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Abstract: We present exact numerical data for the lowest-energy momentum eigenstates (yrast states)
of a repulsive spin impurity in a one-dimensional Bose gas using full configuration interaction
quantum Monte Carlo (FCIQMC). As a stochastic extension of exact diagonalization, it is well suited
for the study of yrast states of a lattice-renormalized model for a quantum gas. Yrast states carry
valuable information about the dynamic properties of slow-moving mobile impurities immersed in a
many-body system. Based on the energies and the first and second-order correlation functions of
yrast states, we identify different dynamical regimes and the transitions between them: The polaron
regime, where the impurity’s motion is affected by the Bose gas through a renormalized effective
mass; a regime of a gray soliton that is weakly correlated with a stationary impurity, and the depleton
regime, where the impurity occupies a dark or gray soliton. Extracting the depleton effective mass
reveals a super heavy regime where the magnitude of the (negative) depleton mass exceeds the mass
of the finite Bose gas.

Keywords: yrast states; one-dimensional Bose gas; impurity; quantum Monte Carlo

1. Introduction

The study of a single quantum impurity in a surrounding many-body medium has
fascinated scientists for many decades [1,2]. Beyond the historical interest around the
influence of the crystal lattice on the motion of an electron—the original “polaron” [3],
or impurity atoms in superfluid helium [4]—there has recently been a surge of interest
in the field of ultracold atoms, where interactions can be readily tuned with the help of
Feshbach resonances [5] and excitation spectra probed with spectroscopic methods [6]. A
particular focus of experimental scrutiny has been the Bose polaron, where an impurity
atom is coupled with a bosonic bath [7–10].

Restricting the dimensionality to one spatial dimension provides access to the special
physics of one-dimensional quantum liquids [11,12], where impurities have been predicted
to undergo Bloch oscillations [13,14]: Due to the periodicity of the dispersion relation,
an impurity experiencing a weak force periodically alters its excitation state without
contributing to transport in real space, as originally predicted [15] and later observed [16,17]
for a particle in an external lattice potential. The prediction of Bloch oscillations in a one-
dimensional quantum liquid, even in the absence of a periodic potential [13,14], was
debated [18,19] but eventually confirmed in an experiment with spin impurities in a one-
dimensional gas of cesium atoms [20]. Other experiments probing impurity physics in
one-dimensional quantum gases also employed spin impurities (where the impurity atoms
have the same mass and only differ in a spin quantum number) [21,22], or different types
of atoms [23,24].
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While experimental studies have started, the quantitative understanding of impurity
physics in a one-dimensional Bose gas is far from complete. The different theoretical
approaches to the problem range from mean-field theory [25,26] and related variational
theory [27–29] via the path-integral approach [30,31], the renormalization group [32–34]
and flow equation [35] method to multiconfiguration time-dependent Hartree [36] and
quantum Monte Carlo methods [37–40].

Many of the mentioned works focus on ground-state properties and effective mass
of the one-dimensional Bose polaron with either zero or a very small total momentum.
Although the dynamics of impurities have also been actively studied [28,29,36,41], limited
understanding has been achieved on the full dispersion relation of a Bose gas coupled
with a mobile impurity. There are analytical results on the dispersion relations restricted to
specific models, such as the Yang–Gaudin model [42], and the Luttinger liquid [43].

In a homogeneous one-dimensional gas, e.g., in a ring geometry with periodic bound-
aries, translational invariance makes the total momentum a good quantum number. This
allows for the study of yrast states, which are eigenstates with the lowest energy at given
momentum. Yrast states are stable as long as momentum is conserved, while adiabatic
passage through the yrast states of different momentums is responsible for the Bloch oscil-
lation phenomena of Refs. [13,20]. The yrast states of a bosonic superfluid in the absence
of impurities are intimately connected [44–51] to localized nonlinear waves, known as
dark solitons [52]. Dark solitons are ubiquitous features of superfluids, which can be
characterized by a localized density depression and a phase jump [51,53,54].

When a repulsive impurity is introduced into the Bose gas, two different low-energy
configurations can exist depending on the momentum: At a lower momentum, the impurity
moves relative to the quantum gas forming a polaron. At higher momentum, the bulk of
the momentum is taken by the Bose gas forming a gray or dark soliton modified by the
presence of the impurity. This situation was named the “depleton” in Refs. [14,19].

For strongly correlated impurity problems that are outside the reach of analytically
solvable models, quantum Monte Carlo (QMC) methods have proven to be invaluable
tools [37–40,55]. In this work, we employ the full configuration interaction quantum Monte
Carlo (FCIQMC) [56,57] method. It can be seen as a natural stochastic extension to the
exact diagonalization method, which allows one to treat a larger Hilbert space that could
otherwise not fit into the computer memory. While different in detail, it is similar in spirit
to earlier versions of projector Monte Carlo methods [58] in sampling the ground state
wave function. When applied to a translationally invariant Hamiltonian in momentum
space, FCIQMC has the advantage over other QMC methods, such as diffusion Monte
Carlo (which is formulated in real space) or auxiliary field QMC, that momentum is strictly
conserved in each elementary stochastic operation. Thus yrast states can be obtained easily
by projection onto the lowest-energy state within a total-momentum sector starting from an
initial state with the same momentum. Moreover, FCIQMC mitigates the sign problem by
walker annihilation in many systems when a sufficient number of walkers is present [59].
Additionally, the initiator approximation [57] can be applied to suppress the sign problem
with the trade-off that a small initiator bias is introduced.

The FCIQMC method was originally developed for fermionic many-body problems.
It has been applied to the electronic structure of molecules and solids [60–62] and the
Hubbard model [63–65]. Recently, it was used to study the yrast states in a superfluid of
spin- 1

2 fermions [66]. Here, we use FCIQMC for the first time to quantitatively study the
physics of a bosonic many-body problem, while previously, bosonic Hamiltonians were
employed when developing and analyzing the FCIQMC procedures [67,68].

In this work, we use the FCIQMC method to obtain numerical results for the yrast
states of a one-dimensional Bose gas containing a repulsive spin impurity. We characterize
the polaron and depleton regimes of the yrast dispersion, as well as the transitions between
them, by examining the energies and the first and second-order correlation functions of
yrast states. The extracted depleton effective mass reveals a super-heavy regime where
the magnitude of the (negative) depleton mass exceeds the mass of the finite Bose gas.
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The results also show that the depleton picture becomes inadequate for smaller impurity–
boson interactions where the impurity and Bose-gas motion decouples.

