where the computational costs are too large for
a full calculation at large Nτ . Lastly, note that for ∆b4, the leading-order result is closer
to the extrapolated curve compared to the next-leading-order result. This indicates that
the discretization error from the Suzuki–Trotter decomposition is not monotonic in Nτ . In
other words, as Nτ increases, we may expect worse results before the asymptotic regime
is approached. The onset of that regime is of course coupling dependent. Therefore, at a
given interacting strength it is essential to investigate Nτ as high as possible in order to
obtain quantitatively correct results.
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Figure 2. (a–c): ∆b3, ∆b4 and ∆b5 as a function of βω, respectively. Our calculations are presented as
blue crosses with error bars. The dotted and dashed black lines are the leading and next-leading-order
results. The black stars at βω → 0 are the result of the homogeneous system. The red solid circles
in panel (a,b) show the results by Yan and Blume [47]. In panel (b), the dash-dotted black line is
the high-temperature fitting from the same work. (d,e): Subspace contribution ∆bij for (d) n = 4
and (e) n = 5. The open green squares with dotted lines represent the ∆bx1 contribution, and the
open purple diamond for the ∆bx2 contribution. The black bar shows the results of the homogeneous
system. In panel (d), the dotted red lines are the theoretical conjecture from Reference [36], and the
open circle is to emphasize the results in the βω → 0 limit. The PIMC results from Reference [47] are
shown as red circles.

5.2. Neutron Matter

The outermost crust of a neutron star is a low-density regime for which the unitary
Fermi gas results presented above can be regarded as an approximation. To go beyond the
unitary limit, a realistic model for neutron matter must include interaction range effects.
In this section, we elaborate on a possible implementation of a finite-range interaction in
the context of our method. To that end, we anticipate that it will be essential to expand
the matrix elements of e−τV̂ as a sum of Gaussians, as that would take advantage of the
computational framework developed in the simpler cases discussed above.

As a reminder, for a contact interaction in the two-particle subspace, one has

〈q1q2|e−τV̂ |p1p2〉 = δq1,p1 δq2,p2 + C δq1+q2,p1+p2 , (52)

where C includes the lattice spacings and the bare coupling. Naturally, the first term
represents a non-interacting piece and the second term encodes the interaction effects. A
contact interaction in coordinate space has constant matrix elements in momentum space,
but in the presence of a finite range there will be nontrivial momentum dependence, and
therefore, we generalize the above via

C → C(qr, pr) = ∑
k

Ck e−τλ1,k(q2
r+p2

r )+τλ2,kqr ·pr , (53)
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where qr = q1− q2 and pr = p1− p2. In the limit λ1, λ2 → 0, we reproduce the zero-range
model. This type of expansion can be further generalized by including powers of q2

r , p2
r

and qr · pr as a prefactor rather than in the exponent, which can be used to account for more
features of the interaction. However, such a generalization should be used sparingly or not
at all if possible, as it would dramatically (specifically, factorially) increase the number of
terms that result in the expansion, by virtue of Wick’s theorem.

5.3. Unitary Bose Gas

The case of Bose gases with attractive interactions, in particular close to the universal
regime of the unitary limit, requires special care. Given the absence of Pauli exclusion,
attractively interacting bosons undergo Thomas collapse [55], i.e., they are unstable. More-
over, close to unitarity, they display the Efimov effect [56,57]. To properly renormalize such
a system, a repulsive three-body interaction is required [58]. The latter introduces a new
dimensionful parameter that is sensitive to the ultraviolet cutoff and must be fixed by using
some known physical quantity.

To account for the above, we consider an interaction of the form

V̂ = − g2

2! ∑
r
(a†

r )
2(âr)

2 − g3

3! ∑
r
(â†

r )
3(âr)

3, (54)

where we have used the normal-ordered form and â†
r , âr are the bosonic creation and

annihilation operators at point r.
In previous sections, we used ∆b2 to renormalize a two-body contact interaction. It is,

therefore, natural in the present case to use ∆b2 and ∆b3 for the same purpose. Since ∆b2
involves only the two-particle subspace, we use it to renormalize the two-body interaction
in the usual way before proceeding to ∆b3, which depends on both the two- and three-
particle subspaces and thus determines the three-body coupling. In the bosonic unitary
limit, the three-body parameter induces a temperature dependence on ∆b3, which was
calculated exactly in Reference [59].

