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Abstract: To stay wealthy in a world where all can live in prosperity and wellbeing, it is necessary to
develop sustainable growth at net zero emissions to stop climate change, neutralizing both risks and
diseases such as the COVID-19 pandemic and inequalities. Changing the worldwide use of the great
quantity of food loss and waste can help to move in this direction. At this purpose, it seems useful
to transform food waste into richness, extracting and using its content in natural ingredients and
biopolymers to make new sustainable products and goods, including cosmetics and medical devices.
Many of these ingredients are not only bioactive molecules considered of interest to produce these
consumer products but are also useful in reducing the environmental footprint. The active agents may
be obtained, for example, from waste material such as grapes or olive pomace, which include, among
others natural polymers, phythosterols, vitamins, minerals and unsaturated fatty acids. Among the
polymers, chitin and lignin have shown particular interest because biodegradable, nontoxic, skin-
and environmentally friendly ingredients can be obtained at low cost from food and forestry waste,
respectively. According to our experience, these polymers may be used to make nanocomposites and
micro-nanoparticles that encapsulate different active ingredients, and which may be embedded into
gel and non-woven tissues to realize advanced medications and smart cosmeceuticals. However, to
utilize food waste in the best possible way, a better education of both industry and the consumer is
considered necessary, introducing all to change the ways of production and living. The consumer
has to understand the need to privilege, food, cosmetics and goods by selecting products known to
be effective that also have a low release of carbon dioxide. Thus, they must pay heed to purchasing
cosmetics and medical devices made by natural ingredients and packaged by biodegradable and/or
reusable containers that are possibly plastic free. Conversely, the industry must try to use natural raw
materials obtained from waste by changing their actual production methods. Therefore, both industry
and the consumer should depart from the linear economy, which is based on taking, making, and
producing waste, to move into a circular economy, which is based on redesigning, reducing, reusing
and recycling. Some examples will report on the possibility to use natural polymers, including
chitin and lignin, to produce new cosmeceutical tissues. These innovative tissues, to be used as
biodegradable carriers for making smart cosmetics and medical devices, may be produced at zero
waste to save our health and the planet biodiversity.

Keywords: waste; food loss; polysaccharides; chitin nanofibrils; lignin; greenhouse gas; carbon
dioxide; methane; plastics; nanocomposites; biopolymers; natural ingredients; cosmeceutical-tissues;
cosmetics; medical device; beauty market
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1. Introduction

Global food lost and waste, which represent about 17% of the productive process, has
become a big problem, with a cost of USD 2.6 trillion annually, which is enough to feed
the millions of undernourished people in the world [1–3]. This waste averages around
931 million tons each year, 61% of which comes from households, 26% from food service
and 13% from retail. Moreover, according to the United Nations report, the unconsumed
food that ranges from 8–10% and releases part of global carbon emissions [2], has enor-
mously increased after the industrial revolution (Figure 1) [4]. In addition to carbon dioxide
(CO2), anthropogenic methane (CH4) emissions represent the second-largest driver of
global warming, accounting for roughly 30% of the temperature increase [5]. Additionally,
while CH4 stays in the atmosphere for only about ten years, CO2 stays in the atmosphere
for centuries.
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permission from Doer and Narisetti (2021). 2021 McKinsey Global Publishing [4]).

Because of these emissions, the global temperature in 2021 resulted in a 1.1 degree
centigrade higher temperature than preindustrial levels because of global greenhouse gas
(GHG) emissions (Figure 2), and part of these emissions are represented from methane
(CH4) [5]. CH4 comes from millions of agricultural farms around the world as the result of
ruminant animals together with farming practices and rice production [1,2]. Carbon dioxide
comes from the consumption of our actual household goods, food, dietary supplements,
cosmetics and medical devices, which are connected to our actual way of living [6,7].