In Section 2, we introduce the lattice discretized model Hamiltonian with renormalized
coupling constants to be studied in this work. The FCIQMC algorithm and modifications
made for treating bosonic Fock states, along with implementation details and parameter
choices, are discussed in Section 3. The numerical results on the properties of the yrast
states and their interpretation in terms of the different physical regimes are presented
in Section 4, starting with the yrast dispersion in Section 4.1. This is followed by the
impurity momentum and the impurity–boson correlation function in Sections 4.2 and 4.3,
respectively. The effective mass in the soliton/depleton regions of the dispersion is reported
in Section 4.4, and the spin-flip energies in Section 4.5. Finally, we draw conclusions in
Section 5, and we outline the possible future prospects of this work. Appendix A presents
data on the elimination of systematic biases in FCIQMC, which is relevant for validating
the computational method.

2. The Model
2.1. The Hamiltonian in One-Dimensional Real Space

We consider a single impurity particle immersed in a one-dimensional interacting
Bose gas of N identical particles. The Hamiltonian reads

H = − h̄2

2m

N

∑
i=1

∂2

∂x2
i
+ gBB ∑

i<j
δ(xi − xj)−

h̄2

2m
∂2

∂x2
I
+ gIB

N

∑
i=1

δ(xi − xI), (1)

where xi(i = 1, · · · , N) and xI are the coordinates of the bosons and the impurity, respec-
tively. We have already assumed that the impurity has the same mass m as the bosons
do and will continue to do so throughout this work. This is adequate for a spin impurity
where the impurity atom becomes distinguishable from the remaining bosons by changing
a spin quantum number, e.g., changing a hyperfine quantum number of an ultracold atom.
The N bosons are interacting with a contact potential of strength gBB while the interaction
of the impurity particle with the bosons is described by a contact potential of strength gIB.
We consider repulsive interactions with gBB > 0 and gIB ≥ 0 in order to access the physics
of the polaron–depleton transition. We leave the detailed study of attractive impurities,
which bind to bosons rather than to the hole-like dark soliton excitations, to future work.

Following the definitions from previous works on polaron problems [26,37,40], we
introduce the dimensionless coupling parameters

γ =
mgBB

h̄2n
, η =

mgIB

h̄2n
, (2)

to represent the boson–boson and boson–impurity interaction strengths, respectively.
The density of the Bose gas is n = N/L. Note that with the impurity and the bosons
having equal mass, the reduced mass, mr, used in other works, becomes m/2.

2.2. Lattice Discretized Continuum Model

For our numerical simulations, we consider a finite system in a one-dimensional box
of length L with periodic boundary conditions. We discretize the model using a lattice
with M lattice sites with renormalized contact interactions [69,70]. In order to access the
yrast states numerically with FCIQMC, we use a momentum-space representation of the
Hamiltonian. In FCIQMC, individual stochastic sampling steps then conserve momentum,
which allows us to access the yrast states with this projector QMC method. The spatial
domain is x ∈ (−L/2, L/2] and the lattice constant is defined as α = L/M for M lattice
points. In this representation, the Hamiltonian reads

Hmom = ∑
k

εk â†
k âk + ∑

k
εk b̂†

k b̂k +
U

2M ∑
spqr

â†
s â†

p âq ârδs+p,q+r +
V
M ∑

spqr
â†

s b̂†
p b̂q ârδs+p,q+r, (3)
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where â†
k(âk) are the boson creation (annihilation) operators; the corresponding operators

for the impurity are b̂†
k (b̂k). The plane-wave eigenstates 〈x|â†

k |vac〉 = e−ikx/α of momentum
h̄kα are indexed with the dimensionless quantum numbers

k j =

{
−π + j 2π

M if M is even
−π M+1

M + j 2π
M if M is odd

(4)

where j ∈ {1, 2, . . . , M} is an integer. The kinetic energy dispersion is the same for bosons
and impurity (as they have equal mass)

εk =
h̄2k2

2mα2 =
1
2

M2k2ε0, (5)

where we have introduced the unit of energy that will be used throughout this work

ε0 =
h̄2

mL2 . (6)

Note that Refs. [26,40] choose the Fermi energy εF = π2 h̄2n2

2m = π2 N2

2 ε0 as the energy unit.
The parameters U and V are the lattice on-site interaction strengths for boson–boson

and boson–impurity, respectively. They are renormalized to generate the correct scattering
length for a two-particle scattering problem at zero energy [69,70]:

Uα =
gBB

1 + gBB
g0

, Vα =
gIB

1 + gIB
g0

, (7)

where g0 = π2h̄2/mα.

2.3. Connection to Mean-Field Theory and Choice of Parameters

In the weakly interacting regime where γ � 1, nonlinear phenomena in the Bose
gas, such as dark and gray solitons, are accurately described by the Gross–Pitaevskii
equation [51,52]. A similar mean-field treatment is also available for a Bose gas with an
impurity [19,32]. The relevant length scale in this theory is the healing length, which is the
shortest length scale on which the superfluid order parameter can change

lh =
h̄√

2mgBBn
=

L√
2γN

. (8)

In order to obtain insights into the physics of solitons and their interaction with
impurities, we need to choose the parameters of our model system such that L � lh.
In order to obtain results relevant for the thermodynamic limit, it would be desirable
to choose both the particle number N and the box size L to be large. However, we are
constrained by the fact that FCIQMC has a sign problem, which limits the maximum
number of particles and modes that can be accurately computed. The sign problem also
grows more severe with stronger interaction strength, which affects the off-diagonal matrix
elements in the Hamiltonian of Equation (3). As a compromise, we choose to work with
Ntot = 20 particles and M = 50 modes and explore the weakly interacting regime. This
yields a ratio of box size to healing length of L/lh ≡

√
2γN ≈ 12 for γ = 0.2 and L/lh ≈ 4

for γ = 0.02 for the two values of the Bose-gas interaction strength that we are using in
this work.

