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Abstract: Quantum reservoir computing is a machine learning approach designed to exploit the
dynamics of quantum systems with memory to process information. As an advantage, it presents the
possibility to benefit from the quantum resources provided by the reservoir combined with a simple
and fast training strategy. In this work, this technique is introduced with a quantum reservoir of spins
and it is applied to find the ground state energy of an additional quantum system. The quantum
reservoir computer is trained with a linear model to predict the lowest energy of a particle in the
presence of different speckle disorder potentials. The performance of the task is analyzed with a
focus on the observable quantities extracted from the reservoir and it is shown to be enhanced when
two-qubit correlations are employed.

Keywords: quantum reservoir computing; quantum machine learning; information processing;
speckle disorder

1. Introduction

In the last few years, the study of quantum systems has taken advantage of the increas-
ing interest in and the developments of machine learning techniques to face both theoretical
and experimental challenges, which has led to the emergence of the broad field of quantum
machine learning [1–5]. Some successful examples of the use of machine learning include,
among others, the detection and classification of quantum phases [6–13], the prediction of
the ground state energy and other characteristic quantities of quantum systems [14–17],
and the enhanced control and readout in experimental setups [18–21]. Additionally, many
efforts are devoted to developing machine learning algorithms that exploit quantum re-
sources, aiming to find a quantum advantage in performing tasks. Quantum reservoir
computing (QRC) and related approaches belong to this last category [22,23].

The concept of QRC was introduced in [24] as an extension to the quantum realm of
classical reservoir computing (RC) [25–28]. The main idea behind RC, as an unconven-
tional computing method [29,30], is the use of the natural dynamics of systems to process
information, together with a simplified training strategy [31]. For supervised learning
techniques, for instance in the case of deep neural networks, one of the major drawbacks is
the training process of models with typically thousands of free parameters to be optimally
adjusted, which requires a lot of computational resources and/or time. Instead of that, in
RC, the connections between the constituents of the reservoir are kept fixed and only the
output quantities from the reservoir are involved in the training process and could be easily
retrained for a different purpose. This scheme has been shown to be sufficient to achieve
very good performances in diverse tasks [32–35].

Quantum reservoirs are good candidates to be exploited for computational purposes
for several reasons. First of all, the number of degrees of freedom in quantum systems
increases exponentially with the number of constituents. Therefore, with relatively small
systems, a large state space is available, which has been shown to be beneficial, i.e., it
increases the memory capacity [24,36–39]. In second place, the presence of entanglement
can also contribute to achieving a quantum advantage when quantum correlations are
exploited [39]. Finally, there exist several proposals suitable to be implemented in a wide
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variety of experimental platforms to realize not only classical tasks but also quantum
ones [22], for instance, entanglement detection [40], quantum state tomography [41], and
quantum state preparation [42,43].

In this article, the possibility of using a quantum reservoir to study another quantum
system is explored as an alternative to classical machine learning models. A first goal in this
work is to show that a quantum reservoir can be used to make predictions on the ground
state energy of a quantum particle in a speckle disorder potential [44] by only providing
as an input this external potential and by using only a linear model to train the output
observables. This problem is of relevance for understanding the Anderson localization
phenomenon in quantum systems due to the presence of disorder, which determines their
transport properties [45]. Additionally, we aim to analyze the effect on the performance
when two-body quantum correlations in the reservoir are used compared with one-body
observables for the mentioned task.

This work is organized as follows. In Section 2, the details on the quantum system in
study are provided together with the database used. The description of how the input is
encoded into the quantum reservoir is found in Section 3. In Section 4, the characteristics of
the quantum reservoir system are explained. In Section 5, the quantum reservoir computing
procedure is presented with the mathematical description of the state of the reservoir and
its observables. The expressions of the trained models and an analysis of their performance
are given in Section 6. Finally, the discussion of the results and the conclusions are in
Section 7.

2. Database of Speckle Disorder Potentials and Ground State Energies

The problem to be addressed with the model proposed in this work consists of finding
the lowest energy of the following Hamiltonian, which describes a particle of mass m in
one dimension with position x in the presence of an external potential V(x):

H = − h̄2

2m
∂2

∂x2 + V(x), (1)

where h̄ is the reduced Planck constant. V(x) is a speckle potential that in cold atoms experi-
ments is created by means of optical fields passing through a diffusion plate [46–48] and can
be numerically produced with Gaussian random numbers [49,50]. This potential introduces
disorder into the system and originates the Anderson localization phenomenon [44,45].