Calculating ∆b2 using the above interaction in d spatial dimensions and Nτ = 1,
we obtain

∆b2 =
∆Q2

Q1
= βg2

Q1

V
, (55)

where V = Ld is the d-dimensional volume, such that in the (spatial) continuum limit

∆b2 →
1

2π

g2

λd−2
T

, (56)

where we used that in that limit Q1/V → λ−d
T .

On the other hand, a calculation of ∆b3, also in d spatial dimensions and Nτ = 1, yields

∆b3 =
∆Q3

Q1
−Q1∆b2 =

βg2

2!
4

Q1(2β)

V
+

βg3

3!
6

Q2
1

V2 , (57)

which in the (spatial) continuum limit becomes

∆b3 →
1

2d/2−1
1

2π

g2

λd−2
T

+
3
π

g3

λ2d−2
T

. (58)

We thus see that, as anticipated, ∆b2 and ∆b3 determine g2 and g3. At the Nτ = 1
level of this calculation, the temperature dependence of ∆b2 and ∆b3 will typically induce a
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temperature dependence in g2 and g3. More explicitly, we may invert the above results to
obtain the dimensionless form

βg2λ−d
T = ∆b2, (59)

βg3λ−2d
T = ∆b3 −

1
2d/2−1 ∆b2. (60)

Armed with these answers, the renormalization program is complete and we may pro-
ceed to calculate and predict higher-order virial coefficients. Our leading order (Nτ = 1) for
the fourth-order bosonic virial coefficient ∆b4 is neatly expressed in terms of a relationship
with ∆b2 and ∆b3:

∆b4 =

(
3−d/22 + 2−d − 3

2d−1

)
∆b2 +

(
2−d/2+1 + 2−2d−1

)
(∆b2)

2 +
3

2d/2 ∆b3. (61)

In Figure 3, we show the above result applied to d = 3 at unitarity, where ∆b2 =
√

2
and ∆b3 is as determined in Reference [59]. Our Nτ = 1 approximation is likely a rather
crude one, but it should be asymptotically correct for small βET .
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E T
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Figure 3. Scaled virial coefficients exp(−βET)bn as a function of (βET)
−1 where ET is the ground

state energy of the trimer. The black dashed line corresponds to the constant second-order value
b2 = (9

√
2)/8. The blue line is the scaled b3 from Reference [59], which we used in Equation (61) to

obtain the orange line showing b4.

6. Pressure, Density, and Generalization to Other Observables

Thus far, we limited our scope to the expansion for pressure, but the virial expansion
is much more general and can be applied to a wide range of observables. In this section, we
present the generalization of our approach to the Tan contact, the momentum distribution,
and the structure factor.

6.1. From Pressure to Density and Tan Contact

By way of the grand thermodynamic potential, the bn grants access to all thermody-
namic quantities, at least in principle. One of the most basic quantities besides the pressure
is the density, which is given by

n =
∂ lnZ
∂ ln z

= n0 +
2

λd
T

∞

∑
k=2

m∆bkzk, (62)
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where n0 is the density at the absence of interaction, and similarly in the presence of finite
polarization (i.e., different fugacities z↑ and z↓ for each spin),

ns = ns,0 +
2

λd
T

∞

∑
k=2

∑
i,j>0

i+j=k

[iδs,↑ + jδs,↓]∆bijzi
↑z

j
↓, (63)

where s =↑, ↓ for each spin.
Beyond global thermodynamic quantities, the Tan contact can also be investigated

through the virial expansion (see, e.g., Reference [54]). For systems with short-range
two-body forces, the Tan contact represents the probability of finding two particles at
the same spatial location. For that reason, it captures the short-distance behavior of all
correlation functions. In particular, the momentum distribution in such systems decays at
large momentum k as

n ∼ I/k4, (64)

where I is the contact. Thus, one way to measure or calculate the contact is to determine
the large-momentum tail of the momentum distribution. In practice, however, it has
proven more efficient to use the so-called adiabatic relation, whereby I is obtained from
the variation of the grand thermodynamic potential with the coupling strength.