3. Computational Method and Simulation Details

Full configuration interaction quantum Monte Carlo is a projector quantum Monte
Carlo method that can be used to determine the ground-state energies of quantum many-
body systems. It was originally formulated to solve problems in quantum chemistry [56].
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In this section, we describe the algorithm and some of the modifications we implemented
to extend the algorithm to describe bosonic systems.

3.1. Bosonic Full Configuration Quantum Monte Carlo

In FCIQMC, a basis of Fock states (occupation number basis) for N = ∑M
i=1 ni particles

in M lattice sites is used

|n1, n2, . . . nM〉 =
M

∏
i=1

1√
ni!

(
â†

i

)ni |vac〉. (9)

Within this basis, the Hamiltonian is represented as a matrix H and the quantum state
(many-body wave function) as a vector c containing the signed weights of the individual
Fock states as coefficients.

The ground-state coefficient vector is then found in an iterative manner by repeatedly
applying the equation

c(n+1) = c(n) + δτ
(

1S(n) −H
)

c(n), (10)

where the parameter δτ controls the size of the time step, c(n) is the approximation of the
eigenvector at the n-th time step, and 1 is the identity matrix. The shift S(n) is a real number
used to keep the norm of c(n) under control. It is adjusted by the following scheme

S(n+1) = S(n) − ζ

δτ
ln

(
N(n+1)

w

N(n)
w

)
− ξ

δτ
ln

(
N(n+1)

w

Nt

)
, (11)

where N(n)
w ≡ ‖c(n)‖1 is the 1-norm of c(n), Nt the parameter for the target norm, and ξ and

ζ are parameters that control the dynamics of the shift. In the steady-state, the instantaneous
norm N(n)

w fluctuates around the value of Nt [67]. It is important to control the vector norm
in FCIQMC, as it is a proxy for the number of (stored) non-zero elements of the coefficient
vector and thus for both memory and runtime requirements of the simulation.

Because the size of the Hilbert space grows exponentially with system size, both H and
c quickly become prohibitively large. To get around this problem, we replace the matrix-
vector multiplication in Equation (10) with a stochastic sampling process. The sampling
process is designed to reproduce the right-hand side of Equation (10) by the expected value
while at the same time replacing most coefficients in the vector with zero, such that the
values do not have to be stored. Concretely, we divide the values of the entries in c into
integer units called “walkers”. At each time step, each walker attempts to “spawn” to a
configuration connected by a non-zero entry in the corresponding column of the matrix H.

The spawning from configuration q to configuration r 6= q can be described as

cr ← cr −
δτ

pspawn
Hr,qcq, (12)

where 1
pspawn

is the inverse probability of picking r, i.e., the number of non-zero off-diagonal
entries in the q-th column of H. If the occupation number cq is greater than the number of
non-zero entries in this column, the spawns can be performed exactly. In addition to the
off-diagonal spawns, the diagonal part of the matrix-vector multiplication in Equation (10)
is performed exactly. After a step is complete, we stochastically project the entries vi of
the vector c to a threshold t; values |vi| < t are removed from the vector with probability
p = 1− |vi |

t . Otherwise, their value becomes vi = t. In practice, we usually set t = 1.
By using this approach, the length of the vectors c(n) can be much smaller than the

dimension of the Hilbert space while the expectation value of c(n) still approaches the
exact eigenvector of the ground state of H. At the same time, the shift S(n) equilibrates to
fluctuating around the ground state eigenvalue with a small stochastic bias [68,71]. The
spawning process described above differs from the original one of Ref. [56] and is similar
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in spirit but more efficient than the modifications discussed in Refs. [72–74]. It will be
described in greater detail elsewhere [75].

While Equation (3) defines the Hamiltonian used in this study, the FCIQMC method
is completely agnostic to the nature of the Hamiltonian, as long as it results in a sparse
matrix where elements can be computed efficiently on the fly. Thus, it is possible to study
multi-dimensional models, long-range interactions, or even complex-valued problems [62].

3.2. Implementation Details

We have implemented the FCIQMC algorithm in the high-level and high-performance
programming language Julia [76]. Both the FCIQMC algorithm and all analysis tools are
implemented as a library. This way, the calculations and all parameters can be defined in
a concise script, written in the same language as the library, without the need for input
files in a different format. The set-up is very flexible and makes it easy to experiment
interactively with immediate visualization of data, e.g., in a notebook interface, or deploy
code to a high-performance computer. The library code Rimu.jl used for all calculations in
this work is available as an open-source software project [77].

While in practice, the matrix H is extremely large, it is also extremely sparse, and it
is easy to compute its matrix elements on the fly. To facilitate this, we index the matrix
and vectors with the Fock states of Equation (9) directly. To encode the occupation number
representation of a bosonic Fock state, we use a bit string where a sequence of n ones
encodes n particles in a mode (lattice site), and zeros are used as separators between
the modes. As an example, the state |0, 0, 3, 0, 1, 2〉 would be encoded as the bit string
“00111001011”. Using this scheme, storing N particles in M modes requires a bit string of
length N + M− 1. This representation is both extremely compact and allows for efficient
on-the-fly calculations through bit manipulations.

The Rimu.jl code makes extensive use of Julia’s type system and code optimization
capabilities through the multiple-dispatch paradigm and just-in-time compilation [76]. For
example, the number of particles N and modes M, and the length of a bit string are all
encoded in the type of a Fock-state address as type parameters. This allows us to easily
write generic, well-tested, and reusable library code for manipulating bit strings and matrix-
element calculation for bit strings of arbitrary length and type. As the type information
is available at compiling time, part of the computational workload related to specializing
the code to a specific physical problem is off-loaded to the compiler. Julia’s just-in-time
compiler can thus produce optimized code for the particular parameters of the physics
problem, which is easily defined in the script that is used to initiate the computation. As a
consequence of this approach, some lag from the compilation is experienced in interactive
use, but for the computationally intensive Monte Carlo calculations, the benefits from
optimized code compilation are appreciable.

3.3. Data Structures and Distributed Computation

For representing the coefficient vector c it is important to access the data quickly based
on the Fock space address. This is important as spawns hitting the same configuration
must be allowed to annihilate [56], but also to save memory by encoding all walkers on a
single configuration in a single number. We thus use a dictionary data structure to store
the non-zero elements of c, which is realized as a hash table [78] and thus provides access
times that are nearly independent of the number on non-zero vector elements.