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As a consequence the urgent need to change and select all the purchased products for
trying to eliminate waste coming from their formulations’ ingredients and plastic-made
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packagings, thus reducing the CO2 and CH4 emissions [8]. So doing it will be possible
to organize a wellness economy eliminating any kind of waste and pollution, recycling
food loss and reducing waste provoked from the plastic packagings also [9]. Global waste,
in fact, has notably increased during the COVID-19 pandemic for two principal reasons:
a drop in demand in restaurants, closed all the day and full of unconsumed and spoiled
ailments, and a major contemporary take-away food used from consumers for the imposed
lockdown [10].This unusual consume of food, in fact, packed in containers made by non
recyclable polymers has further increased the quantity of non biodegradable plastics
invading land and ocean, provoked by billion of non-degradable products, including
medical devices, food and cosmetics’ packagings [11–13]. As for food, the cosmetic products
release in the environment non biodegradable ingredients and plastic waste materials
coming from the personal care and make up formulations which, including, viscosity,
suspending and scrubbing agents, are packed by plastic containers estimated to be globally
and yearly more than 120 billion units [14–21]. At this purpose, it is to remember the great
problem of microplastics (MP) in oceans, ranging 1.8 trillion of peaces with an estimated
global weight of 80,000 tons. MP debris, in fact, is ingested as toxic food from millions of
marine mammals and birds, entering in the human food chain with the consequent release
and bioaccumulation of toxic ingredients, including phthalates, phenolic compounds and
polybrominated diphenyl ethers (PBDE) many of which are endocrine disrupting chemicals,
capable to alter the homeostasis of the human immune system (Figure 3) [11–13,19]. At this
purpose, it is to underline that billion of microplastics have been recovered not only into the
tea-cups consumed daily from million people [22], but also into the human placenta [23].
On the other hand, fortunately, the coronavirus due to social distancing and lockdown, has
kept people inside with a consequential decrease of the general pollution’ levels, that for
example in China was reduced by 25% [5].
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However, pandemic, health and climate change are inextricably linked each other, so
the need of an healthy body in an healthy planet by the use of biodegradable products,
including cosmetics and medical devices. Moreover, there is a necessity to produce more
food for the previsional worldwide population growth to 9.7 billion by 2050, realizing also
well structured healthy green areas into the cities to neutralize the continuous increasing
of the GHG emissions [24]. Therefore the urgent necessity to organize a more efficient
food production chain and a better health care and cosmetic system by the use of natural
biodegradable ingredients and containers as well as to built a greater resilience against the
climate changing, modifying the way to produce and consume.
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Consequently, preventing diseases and environmental disasters became a must of our
society: prevention is better than cure both for virus and extreme weather.

In conclusion, eliminating food waste at all levels, including consumer and domestic,
and using its content in active ingredients to make cosmetic and medical device also, became
today a further necessity. So doing it will be possible to save precious natural resources and
avoid the methane and carbon dioxide emissions, obtaining significant environment, social
and economic benefits. Moreover, another need is not only to change the food supply chain,
but also modify our nutritional habits selecting as much possible, the food at lower impact
on CO2 emissions (Figure 4) [4]. Additionally, there is also the urgent hard job to utilize
the actual million tons of by-products coming from both the industrial food chain and the
forestry waste. This waste material might be used for making different and safe goods,
innovative cosmetics, surgical and beauty masks and one-use only medical dressings,
incentivizing and increasing the food systems’ transformation [19,25–29]. Industrial as
well as the in-house food waste, in fact, are rich of proteins, sugars, carotenoids, vitamins,
lignans, polysaccharides and various natural-derived polymers, precious ingredients to
produce drugs, medical devices, cosmetic products, diet supplements, and innovative
biodegradable tissues [25–35]. Among the fibers that may be obtained from food waste
there are many natural polymers, including chitin/chitosan, lignins and pullulan by which
it could be possible to make, for example, specialized medical dressings, bio colors and
bioflavors for the nutraceutical an cosmetic sectors, cosmetic beauty masks and smart
tissues to be used as innovative active carriers also [36–38]. As will be focused thereafter,
our research group has realized innovative carrier complexes made by chitin nanofibrils
with different anionic polymers as nanolignin (CN-LG), verifying their physicochemical
characteristics and biological effectiveness when used for cosmeceutical products and
medical devices [39,40]. Moreover, regarding the CN-LG complex, being easily metabolized
from the environment and human enzymes to active ingredients such as glucosamine,
acetyl-glucosamine, glucose and polyohenols, these derived molecules could be utilized
from the skin cells as food and energy. Consequently, CN-LG acts both as carrier, due to its
possibility to entrap active ingredients into its structure and as active compound when the
complex is hydrolyzed to its single units [39–41].