In previous studies, classical machine learning models with convolutional neural
networks have been shown to be able to make very good predictions on the first energies
of this system and for different system sizes by applying transfer learning protocols [16].
Additionally, the extension to the system with few repulsively interacting bosons [51] has
also been explored including the particle number as an additional feature to the trained
model [17].

The database used in this article is part of the database used in [17], which is publicly
available at [52]. In this work, the first 10,000 speckle potential instances of the single-
particle dataset and their corresponding ground state energies are used. The energies in
the database were computed numerically by means of exact diagonalization as explained
in [51] and in more detail in [53].

3. Input Ecoding into the Quantum Reservoir

The values of each different speckle potential instance in the dataset are provided in a
discrete grid in the space of K = 1024 points, V(xk) = Vk, with k = 1, ... , K. Therefore, our
input is a set of vectors of size 1024 where the spatial structure of each potential is given by
the order of the elements. For this reason, the values of the potential are introduced into
the dynamics of the quantum reservoir in the same order. From the point of view of the
quantum reservoir, a given speckle potential corresponds to an external time-dependent
signal fed at discrete times, t = k∆t.
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The input at a given time, Vk, is encoded in one of the qubits of the system (see
Figure 1), qubit 1, by setting its state as [24,39,54,55]:

|ψk〉 =
√

1− sk |0〉+
√

sk |1〉 , (2)

where sk = Vk/Vmax, and the value of Vmax is always the same and fixed as the maximum
reached among all the 10,000 speckle instances in the dataset. In this way, sk ∈ [0, 1] to have
a properly normalized state for the qubit, and all inputs are rescaled to the same quantity.
The basis states that are used are the eigenstates of the Pauli matrix σ̂z, namely σ̂z |0〉 = |0〉
and σ̂z |1〉 = − |1〉.

Input 
Encoding

INPUT
Speckle Potential

QUANTUM RESERVOIR
Spin System

Output 
Observables

OUTPUT
Ground-State

Energy

Training

Figure 1. Schematic representation of the use of a quantum reservoir to predict the ground state
energy of a quantum particle in a speckle potential. The spatial-dependent values of the speckle
potential are transformed into a time-dependent signal fed into the state of one spin of the reservoir
at discrete time steps. The quantum reservoir system evolves between input injections. Different
observables are extracted from the reservoir system and used in the training process to produce
ground state energy predictions.

4. Hamiltonian of the Reservoir of Spins

The quantum reservoir employed in this work is a system consisting of N = 6 spins (or
qubits). The unitary dynamics of this system are governed by the following transverse-field
Ising Hamiltonian:

ĤR =
1
2

N

∑
i=1

hσ̂z
i +

N

∑
i<j

Jijσ̂
x
i σ̂x

j , (3)

where σ̂z
i and σ̂x

j are Pauli matrices acting on qubits i and j, respectively. The spin–spin
couplings Jij, represented as lines of different thickness in Figure 1, are randomly generated
once from a uniform distribution in the interval [−Js/2, Js/2] and then kept constant. We
work on a system of units with h̄ = 1 and Js = 1. The time intervals ∆t, are expressed in
units of 1/Js, and h, that correspond to an external magnetic field in the z direction, fixed at
h = 10Js, such that the system is in the appropriate dynamical regime [54]. This kind of
system was in the original proposal of QRC in [24] and has been extensively studied for
information processing purposes in further several works [39,54–59].

5. Quantum Reservoir Computer Operation

The role of the quantum reservoir is to provide a map between the input speckle to the
output observables. They carry the information about the input that has been processed
during the time evolution of the reservoir system. The memory of the system, for the
present purposes, is exploited within each instance. However, the system is reset before the
introduction of each speckle potential at time t = 0. In this way, there are no dependencies
between consecutive instances. The general scheme of the procedure is depicted in Figure 1.

The density matrix that describes the quantum state of the reservoir of spins before
the injection of each potential reads:

ρ0 = |0, ... , 0〉 〈0, ... , 0| . (4)
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Afterwards, for a given speckle potential instance, the state of the reservoir at each
time step k is given by:

ρk = e−iĤR∆t(|ψk〉 〈ψk| ⊗ Tr1(ρk−1))eiĤR∆t, (5)

where Tr1() indicates the partial trace with respect to the first qubit. The dependence on
the speckle points, Vk, is through fixing the state of the first qubit, |ψk〉 〈ψk|, in the form
of Equation (2). Between input injections, there is a unitary evolution of the state of the
reservoir of ∆t duration governed by the Hamiltonian in (3).