In Tan’s original works [11–13], he considered a Fermi gas in 3D. Later works further
developed the theory and extended it to one [60] and two [61] dimensions, as well as
bosonic systems [62–64].

Below we focus on the three-dimensional Fermionic system, but readers are referred
to Reference [19] for more details on one- and two- dimensional Fermi gas.

In three spatial dimensions, the VE for the contact is obtained via

I = −4π

β

∂(βΩ)

∂a−1
0

=
4π√

β

∂ lnZ
∂λ

=
4π

β
Q1λT

∞

∑
k=2

ckzk, (65)

where
ck =

1√
2π

∂∆bk
∂λ

, (66)

are the virial coefficients of I . To evaluate the partial derivative, the most straightforward
method is to apply the chain rule as

∂∆bk
∂λ

=
∂∆bk
∂∆b2

∂∆b2

∂λ
, (67)

where the first derivative can be calculated numerically, and the second is analytically
given by the Beth–Uhlenbeck formula as

∂∆b2

∂λ
=

√
2
π

+
√

2λeλ2
[1 + erf(λ)]. (68)

Thanks to the analytical nature of our method, one can improve the accuracy of the
numerical derivative without repeating calculations. Alternatively, one can take advantage
of the analytic form of ∆bk from our method, which is a polynomial in terms of coupling
strength C

∆bk =
lmax

∑
l=1

AlCl , (69)
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where lmax = min(M, N) · Nτ is the degree of the polynomial. The derivative can then be
treated as a polynomial in C of degree lmax − 1 as

∂∆bk
∂λ

=
lmax

∑
l=1

l · AlCl−1 ∂C
∂λ

=
lmax

∑
l=1

Bl(D)Cl−1, (70)

where D = ∂C
∂l and Bl(D) = lAl D. Now, we treat C and D as two independent variables

and tune their values in two passes: firstly, the value of C is renormalized to reproduce the
∆b2; and then we plug the resulting C in Equation (70) and tune D to produce the expected
second-order result, as given in Equation (68).

In Figure 4, we plot the density (left panel) and Tan contact (right panel) in the
homogeneous case. On the left panel, the solid lines (with uncertainty bands) are the results
of using the VE at face value, i.e., truncated at a given order: blue for third order, red for
fourth-order, and green for fifth-order. In each case, a corresponding dashed line of the
same color shows the results of Padé resummation at that order. Across this work, we used
either the diagonal or off-diagonal Padé resummation, i.e., the order usually denoted as
[a/b] satisfies a = b (diagonal) or a + 1 = b (off-diagonal). Finally, the second-order results
are shown as a black dashed line for reference, while the black dots come from the MIT
experiment of Reference [52]. For both the truncated VE and the resummed results, we
found improved agreement as higher-order contributions were included, the effect being
most notable when the resummation is applied. This inspires an open question under
investigation on the effect of the resummation when using even higher orders. This is
particularly intriguing as access to higher-order coefficients would allow more freedom in
exploring a range of resummation techniques.

In the right panel of Figure 4, we show the dimensionless contact in the form

I
NkF

= 3π2
(

T
TF

)2

∑
k=2

ckzk, (71)

as a function of the reduced temperature T/TF, which is related to the density via

(
T
TF

)3
=

(
8

3
√

πλ3
Tn

)2

. (72)

Therefore, the resulting curve is an interplay between two independent series for
the density and the contact. In particular, the curve will be more sensitive to the density
estimate as both quantities implicitly depend on it. In other words, in the region where we
observed deviation in the left panel between our results and experimental determinations,
we expect errors in both horizontal and vertical directions. This approximately corresponds
to z ' 0.75, or T/TF / 1.4, for the truncated VE results. At higher temperatures, where
our results coincide with the experimental measurement, the main source of error is the
expansion series for I .

To better show I , as given in Equation (65), and isolate the influence on the density, we
use the experimental values [65] (see also Refs. [66–68] for relevant experimental studies) to
calculate the reduced temperature T/TF (thus providing an essentially exact density) and
evaluate the series ∑∞

k=2 ckzk using Padé resummation at different orders (dashed lines).
Overall, we observed the same trend as for the density where the results are improved
as higher-order contributions are included. Although the resummed fifth-order VE (red
dashed line) seems to give very good results below the critical temperature, one should
take such an agreement with a grain of salt, as the error in the dimensionless contact is
greatly reduced by a factor of (T/TF)

2. Furthermore, this result is free from errors in the
density because we have used the experimental data for the latter.