Another benefit of this approach is that it is relatively easy to distribute the data and
computations to be processed in parallel. Our approach to parallelization follows Ref. [78]
and divides the vector c into approximately equally-sized chunks, which are assigned to
different workers. The workers perform the spawning step independently. After each step,
but before the vector compression, a communication step is performed, where the newly
spawned entries are transferred to the correct workers. In our implementation, we use
the Message Passing Interface (MPI) [79] through its Julia bindings [80] to handle the data
distribution and communication between workers.
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3.4. The Initiator Approximation

With some Hamiltonians, FCIQMC exhibits the sign problem. The problem manifests
itself when the number of walkers, which is equal to ‖c‖1, is too small. In such a regime,
the energy estimates given by FCIQMC become completely unusable [59].

A well-known solution to the sign problem in FCIQMC is the initiator approxima-
tion [57], which trades the sign problem for a small bias. It works by suppressing spawns
from configurations with low walker occupation. To be precise, it divides the entries of c
into two classes: initiators and non-initiators. For the initiators, the algorithm is unchanged,
while the non-initiators are only allowed to perform spawns to configurations that are
themselves, initiators. A configuration is an initiator if its occupation number is strictly
greater than a chosen initiator threshold. In our computations, the initiator threshold was
always set to 1.

3.5. Simulation Details

All simulations were performed with the Rimu.jl [77] code written by the authors.
Energy estimators are computed as averages from a time series collected from the simu-
lation, discarding data from an initial equilibration phase. The projected energy is used
throughout this work as it has a much smaller fluctuation compared to the shift estimator,
provided a sufficient number of walkers occupies the reference configurations. Error bars
were determined using the blocking analysis of Ref. [81] supplemented by hypothesis
testing of Ref. [82].

When calculating an expectated value of an observable, such as the two-body cor-
relation and the momentum of the impurity, the replica trick [83] is used. It uses two
independent FCIQMC wave functions to avoid a bias that would appear if correlated data
was used.

For most of the calculations, one million floating-point walkers are used. As mentioned
previously, the initiator approach is applied to all calculations with a threshold value of
1. This is necessary for controlling the sign problem in our simulations in the parameter
regimes of larger values of γ and η. We have performed extensive tests to control the
biases introduced by population control and the initiator approximation and present some
exemplary data from these efforts in Appendix A.

For calculations with small η, the equilibration can take a very long time. To overcome
this problem, we used equilibrated wave functions from a system with much larger η as
the starting vector and re-equilibrated the wave function with the desired small η. This
procedure speeds up the equilibration process significantly.

4. Results

Yrast states are the lowest energy states at a given non-zero momentum. We de-
note the energy of the yrast state |ΨP〉 as EN,Nimp(P) (or E(P) for short), where N is the
particle number of the Bose gas, Nimp the number of impurities present, and P the total
(conserved) momentum. We also refer to the energy as a function of momentum as the
“dispersion”. In the thermodynamic limit where N, L→ ∞ while the density n = N/L is
finite, the momentum becomes a continuous variable.

Yrast dispersions for a finite system with Ntot = N + Nimp = 20 particles are shown
in Figure 1. Special points on the dispersion occur at integer multiples of the “umklapp”
momentum P = 2πh̄Ntot/L = NtotP0, where P0 = 2πh̄/L. At these umklapp points,
the system’s internal state is identical to the ground state with a Galilean boost applied,
such that every particle gains a momentum of unit P0. Thus, the umklapp points have the
energy E(P) = E(0) + P2/(2Ntotm), as indicated by the dash-dotted (green) parabola in
Figure 1.
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Figure 1. Yrast excitation energies of a finite Bose gas with Ntot = 20 particles with periodic boundary
conditions. The blue data (solid line as a guide to the eye) is for a weakly-interacting, pure Bose
gas (N = 20, Nimp = 0). A Bose gas containing a single spin impurity (N = 19, Nimp = 1) with
repulsive interactions (η = 0.5) is shown in orange (dashed line as a guide to the eye). The interaction
strength in the Bose gas is γ = 0.2. All data points are obtained from FCIQMC calculations with
a fixed system size of M = 50. The dash-dotted line shows the center-of-mass dispersion relation
E(P)− E(0) = P2/2Ntotm for reference. Finally, the dotted line depicts a quadratic polaron dispersion
E(P)− E(0) = P2/2m∗, where m∗ = 1.3684(37)m is the fitted value of the polaron effective mass.
The units of momentum and energy are P0 = 2πh̄/L and ε0 = h̄2/2mL2.

For a pure one-dimensional Bose gas (where Nimp = 0), the yrast states and their
energy can be generated exactly via the Bethe ansatz [84]. Note that yrast states in the
one-dimensional Bose gas were denoted as type II excitations by Lieb in Ref. [84]. The yrast
dispersion for N = 20 bosons from FCIQMC is shown in Figure 1 by the blue line (solid line).
The umklapp points at P = NtotP0 (and integer multiples) have the meaning of a superfluid
ring current [12]. The rest of the yrast dispersion is associated with dark and gray soliton
phenomena [52] characterized by a localized dip in the density and step in the superfluid
phase. While the momentum eigenstates are translationally invariant and can be thought
of as a superposition of the (localized) solitons at various positions [48], wave-packet-like
superpositions of nearby momentum eigenstates reveal localized soliton solutions that
move at the velocity of v = dE(P)/dP, given by the slope of the yrast dispersion [51].
At the half-umklapp momentum P = NtotP0/2, a dark soliton forms with a π phase step. It
is associated with a negative effective mass m∗ = (d2E/dP2)−1, and, as a consequence, will
oscillate around localized density maxima created by trapping potentials [85,86]. At small
momentum (and next to any umklapp point), the Bose gas dispersion is linear, and the
slope becomes the Bogoliubov speed of sound in the thermodynamic limit [84].