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2. Agricultural Waste, Biobased Active Ingredients and Biopolymers

The quantity of agrowaste derived from various supply chains and calculated at
90 million tons of oil equivalent represents an important source of starting materials, which
are used in the production of pharmaceuticals, cosmetics, diet supplements, antioxidant
compounds, natural fibers, biodegradable polymers and composites as well as in bio-based
plastics [42–46]. Horticulture, in fact, is one of the industries with the highest production
covering around 38% of the global agricultural production, 65% of which is represented
from vegetables and fruits, including tomato, onion, grapes, orange, potato, wheat etc.
Consequently this Industrial field, generates food loss and waste such as orange and lemon
peels, grapes and olive oil pomaces, sugarcane bagasse, wheat straw among others, all
coming from specific processes such as pulping, peeling, straining, and branching [47].
Additionally this waste not only increases the deterioration of the Environment, but also
contributes to the scarcity of resources, loosing the opportunity to contribute to the feeding
of a growing world population [47]. However, the agricultural waste has to be consid-
ered a primary source of starting materials to produce active ingredients for cosmetic and
pharmaceutical use as well as polysaccharides used as essential precursors for develop-
ing biodegradable plastic-materials for sustainable packagings [48]. In any way It is to
underline the biodegradable polymers for commercial application have to be based for
its physical property of high tensile strength and yield [48]. In any way, the production
of both active ingredients and bio-based polymers from agro-wastes is influenced by the
availability of starting materials/precursors that should be cheap and available in signifi-
cant quantity and designed by selected fruits and vegetables [49–53]. However, the search
of green formulations for the production and packaging of Eco-friendly products, includ-
ing cosmetics, diet supplement and medical devices, is mandatory in the field of green
chemistry and economical sciences [49]. It is therefore necessary to try to reduce/eliminate
the food losses and waste produced and generated each year. It’s, in fact, to underline
the food lost is estimated to be around 198.9 kg per capita in developed countries as the
United States, where it accounts for the 40% of the whole food local production chain,
while in Europe it represents 6% only [45–54]. But it is also to remember that among
the leading economies India and China have the capacity to lead the production of fruit
and vegetable-based biopolymer, given the high production capacity and shear of their
total global production [55]. Thus, the majority of natural actives used in cosmetic and
nutraceutical formulations are currently imported from Europe were the consumers like to
return to natural products. Regarding the biotechnologies used to extract an characterize
the million tons of food waste it is also to remember the utilization of the microorganisms
which, cultured under different nutrient and environmental conditions, are frequently
used to produce biodegradable polymers by the electrospinning technique and through the
fermentation of carbohydrates obtained from agricultural by-products such as corn and
wheat [52–57].