To represent the more practical situation where we have no access to accurate experi-
mental measurement of the density, we use the best density estimate (green dashed line in
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the left panel), and the final result is plotted as the thick red solid line. Even though the
approximation begins to fail when approaching the critical temperature, we find impressive
agreement until T/TF ≈ 0.4, roughly corresponding to the diverging point between the
Padé and experimental results at z = 5.0 for the density.
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Figure 4. (Left): Density n/n0 as a function of fugacity z. The colorful solid lines are the results
using truncated VE at third (blue), fourth (orange) and fifth (green) order. The black dashed line is
the result using second-order VE. The dashed lines are the results using diagonal or off-diagonal
Padé resummation. The black dotted line is the experimental measurement by Reference [52].
(Right): Dimensionless contact I/(NkF) as a function of reduced temperature T/TF. The blue,
orange and green solid lines are the results using truncated VE for both the contact and the density,
which is connected to the reduced temperature T/TF. The same color code is used. Colorful dotted
lines are the results using the experimental density measurement and VE contact. The red curves
are the results using resummation: the dotted is with experimental density and the solid with
Padé resummed density. The light gray and brown points are experimental determinations from
Reference [65] and Reference [69], respectively.

6.2. One-Body Operator Example: The Momentum Distribution

In addition to the density and pressure equations of state, the next simplest quantity
one can calculate is the expectation value of a one-body operator; for instance, the momen-
tum distribution n̂σ(p) of particles with spin σ. Of course, here the only added difficulty is
that the operator singles out a specific momentum p, but it warrants special attention.

The starting point is the thermal expectation value

〈n̂σ(p)〉 =
1
Z Tr

[
e−β(Ĥ−µN̂)n̂σ(p)

]
. (73)

Having available the virial expansion for Z already, we focus on the numerator

Tr
[
e−β(Ĥ−µN̂)n̂σ(p)

]
=

∞

∑
N=1

trN

[
e−βĤ n̂σ(p)

]
zN , (74)

Thus, after expanding the denominator Z ,

〈n̂σ(p)〉 =
∞

∑
k=1

mσ,k(p)zk, (75)
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where

mσ,1(p) = tr1

[
e−βĤ n̂σ(p)

]
, (76)

mσ,2(p) = tr2

[
e−βĤ n̂σ(p)

]
−Q1 tr1

[
e−βĤ n̂σ(p)

]
, (77)

mσ,3(p) = tr3

[
e−βĤ n̂σ(p)

]
−Q1 tr2

[
e−βĤ n̂σ(p)

]
(78)

+
(

Q2
1 −Q2

)
tr1

[
e−βĤ n̂σ(p)

]
, (79)

and so forth. (Note that, naturally, the content of mσ,1(k) is entirely non-interacting, as it
corresponds to a single-particle subspace.)

The new “virial coefficients” mσ,k(p) require the calculation of the Hilbert trace
trN [e−βĤ n̂σ(p)], denoted as WN [n̂σ(p)] or just WN,σ for shorthand. In our method, its
evaluation shares the same formalism as the usual partition function QN as in Equation (31)
and (32), i.e., the trace WN,σ encodes the particle statistics. Taking the (2, 1)-system for example,

WF
21,σ = trF

[
MNτ

21 N21,σ(p)
]
=

1
2! ∑

abc

{[
MNτ

21 N21,σ(p)
]

abc,abc
−
[
MNτ

21 N21,σ(p)
]

abc,bac

}
,

WB
21,σ = trB

[
MNτ

21 N21,σ(p)
]
=

1
2! ∑

abc

{[
MNτ

21 N21,σ(p)
]

abc,abc
+
[
MNτ

21 N21,σ(p)
]

abc,bac

}
.

(80)

where Nσ,p is the matrix elements of momentum density operator

N21,σ(p) = 〈p1p2p3|n̂σ(p)|q1q2q3〉
=
[
δpp1 + δpp2

]
〈p1p2p3|q1q2q3〉

=
[
δpp1 + δpp2

]
δp1q1 δp2q2 δp3q3 .