A yrast dispersion in the presence of a spin impurity (Nimp = 1) is shown with the
orange line (dashed line) in Figure 1. The excitation energy of yrast states E(P)− E(0) is
generally smaller in the presence of a spin impurity compared to a Bose gas with the same
number of particles Ntot apart from the umklapp points. This can be attributed to the fact
that the spin impurity is not a part of the superfluid and thus does not fully contribute
to the energy cost of forming a soliton by creating a twist in the phase—a phenomenon
that can be rationalized with the phase rigidity of a superfluid [87]. Note that phenomena
associated to phase rigidity occur in a one-dimensional Bose gas even though Bose–Einstein
condensation is absent in the thermodynamic limit [12,51]. The yrast dispersion in the
presence of the impurity is approximately quadratic at a small momentum (and near the
umklapp points), in contrast to the pure Bose gas, and thus can be assigned an effective
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mass. The fitted, idealized parabola is shown in Figure 1 as a dotted (red) line. The effective
mass determined by the curvature may differ from the bare mass m of the impurity due to
interactions with the bosonic superfluid. We refer to this quadratic part of the dispersion
near the umklapp points as the polaron.

Near the umklapp momentum of P = NtotP0/2 we may expect the physics of a de-
pleton, i.e., a dark or gray soliton that is affected by the presence of the impurity [19].
While Figure 1 depicts data for Ntot = 20 particles, the situation is generic (upon adjust-
ing the scales) for a finite particle number where the umklapp momentum is found at
P = NtotP0.

4.1. Yrast Dispersion with Weak and Strong Boson–Impurity Coupling Strength

Figure 1 displays strong finite-size effects in terms of the center-of-mass dispersion
P2/2Ntotm, the classical kinetic energy associated with the translation of the whole system,
which provides a lower limit for the yrast excitation energies (shown as a dash-dotted line).
In the thermodynamic limit, this energy contribution vanishes due to the total system mass
appearing in the denominator. The detailed relation between the yrast dispersion of a finite
system and its thermodynamic limit has been worked out for the pure Bose gas in Ref. [51]
in terms of quantities, such as the phase step, the associated superfluid backflow current,
and the depleted particle number for a dark/gray soliton. Here we correct for the dominant
finite-size effect in a simple way by subtracting the center-of-mass kinetic energy from the
yrast excitation energy. We thus define the finite-size-corrected yrast dispersion, Ω(P), as

Ω(P) = E(P)− E(0)− P2

2Ntotm
, (13)

where E(P) is the lowest energy at fixed momentum P. The finite-size energy correction is
equivalent to a Galilean boost into a reference frame that moves with the velocity P/Ntotm
that a classical particle of mass Ntotm would have at momentum P. By removing the center
of mass kinetic energy from the total energy, the yrast dispersion becomes periodic in P
with the umklapp momentum 2πh̄Ntot/L = NtotP0 as the period, as in the thermodynamic
limit. Additionally, the finite-size-corrected yrast dispersion has reflection symmetry across
the half-umklapp point NtotP0/2.

In Figure 2, we present two sets of finite-size-corrected yrast dispersions with boson–
boson coupling strengths of γ = 0.02 and γ = 0.2, which are both considered to be weak
interactions. The boson–impurity coupling is chosen in the range from η = 0.01 to 1.0, which
covers both η > γ and η < γ scenarios. Our results show that the yrast excitation energy is
consistently lower in the presence of the spin impurity compared to the pure Bose gas at any
value of η, as previously predicted [19,43]. The quadratic polaron part of the dispersion near
P = 0 and the umklapp points reduces its curvature with increasing η, which is consistent
with an increase of the polaron effective mass. Quantitative results for the polaron effective
mass were previously reported from diffusion Monte Carlo calculations [40] and mean-field
theory [26].

As shown in Figure 2, the shape of the yrast dispersion is smooth in general. However,
although very subtle, a cusp at the half-umklapp point can be seen in panel (b), when η � γ.
A cusp for weak coupling in an infinite system was predicted in Ref. [43] based on the
Luttinger liquid theory. It was pointed out that in a Luttinger liquid, the cusp is expected to
vanish discontinuously at some critical value of the coupling strength between the impurity
and the quantum liquid, but the exact transition point is difficult to determine. While we
have only finite system data available from our calculations, we examine this transition in
the remainder of this work and present further data that provides insights into the physics
at play.
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Figure 2. Finite-size-corrected yrast dispersion of a pure Bose gas (N = 20, Nint = 0, black markers
with dotted line) and Bose gas with spin impurity (N = 19, Nint = 1, colored markers) according to
Equation (13). The boson–boson coupling strength is (a) γ = 0.02 and (b) γ = 0.2. FCIQMC results
are shown with error bars for fixed system size M = 50. The boson–impurity coupling strength is
varied between η = 0.01 and η = 1.0 as per the legend. The pure Bose gas excitation energies are
higher than any of the impurity dispersion data. Note that a slight cusp develops in the impurity
dispersion at the half-umklapp point, P = 10P0 in the regime where η � γ in panel (b), as can be
seen from the inset, which magnifies the data in the region of the cusp.

It is easiest to understand the origin of the cusp from the situation where the impu-
rity does not interact with the Bose gas at all. We thus show data for a non-interacting
impurity (η = 0) immersed in a weakly interacting Bose gas at γ = 0.2 in Figure 3 , which
demonstrates two interesting transition points in the yrast dispersion. The transition points
originate from a trade-off between the energy cost of depositing momentum into either the
impurity or the Bose gas. While for small momentum it is favorable to deposit momentum
into the impurity (dotted red line), at P > P0 it becomes favorable to deposit additional
momentum into the Bose gas instead (orange squares show data where Pimp = P0). This
is the first transition point. The second transition happens at the half-umklapp point (red
diamond), where the yrast state (indicated with a green line) switches again to one with
zero impurity momentum Pimp = 0. This switch generates a cusp in the yrast dispersion,
connecting segments with a gray soliton moving to the right (at P < 10P0) and a gray
soliton moving to the left (P > 10P0).

A symmetrical scenario to the first transition happens near the umklapp point. Both
transitions become sharp quantum phase transitions (cusp with discontinuous derivative)
in the thermodynamic limit. These phase transitions are first-order (level-crossing type)
transitions without diverging quantum fluctuations.
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Figure 3. Dispersion of a Bose gas with boson–boson coupling strength γ = 0.2 and a single impurity
with no coupling (η = 0). The total number of particles is Ntot = 20. The impurity is given zero (•) or
one (�) units of momentum. The solid line shows the actual yrast dispersion with the lowest energy
states exhibiting a cusp at the half-umklapp point (P = 10Po) marked by the diamond. The dotted
lines show the free particle dispersion P2/2mfree. The free particle mass differs slightly from the bare
boson mass m due to the finite-size correction in Equation (13). The inset shows the detail of the cusp
near the half-umklapp point (P = 10Po).