3. Biofunctional Textiles and Nanocomposites for Medical and Cosmetic Use

Biofunctional textiles protect against anything that may injure the naked human body,
including weather, insects and noxious chemicals, but may also be used for wound healing
purposes [29]. Moreover garments with their content of natural and synthetic polymers
and chemicals such dyes, being all day long in direct contact with the skin, may interact
with its functions, provoking allergic and sensitizing reactions [58]. Tissues, in fact are one
of the causes of skin diseases, such as atopic dermatitis and psoriasis [59,60]. On the other
hand, clothing represents an interactive skin barrier ensuring the thermal balance despite
changes in ambient temperature and humidity, thus reducing radiant heat gain and thermal
stress [61]. Skin sensory comfort, in fact is determined by the direct contact of textile with
the skin so that garments have to possess heat insulation and moisture balance, resistance
to water vapor permeability, perspiration transport and dying time, all characteristics
which depend on fabric fibers [58–61].Thus by the electrospinning technology and the
use of natural polymers such a as polysaccharides it is possible to produce non-woven
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tissues characterized by an high specific surface area(up to 1000 m square/g), tunable
porosity and mechanical resistance [62]. Various natural polymers, in fact, may be obtained
from lignocellulosic fibers derived from plant waste, such as pineapple, sisal, bamboo
and jute [63]. The relative fibers have interesting structural properties useful for tissue
engineering and delivering of active ingredients through the skin for repairing, for example,
wound healing/burns or to be used as cosmetic carriers, as reported from various studies
of our research group [36–38] and better focused thereafter also. Additionally non-woven
tissues, produced by different technologies, address a variety of end uses and applications
so that their global consumption in 2019 has been 11.2 million tons with a growth rate
valued at 5.9% for 2014–2019 [64].

Therefore, research and innovation are based on special bioactive pharmaceutical/cosmetic-
emulsions and/or smart cosmeceutical-tissues capable, for example, to continually release
small doses of active ingredients through the skin’ intercellular or intracellular pathways
for obtaining protective/moisturizing or therapeutic effects [65–71]. Moreover, tissues and
clothing may impair a further antimicrobial defense, providing mechanical barrier against
insect bites, mosquito and protozoa as well as has to protect from fungi, bacteria and viruses
responsible for infection and allergy problems [59,60]. At this purpose, biocidal, antioxidant
or antiinflammatory compounds may be bound to the surface of polymeric fibers for
realizing specialized tissues of medical or cosmetic interest. Among the many active
ingredients, silver is often used in wound dressings as a topical bactericidal agent for burns
and wounds, taking always into account the right dose necessary to maintain the balance
of both skin epidermal lipid barrier and microbial ecosystem [72,73]. At this purpose, our
research group has verified in vitro and in vivo the activity of non-woven tissues made by
specialized fibers and different natural or natural-derided polymers, such as gelatin, chitin,
lignin, pullulan polylactic acid etc. Thus on the fibers’ surface of CN, for example, has been
bound a low quantity (20ppm) of nano-structured silver. The obtained tissue has shown
an interesting activity on burns of 1st and 2nd grade with an high antiinflammatory and a
faster skin repairing effectiveness, compared to commercial advanced medications [54–78].
Probably this activity was due to the particular characteristics of the non-woven bio-tissue
made by biodegradable fibers of polysaccharide nanocomposites (gelatin lignin) bound to
chitin and silver ions (Ag+) at their nano dimension, having therefore an high area/weight
ratio and an interesting antibacterial effectiveness (Figure 5) [78,79].The high humidity of
burn, in fact, seems to promote an easy silver uptake throughout the skin that justify its
interesting activity [75–81].