(81)

At the leading-order up to the third-order in fugacity, we obtain the change of momen-
tum distribution with respect to that in the non-interacting case,

∆nσ(p) =
C
λd

T
exp

(
− d

4π
k̃2
)

z2 − 4
C
λd

T
exp

(
− d

2π
k̃2
)

z3, (82)

where k̃ = λTk is the dimensionless momentum. As in previous cases, we emphasize
that this is merely an approximation at the lowest nontrivial order in C, but it provides a
qualitative guide and a reasonable answer at weak coupling.

6.3. Two-Body Operators and Real-Time Evolution

An advantage of our automated algebra method is its versatility. The formalism and
implementation can be adapted to more complicated observables without introducing
significant new complexity. In this section, we present the first steps for a few such
examples, which show the way for future work.

As a natural extension of the case of one-body operators, Equation (74) is generalized
to two-body operators:

〈
Ô1Ô2

〉
=

1
Z Tr

[
e−β(Ĥ−µN̂)Ô1Ô2

]
=

1
Z

∞

∑
N=1

trN [e−βĤÔ1Ô2]zN .
(83)

From this point on, the evaluation of the N-particle Hilbert space trace
W(Ô1, Ô2) = trN [e−βĤÔ1Ô2] follows the same methodology explained in the previous section.
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An interesting two-body quantity is the density–density correlation 〈n̂(r)n̂(0)〉, which
is the central ingredient of the static structure factor:

S(q) =
∫

d3re−iq·r〈δn̂(r)δn̂(0)〉 (84)

where δX̂ = X̂ −
〈

X̂
〉
. The latter approximately describes the in-medium scattering rate

in certain contexts [70]. Recent studies [71,72] examined this quantity within the VE up to
second order, and it is interesting to examine the effect of higher-order contributions. Yet
another example that has been intensely investigated recently is the viscosity. Specifically,
in the work of References [73–75], the VE was applied to the calculation of both bulk and
shear viscosity, which requires the commutator of the contact operator.

Our formalism can also be generalized beyond equilibrium systems by including real-
time evolution. The recent work of Reference [76] investigated the effects of an interaction
quench in a bosonic system, in an attempt to explain the results of the experiment of
Reference [77]. Here, the system starts as non-interacting and in thermal equilibrium, and
then an interparticle interaction is suddenly switched on. The process was investigated
in Reference [76] using the VE of the momentum distribution n(k) up to second order,
and varying behaviors at low and high momenta k were found. Although this is an
interesting result, the effect of higher-order contributions remains an open problem and
may not be small, which further motivates the extension of our framework for more general
dynamic processes.

The quench process mentioned above is described by the Hamiltonian

Ĥ = Ĥ0 + Θ(t)V̂, (85)

where Ĥ0 is the free Hamiltonian and V̂ is the interaction, which is turned on at t = 0.
To study the evolution of a given operator Ô one starts with expressions similar to
Equation (83), with the exception that the Hilbert space trace now becomes time-dependent

WN(Ô, t) = trN(e−βĤ0 eitĤÔe−itĤ). (86)

Research regarding the investigation of these kinds of expressions with automated
algebra, specifically for the interaction quench, is underway.

7. Summary and Conclusions

The VE is an expansion of the quantum many-body thermodynamics in powers of the
fugacity z that is capable of non-perturbatively characterizing such many-body systems in
dilute, high-temperature regimes. The challenge of the VE is that calculating its coefficients
bk at n-th order in the expansion requires analyzing the quantum n-body problem in
some detail.

In this brief review, we have outlined some of the main methods used to calculate
bk and advocated for an approach based on discretizing imaginary time, thus obtaining a
factorized transfer matrix, and automating the resulting algebra to calculate the trace of
the Nτ-th power of the transfer matrix. We have shown in detail how such a method is
structured and how it is able to provide reliable results for up to b5 for strongly coupled non-
relativistic fermions, focusing on the unitary limit. The automated algebra algorithm is fully
parallelizable and may thus be extended beyond b5 with increased computational power.

We have also shown how to generalize the approach to account for harmonic trapping
potentials, neutron matter and attractive Bose gases (which require three-body forces).
Furthermore, the method is also straightforwardly generalized to observables other than
the pressure, such as the Tan contact, the momentum distribution, and the structure factor.
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