4.2. Impurity Momentum

In order to understand the physical nature of a yrast state, it is of great interest to
understand how the momentum is distributed between the impurity and the Bose gas.
In the case of an interacting impurity, its momentum is no longer a good quantum number.
Thus, we calculate the expectation value of the impurity momentum with respect to the
yrast state |ΨP〉

〈P̂imp〉P =
kM

∑
k=k1

kP0〈ΨP|b̂†
k b̂k|ΨP〉. (14)

Unbiased estimators for such a symmetric expectation value can be obtained from
FCIQMC using the replica trick: two propagating independent stochastic representations
of the quantum state are used for the bra and the ket state, respectively [83].

Figure 4 shows the expectation value of the impurity momentum 〈P̂imp〉P as a function
of the total momentum of the yrast state for different values of the impurity coupling
strength η as blue dots. Because the total momentum is fixed to the value P for each
state, the expectation value of momentum in the Bose gas is given by the difference
〈P̂Bg〉P = P− 〈P̂imp〉P, where P̂Bg = ∑kM

k=k1
kP0 â†

k âk is the operator for the momentum of the
Bose gas alone.

In the case of weak impurity coupling (η = 0.01) shown in Figure 4a, the situation is
very close to the non-interacting limit of Figure 3 discussed in the previous section: For
small total momentum P = P0 the impurity carries (almost) the full momentum of the
system, as this is energetically favorable. At larger values of P, additional momentum is
taken up by the Bose gas while the impurity momentum stays at about P0, before switching
abruptly to approximately zero at the half-umklapp point. At the full-umklapp point
P = 20P0 the impurity momentum jumps back to P0, consistent with the expectation that
every particle, including the impurity, carries a single unit of quantized momentum at the
umklapp point. The abrupt change near the half-umklapp point P = 10P0 is consistent
with the cusp observed in the yrast dispersion in Figure 2b. An interesting situation occurs
directly at the half-umklapp point, where 〈P̂imp〉 ≈ 0.5P0, which indicates that this state
is an entangled superposition of a state where the impurity has momentum P0 and the
Bose gas 9P0, and a state with 〈P̂imp〉 ≈ 0 where the Bose gas carries the full (half-umklapp)
momentum 10P0.
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At larger interaction strengths η shown in panels (b) to (d), the curves keep the
inversion symmetry around the half-umklapp point. At this point, we find the entangled
superposition state as described, with 〈P̂imp〉 ≈ 0.5P0. Strong changes are found in the
polaron regions. At intermediate interactions, additional momentum is deposited in the
impurity with a maximum of 〈P̂imp〉 ≈ 1.25 at η = γ = 0.2. The further increase of the
impurity coupling then leads to a reduced expectation value for the impurity momentum
going against 〈P̂imp〉 ≈ 0.5P0 over the whole P range.

The panels of Figure 4 also show m dE
dP ≡ mv, where v is the group velocity of the

system with orange crosses. This data indicates that the impurity moves with the group
velocity in the polaron part of the dispersion relation (close to P = 0 or umklapp points) for
a weakly interacting impurity and over the whole dispersion relation when η ' γ. When
η � γ and outside of the polaron section, the impurity is rather transparent to the Bose gas
and does not follow the group velocity. This indicates that the depleton picture where the
impurity hybridizes with a dark or gray soliton is only valid when η ' γ.

(a) η = 0.01 (b) η = 0.05
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Figure 4. The expectation value of the impurity momentum 〈P̂imp〉P against the total momentum
P in the system. The dots (•) are directly calculated data with FCIQMC. The crosses (×) show the
m dE

dP computed numerically from the yrast spectrum in Figure 2. The dotted line shows the value
〈P̂imp〉P = 0.5P0 as a guide to the eye. The boson–boson coupling is γ = 0.2 for all cases, and N = 19
and Nimp = 1, which means that P = 10P0 corresponds to half umklapp and P = 20P0 is the
full-umklapp point.
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4.3. Two-Body Correlation Function

The two-body correlation function contains important information about how particles
interact with one another. In particular, the impurity–boson correlation provides direct
evidence for the transition from a polaron to a depleton. Here, we define the dimensionless
impurity–boson correlation function g(2)P (d) for the yrast state |ΨP〉 in real space as

g(2)P (d) =
L
N

∫ L

0
〈ΨP|ψ̂†(x + d)ψ̂†

imp(x)ψ̂imp(x)ψ̂(x + d)|ΨP〉dx, (15)

where d is the distance between the impurity and a boson. In order to evaluate this
correlation function in the lattice discretized model, we transform it into momentum
space using â†

k =
∫

eikx/αψ̂†(x)dx and b̂†
k =

∫
eikx/αψ̂†

imp(x)dx, to obtain the equivalent
representation

g(2)P (d) =
1
M

M

∑
s,p,q,r=1

exp
(
−id(p− q)

2π

L

)
〈ΨP|â†

s b̂†
p b̂q âr|ΨP〉δs+p,q+r. (16)

The chosen normalization ensures g(2)P (d) = 1 in a non-interacting system for any

yrast state. In an interacting system, g(2)P still obeys a reflection symmetry g(2)P (d) = g(2)P (−d)
and is a periodic function with period L. Furthermore, as a function of the yrast momentum
P, the correlation function g(2)P of a finite system is periodic in P with a reflection symmetry
around P = 0 and around the half-umklapp point, as does the yrast dispersion in relation
to the thermodynamic limit. Due to these symmetries, we show the correlation functions
only in the nontrivial intervals 0 ≤ d ≤ L/2 and 0 ≤ P ≤ NtotP0/2.

Figure 5 shows the correlation functions g(2)P (d) for yrast states with different momen-
tums over a range of impurity–boson coupling strengths for γ = 0.2. Significant changes in
the correlation functions with respect to different momentum values are clearly visible.