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Numerous are the possible natural polymers useful to make biodegradable nanocom-
posites and wound dressings. Among the more used to produce nanocomposites and
bioactive scaffolds there are hyaluronic acid, collagen, chitin/chitosan, lignin, gelatin,
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alginic acid and keratin, because of their non-toxicity, biodegradability, biocompatibility
non immunogenicity and ready availability from by-products materials, as food waste
(Figure 6) [76–78]. In particular and as previously reported, eliminating food waste through-
out the entire supply chain, not only saves precious resources but also avoids the harmful
methane’ activity [5]. Moreover, it is interesting to underline the further possibility to
use these polymers for encapsulating bio-ingredients into micro-nano complexes of chitin
nanofibrils-nanolignin (CN-LG). In turn these complexes, used as active agents or carriers
may be embedded into biocomposite non-woven tissues with the aim to enhance the skin
regenerating activity of innovative and rejuvenating anti-aging cosmeceuticals [79–84]. The
tissues, in fact, are generically prepared combining multiple fibrous layers of different
types of polymers, fibers or textile components to obtain structures characterized by a high
surface area/weight ratio and a porosity made by an interesting pore size distribution
and interconnectivity [78]. At this purpose, it is to underline that 1 g of chitin develops
2 square meters of tissue, while 1 g of chitin nanofibers (CN) develops more than 180 square
meters [85]. Additionally it is also possible to make innovative bio-nanocomposites, com-
bining for example chitin with synthetic bio-based polymers, including polylactic acid
(PLA) [86,87] or Polyhydroxyalkanoates (PHA) [88] to improve their mechanical prop-
erties. Thus, the incorporation of just 1% of chitin into PLA resulted useful to enhance
the mechanical properties of nanocomposites as well as to increase their viscosity and
the anti adhesive and antifungal activity [87]. Bio-nanocomposites, in fact, show to be
material possessing markedly improved properties when compared with pure polymers or
conventional composites. However, the nanocomposite performance depends on various
nanoparticles features, including size, high surface area/weight ratio, compatibility with
matrix and dispersion [89]. Therefore chitin, when used at nano dimension, encourages
the skin regeneration activity probably because its nanofibrils provide a three-dimensional
structure that mimics the natural extracellular matrix (ECM) (Figure 7) [90]. Moreover and
first of all, the different polymers and active ingredients have to be well selected, according
to their therapeutic or cosmetic applications (Figure 8) [91,92]. Just as an example, our
research group has encapsulated glycyrrhetinic acid (GA) as antiinflammatory agent and
vitamin E as antioxidant compound into the complex chitin nanofibrils and nanolignin
(CN-LG), verifying their distribution on the novel textile surface and the Vit E recovery
(Figure 9) [93,94]. The effectiveness of the final tissue obtained by the use of the complex
CN-LG-GA has been evaluated both in vitro and in vivo [93–95]. Naturally both polymers
and active ingredients used have been obtained from food waste.These and other studies in
progress are considered fundamental for recovering new active compound and innovative
natural carriers necessary to maintain the Earth’ raw materials for the future generations
and save the environmental balance.
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4. Conclusions

Using the actual food waste and establishing the circular economy to make biodegrad-
able and natural-based products and packaging materials, will give the industry a business
calculated around USD 7.7 trillion by 2030 [95]. Just as an example, the global Cosmetic
Industry, evaluated USD 483 billion in 2020 and estimated to range USD 784.6 billion
by 2025 (Figure 10) [96] could produce around USD 37 billion of non biodegradable pri-
mary packaging. In this market the global organic and natural cosmetics are expected
to reach USD 25.11 billion by 2014 for the consumer’s request who are looking for prod-
ucts made by renewable biobased ingredients preferred because considered non toxic
and biodegradable [96]. Moreover the current market for sustainable, natural and green
products is massive because additionally, government support are creating a favorable
climate for big business players. Therefore, the chemical composition of the ingredients
and their doses in the formulation decides the potential impact on health of the cosmetic
product to be purchased [97]. It is, in fact, to underline the every day use and continuous
exposition of humans to a wide range of different kind of chemicals derived from several
sources, including cosmetics that may cause the so called “cocktail effect”, due, for ex-
ample, to a synergistic interaction of the same ingredients used by different products, as
fragrances [97,98]. However, beauty cosmetics are the fastest-growing market worldwide
not only for women but also for male consumers because after pandemic they feel more