From the state of the reservoir, the expectation values of the following single-qubit
observables at each time step k are computed as:

〈σ̂α
i 〉k = Tr(ρkσ̂α

i ), (6)

for all spins, i = 1, ..., N, and in the three directions α = x, y, z. Afterwards, the average
over all time steps is taken to obtain:

〈σ̂α
i 〉 ≡

1
K

K

∑
k=1
〈σ̂α

i 〉k. (7)

Similarly, the expectation values of the two-qubit observables are calculated,

〈σ̂α
i σ̂

β
j 〉k = Tr

(
ρkσ̂α

i σ̂
β
j

)
, (8)

and

〈σ̂α
i σ̂

β
j 〉 ≡

1
K

K

∑
k=1
〈σ̂α

i σ̂
β
j 〉k, (9)

with i < j and α, β = x, y, z.

6. Training and Predictions of the Models

From the output observables of the quantum reservoir, two models to make predic-
tions, Ẽ, on the ground state energies are proposed. Both are constructed by fitting a least
squares linear model with the training dataset, which corresponds to the first 7500 speckle
instances and target energies E. The quality of the models is tested with the remaining
2500 potentials, and it is quantified by the mean absolute error (MAE),

MAE =
1
M

M

∑
l=1
|El − Ẽl |, (10)

and the coefficient of determination

R2 = 1− ∑M
l=1(El − Ẽl)

2

∑M
l=1(Ē− El)2

, (11)

where Ē is the mean energy Ē ≡ (1/M)∑M
l=1 El , and M is the number of instances,

M = 7500 for the training data, and M = 2500 for the test data. If R2 = 0, the pre-
dicted and the target energies are not linearly related; whereas, for R2 = 1, the predictions
are perfect.

In the first case, the single-qubit observables in Equation (7) are employed and the
final output, Ẽ, for each instance is written as:

Ẽ = v0 +
N

∑
i=1

(
v1,i〈σ̂x

i 〉+ v2,i〈σ̂
y
i 〉+ v3,i〈σ̂z

i 〉+ v4,i〈σ̂x
i 〉2 + v5,i〈σ̂

y
i 〉

2 + v6,i〈σ̂z
i 〉2

+v7,i〈σ̂x
i 〉〈σ̂

y
i 〉+ v8,i〈σ̂

y
i 〉〈σ̂

z
i 〉+ v9,i〈σ̂z

i 〉〈σ̂x
i 〉+ v10,i〈σ̂x

i 〉〈σ̂
y
i 〉〈σ̂

z
i 〉
)

.

(12)
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In this last model and for a system with N = 6, there are 61 free parameters, v, with
the corresponding labels that are optimized during the training.

In the second case, there are 451 different weights w to be adjusted when the two-qubit
quantities in Equation (9) are used in the similar following way:

Ẽ = w0 +
N

∑
i<j=1

(
w1,i,j〈σ̂x

i σ̂x
j 〉+ w2,i,j〈σ̂

y
i σ̂

y
j 〉+ w3,i,j〈σ̂z

i σ̂z
j 〉

+w4,i,j〈σ̂x
i σ̂x

j 〉2 + w5,i,j〈σ̂
y
i σ̂

y
j 〉

2 + w6,i,j〈σ̂z
i σ̂z

j 〉2 + w7,i,j〈σ̂x
i σ̂x

j 〉〈σ̂
y
i σ̂

y
j 〉

+w8,i,j〈σ̂
y
i σ̂

y
j 〉〈σ̂

z
i σ̂z

j 〉+ w9,i,j〈σ̂z
i σ̂z

j 〉〈σ̂x
i σ̂x

j 〉+ w10,i,j〈σ̂x
i σ̂x

j 〉〈σ̂
y
i σ̂

y
j 〉〈σ̂

z
i σ̂z

j 〉
)