For the smallest interaction strength η = 0.01 in Figure 5a, we can identify clear
evidence of the two transitions discussed in Section 4.1: For P ≤ P0 the very small devia-
tions of g(2)P (d) from the background value of 1 indicate very weak correlations consistent
with the polaron regime. There is evidence for a weak correlation hole, and the shape of
g(2)P (d) (negative curvature) is consistent with an otherwise homogeneous Bose gas. In the
intermediate momentum range P0 < P < 10P0, the correlations are stronger, and the shape
of g(2)P (d) changes, displaying a positive curvature at a small P to a negative on at a larger
P. This is consistent with the impurity weakly correlating with a gray soliton forming in
the Bose gas—explaining the shape of the correlation function. A much stronger correlation
is observed at the half-umklapp point P = 10P0, consistent with the superposition state
expected at the cusp of the dispersion, as discussed in Section 4.2.

Increasing the impurity–boson coupling strength η in panels Figure 5b–d changes the
correlation function for different P values, it becomes smaller. For η = 0.05 in panel (b),
the transition from the half-umklapp momentum P = 10P0 to smaller momentum values
is less dramatic and smoother, which indicates that the depleton picture of the impurity
being localized inside a (modified) gray soliton is becoming adequate. However, compared
with Figure 4b, we see that this is not yet completely the case and still requires a larger η to
become fully accurate.

The physics of the polaron regime is more resilient and survives larger values of η,
up to η ≈ 0.2, as seen in Figure 5b,c. We note that the impurity almost carries the full
momentum of the system at P = P0 for η ≤ 0.2, as seen in Figure 4, which is consistent
with the polaron picture. Seeing the (anti-)correlation with the Bose gas strengthened with
increasing η in Figure 5b,c is consistent with the decrease in the curvature of the dispersion
observed in Figure 2 and the associated increase in polaron mass.

At the largest value of η = 1 shown in Figure 5d, the correlation function drops
close to zero at zero distance d = 0 for any value of P consistent with the picture that the
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impurity now acts as a weak link in the Bose gas, almost severing the superfluid [19]. At the
half-umklapp momentum P = 10P0, the shape of the correlation function now closely
traces the shape of a dark soliton density ∼tanh(d/lh)

2, consistent with a healing length
lh ≡ L/

√
2γN ≈ 4.2α.
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0 5 10 15 20 25
d /

0.7

0.8

0.9

1.0

1.1

1.2

g(2)
(d)

P

0 5 10 15 20 25
d /

0.6

0.7

0.8

0.9

1.0

1.1

1.2

1.3

g(2)
(d)

P

(c) η = 0.2 (d) η = 1

0 5 10 15 20 25
d /

0.4

0.6

0.8

1.0

1.2

g(2)
(d)

P

0 5 10 15 20 25
d /

0.0

0.2

0.4

0.6

0.8

1.0

1.2

g(2)
(d)

P/P0 = 0
P/P0 = 1
P/P0 = 2
P/P0 = 3
P/P0 = 4
P/P0 = 5
P/P0 = 6
P/P0 = 7
P/P0 = 8
P/P0 = 9
P/P0 = 10

P

Figure 5. The impurity–boson correlation function g(2)P (d) for yrast states with total momentum P,
as indicated in the legend, versus the real space distance d. Different values of the impurity–boson
coupling are shown in panel (a–d), with values of η as indicated above each panel. The boson–boson
coupling is γ = 0.2 for all cases, and N = 19 and Nimp = 1, which means that P = 10P0 corresponds
to half umklapp.

4.4. Effective Mass at Half Umklapp P = NtotP0/2

At the half-umklapp point P = NtotP0/2, we may expect the physics of the yrast
states to be dominated by a dark soliton in the interacting Bose gas and by a depleton if an
interacting spin impurity is present. The effective mass m∗ = (d2E/dP2)−1 is negative due
to the concave shape of the dispersion relation. We extract the effective mass by fitting a
parabola to three points of the finite-size-corrected dispersion relation Ω(P) of Equation (13)
near the half-umklapp point.

Figure 6 shows the extracted effective mass as a function of the impurity–coupling
strength η for two different values of the Bose gas interaction constant γ. In the regime
η > γ, our data shows a linear trend with η. A linear dependence of the effective mass
on η is expected from exact results for an equal-mass impurity in a Tonks–Girardeau gas
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(γ = ∞) [19]. The effective mass becomes particularly heavy for a small γ and a large η,
up to several times the mass of the dark soliton at the same value of γ, as seen in Figure 6b.
As the magnitude of the extracted effective mass (from the finite-size-corrected dispersion
relation) becomes larger than the total system mass of 20m, we call this the super-heavy
regime. Note that without the finite-size correction of Equation (13), the curvature of
the yrast dispersion changes from concave to convex, which means that the uncorrected
effective mass diverges and changes sign (not shown). The heavy effective mass regime has
potential experimental relevance, as it is relevant for realizing physical phenomena, such
as Bloch oscillations [14,19]. Furthermore, a recent study demonstrates that the dynamical
phenomenon of temporal orthogonality catastrophe is exhibited, given the impurity–boson
couplings are sufficiently stronger than the intra-species background ones [28].
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Figure 6. Effective mass at half umklapp. (a) Effective mass of the Bose gas with impurity at the
half-umklapp point P = NtotP0/2 (depleton mass mdep) in units of the bare mass m as a function of
the impurity coupling strength η. The dotted lines are linear fits to the data with η > γ and highlight
the linear trends. (b) Ratio of the effective mass of the impurity (depleton mass mdep) to the effective
mass of the pure Bose gas (soliton mass msol) at the half-umklapp point P = NtotP0/2. The dashed
line in (b) indicates the depleton/soliton mass ratio is 1. The soliton mass is msol = −14.47232(5)m
for γ = 0.02 and msol = −7.079(34)m for γ = 0.2.

Another interesting feature shown in Figure 6b is that the impurity effective mass is
approximately equal to the soliton mass for η = γ. In the regime where η < γ (seen for
γ = 0.2), the effective mass becomes very small in magnitude, trending towards zero. This
is consistent with the establishment of a cusp in the dispersion relation at the half-umklapp
point, a feature that was already discussed in Section 4.1. While the concept of an effective
mass breaks down in the cusp regime, our data can be used to determine that the transition
happens approximately where η = γ, thus shedding some light on the question of the
critical coupling which remains unsolved from Ref [43].

4.5. Spin-Flip Energy

Thus far, we have considered the yrast excitation energies, which measure how much
energy is required to deposit momentum into the system on top of the energy of the ground
state at P = 0. Now we want to examine the energy that is required to flip a spin in the
Bose gas at fixed momentum. We define the spin-flip energy ESF(P) as

ESF(P) = ENtot−1,1(P)− ENtot,0(P). (17)

Figure 7 shows the spin-flip energy as a function of the impurity coupling strength η
for yrast states at different total momentum P. The two panels refer to different values of
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the boson–boson interaction strength γ. The brown line shows the spin-flip energy for the
P = 0 ground state. It is separated by a gap from the spin-flip energies at other momentum
values, which are all lower. The ground state spin-flip energy increases with η and crosses
zero, meaning that for a large η, flipping the spin becomes energetically unfavorable. The
vertical lines indicate where η = γ. At this point, the impurity is distinguishable from the
background Bose gas, but all physical properties, such as mass and interactions, are the
same. The spin-flip energy is thus solely due to quantum statistics. From the data shown
in Figure 7, we see that the spin-flip energies are all negative at this point, and thus the
system with impurity has lower energy than the pure Bose gas, i.e., it is favorable to flip
the spin for any value of the total momentum P. Furthermore, the energy gain is larger
the higher the momentum (up to the half-umklapp value). This trend is remarkably not
maintained when η < γ, as seen in Figure 7b. This behavior can be rationalized from the
quantitative changes in the yrast dispersions, shown in Figure 2.

(a) (b)

10 2 10 1 100
20

0

20

40

60

80

100

120

E S
F/

0

10 2 10 1 100

100

50

0

50

100

E S
F/

0

P/P0 = 0
P/P0 = 1
P/P0 = 2
P/P0 = 3
P/P0 = 4
P/P0 = 5
P/P0 = 6
P/P0 = 7
P/P0 = 8
P/P0 = 9
P/P0 = 10

Figure 7. The spin-flip energy as a function of the boson–impurity coupling strength η, with boson–
boson coupling strength (a) γ = 0.02 and (b) γ = 0.2. The data for P > 10 are not presented, as they
follow the symmetry across P = 10 in the yrast spectrum, hence are overlapping with existing data
on this figure.

5. Conclusions

Using the FCIQMC method, we investigated the properties of the yrast states of Bose
gases coupled with a mobile impurity in one spatial dimension. Based on the energies and
the first and second-order correlation functions of yrast states, we identified the polaron and
depleton regimes, as well as the transitions between them. The extracted depleton effective
mass revealed a super-heavy regime where the magnitude of the (negative) depleton mass
exceeds the mass of the finite Bose gas. We also observed a qualitative change in behavior
crossing η = γ in all calculated quantities. For the η > γ regime, we can identify the
formation of depletons around the half-umklapp point, where the impurity is more or less
confined to the density hole of the gray/dark soliton of the Bose gas. The depleton picture
becomes inadequate for smaller interactions between the impurity and the bosons, η < γ,
with the impurity no longer hybridizing with the soliton. This behavior is consistent with
an observed break-down of the effective mass concept below η = γ.

In this work, the FCIQMC method was applied to a bosonic many-body problem for
the first time. Due to the non-stoquastic nature of the momentum-space Hamiltonian (3),
the sign problem exists and becomes severe when either η or γ is large. Through this
study, we demonstrated the effective suppression of the sign problem in FCIQMC by the
application of the initiator approximation, showing the potential of FCIQMC for studying
complex bosonic many-body systems.
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Outlook: The demonstrated computational method is extremely versatile and can
be applied to a wide range of physics questions. Possible future extensions of this
study include extrapolating the results to the thermodynamic limit. A transcorrelated
Hamiltonian [88,89] can be applied to accelerate the basis set convergence to the infinite
limit. There are also many interesting set-ups that we wish to study further. In this work,
we only focus on the cases where the impurity and bosons all have identical mass and
repulsive interactions, which could be extended to unequal masses and attractively inter-
acting impurities. Attractive impurity–boson coupling has been studied in the polaron
regime [26,40] but not yet explored in the context of depleton physics. In addition, the case
of an impurity in a strongly interacting Bose gas or with long-range interactions [90–93]
is interesting to study, where perturbative and mean-field approaches are of limited use
or invalid. A more complex system with two impurity atoms, known as the bipolaron
problem [27,94–97], at non-zero momentum is also interesting due to its connection to
high-temperature superconductivity [95,96].
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Appendix A. Eliminating Biases

While bosonic systems can often be described by stoquastic Hamiltonians charac-
terized by having only non-positive, real off-diagonal elements, the momentum-space
Hamiltonian of Equation (3) considered here is non-stoquastic. As a consequence, one has
to deal with the QMC sign problem, that originates from the fact that different configura-
tions can spawn into the same configuration with incoherent signs.

https://www.nesi.org.nz
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Figure A1. Ground-state energy against the equilibrated walker numbers, Nw. The system size is
the same as used in other sections. The boson–boson coupling is γ = 0.2, and the impurity–boson
coupling is η = 2,. This is a stronger interaction than in our other calculations and should lead to the
largest bias. For Nw > 104 the bias becomes smaller than the statistical errors.

In FCIQMC, the initiator approach can be used to mitigate this sign problem by
restricting the walker spawning process to the dominant configurations. This enforces a
better coherence in the sign structure of the wave function. Albeit typically small [57,78],
an initiator bias can be observed as a consequence of the initiator approximation when an
insufficient number of walkers is used to sample a much larger Hilbert space. Furthermore,
the population control bias [68,98,99] is a stochastic bias that appears as a result of sampling
noise. It is typically much smaller than the initiator bias (where the latter is applicable)
and scales like a power law with the number of walkers [68]. Both biases can be reduced
below the size of statistical error bars by increasing the walker population. To make sure
our calculated energies are bias-free and a sufficiently large walker population is used, one
can check the ground-state energy as a function of the equilibrated walker number, Nw,
as shown in Figure A1.

It can be seen that when Nw > 104, the biases in the shift and projected energies
are smaller than the statistical errors and converge to the same energy throughout. This
convergence check is carried out with a larger interaction strength (η = 2, γ = 0.2) than
used for any of the data presented in the main article, and thus should overestimate the
bias for the presented data. For all energies presented in Section 4, a walker population of
Nw = 106 is used. Hence we are confident that the presented data is free of both the initiator
and the population control bias.
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