+
N

∑
i 6=j=1

(
w11,i,j〈σ̂x

i σ̂
y
j 〉+ w12,i,j〈σ̂

y
i σ̂z

j 〉+ w13,i,j〈σ̂z
i σ̂x

j 〉

+w14,i,j〈σ̂x
i σ̂

y
j 〉

2 + w15,i,j〈σ̂
y
i σ̂z

j 〉2 + w16,i,j〈σ̂z
i σ̂x

j 〉2 + w17,i,j〈σ̂x
i σ̂

y
j 〉〈σ̂

y
i σ̂z

j 〉

+w18,i,j〈σ̂
y
i σ̂z

j 〉〈σ̂z
i σ̂x

j 〉+ w19,i,j〈σ̂z
i σ̂x

j 〉〈σ̂x
i σ̂

y
j 〉+ w20,i,j〈σ̂x

i σ̂
y
j 〉〈σ̂

y
i σ̂z

j 〉〈σ̂z
i σ̂x

j 〉
)

.

(13)

As in the neural network models in [16,17], the predictions Ẽ are functions of the
speckle points in space. In the present case, the required nonlinear dependence of the
outputs on the input values of the potential are, in general, guaranteed by both the form
of input encoding in Equation (2) and an appropriate choice of the Hamiltonian parame-
ters [58]. Beyond that, further nonlinear dependencies on the input have been introduced
by combining the observables in (12) and (13) because it is beneficial to increase the perfor-
mance without losing the linearity of the models.

The quality of the predictions of the two models is shown in Figure 2. Remarkably, the
model that produces the predictions from the single-qubit observables of the reservoir with
only 61 optimized parameters is able to learn from the training data without overfitting.
The MAE and R2 for the training data are 0.1126 and 0.8808, respectively, and practically
equal to the values of the test data provided in Figure 2. In panel (a), in the distribution of
the absolute error, there is a considerable number of speckle instances whose error is below
the MAE. Moreover, in panel (b), there is a clear correlation between the target energies
and the predicted ones for the test data reflected on the large value of R2 = 0.880, which
is close to 0.9. If the model of two-qubit observables is employed instead, the accuracy of
the predictions is, in general, improved. The peak of the distribution in panel (c) of the
absolute error is sharper and closer to 0, as well as the value of the MAE. In accordance,
in the scatter plot in panel (d) the value of R2 surpasses 0.9, and we are closer to the
ideal situation. Furthermore, in this case with more free parameters, 451, the comparison
between the values of the MAE= 0.0833 and R2 = 0.936 for the training data and the test
data in panels (c) and (d) indicates that there is not a significant overfitting problem.
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Figure 2. (Left) Absolute error distributions corresponding to the test data of the model with single-
qubit observables in (a) and two-qubit observables in (c). A dashed line indicates the mean absolute
error (MAE). (Right) Predicted energies Ẽ as a function of the target energies E for the test data. In (b),
the predictions are made with the model in Equation (12) and, in (d), with the one in (13). The ideal
situation, with perfect predictions, is depicted with a dashed line and would correspond to R2 = 1.

7. Discussion and Conclusions

The results obtained with the models proposed in this work show that a quantum
reservoir is suitable to be used to address the problem of making predictions on the ground
state energy of different speckle disorder potentials. By following this approach, the
computational capabilities of the quantum dynamics of the system are exploited, and
linear models with the observables of the quantum reservoir are sufficient to achieve a
noticeable accuracy. In this way, we have taken advantage of both a simple and fast training
strategy and the presence of quantum correlations. This paves the way to further develop
models that follow a similar strategy, for instance, for systems of interacting particles in the
presence of a speckle potential.

In fact, for practical purposes, the quality of the predictions should be increased in
order to compete with state-of-the-art deep convolutional neural networks. To reach this
aim, several strategies could be followed. It would be interesting to explore the effect of
changing the form of the input encoding into the quantum reservoir and to study its impact
on the quality of the predictions of the models. In addition to that, in the present work we
have only explored the possibility of using single-qubit and two-qubit observables. The
extension to three-body quantities and beyond should be considered and could contribute
to improving the performance. This would lead to more flexible models, as the number of
observables would be increased as well as the number of free parameters. Additionally,
in a similar way, increasing the number of spins would enlarge the Hilbert space and
increase the capabilities of the quantum reservoir. Regarding the Hamiltonian of the
reservoir system, the values of the couplings and the external magnetic field could be seen
as hyperparameters. As the performance in realizing the task depends on their values,
to improve the results presented in this work, they could be optimized by defining an
additional validation dataset.
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