confident about their look than a year ago [99]. Thus 34% of males showed more interest in
beauty/cosmetics buying them in an unprecedented rate in early 2020 in all the markets
from China to Australia, North America and Europe, just as women interest showed early
signs of stagnation [99,100]. Consequently, products that improve or maintain appearance
seem now just important as ones that enhance it, so that people spent billions to look
good and healthy during the lockdown periods! Consumers, in fact, are looking for more
from the life in the past-pandemic world, and wellbeing is talking center stage to live to
the fullest [101]. On the other hand, the worldwide citizens are becoming to understand
the need to change their daily habits, counteracting waste at home. However, govern-
ments and consumers have finally recognized that global warming, waste disposal, air
pollution and natural resources exhaustion are the main cause of many environmental
disasters [102–104]. For all these reasons, food Industry has increased research studies
by a manufacturer consumer-oriented approach with the aim to optimize the food-chain
production and utilize its waste for obtaining active ingredients to be used for producing
not only functional food but also advanced medications, diet supplements and natural
cosmetics, involving in this new business other industrial sectors of developing countries
also [105,106]. Thus the need to maintain and protect the authenticity of the traditional
products valorizing the food processes by sustainable solutions that, balancing the energy
and water consumption, may represent a responsible utilization of the natural resources
with a respect for the environment [107–109]. Consequently, the studies for obtaining new
pure and active bio-ingredients environmentally-friendly by the use of biochemical and
enzymatic technologies are progressing day by day, as well as to treat appropriately the
industrial food by-products valorizing its precious content [110–114]. Continuing to invest
in research and innovation to stop the food losses and turning waste into valuable prod-
ucts, it will be possible to increase the profitability of food, pharmaceutical and cosmetic
industries, ensuring an healthy environment in addition to a sustainable development for
all [113]. According to United Nations, in fact, the sustainable development is defined as
“the development that meets the needs of the present without compromising the ability
of future generations to meet their own needs” [115]. Therefore, the industry needs to
increase its knowledge and technical know-how ameliorating the producing methodologies
and utilizing the biomolecules’ content of the releasing by-products adopting the circular
economy approach [116]. Thus changing the way of producing, consuming and living, it
will be possible to deliver a zero-plastic pollution and waste, reducing carbon emissions
and helping to boost and drive a circular bio-economy capable to safeguard the environ-
ment and combat the climate change [117–123]. Circular bio-economy, in fact, based on
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nature-based goods, recycling materials and investments in green initiatives by the power
of bioscience and biotechnology, might represent a solution to address the resources scarcity
and help to tackle the air and marine pollution [118–122]. Thus consumers education to-
gether with industry research and innovation represent the key to transitioning from a
plastic-based economy to a bio-based ones, by changing the production of feedstock and
non recyclable petrol-based materials in favor of degradable fossil-free goods, medical
devices and cosmetics [124–127]. For all these reasons, the food and cosmetic industry
are becoming to pay attention to these problems by the research of natural sources of
active ingredients that, extracted from food waste by the available sustainable technologies,
may be used for producing biodegradable packagings and innovative products skin- and
environmentally-friendly, fundamental to reduce the by-products’ negative environmental
impact [125–138]. Moreover, the industries are changing the non biodegradable packaging
materials, knowing, for example, that 95% of beauty packaging is thrown out after just
one use, and only 14% of plastic makes it to a recycling center [18–21]. Unfortunately
today only 9% of all plastic waste ever produced has been recycled, about 12% inciner-
ated and 79% ended up in landfills [18–21,139]. Therefore, adopting a virtuous industrial
comportment, it will possible not only to use the actual food waste safeguarding the envi-
ronment, but also to increase the global food production, necessary to eliminate the actual
worldwide hunger and poverty [122–124]. Recycling food industrial waste should not be
an option rather an obligation that call for serious attention to finally achieve a circular
economy [116,139]. By the actual molecular biology and biotechnology it seems possible,
in fact, to obtain a sustainable development of agricultural practices as well as of food
processing, improving among others production and availability of biodegradable and
effective medical devices, diet supplements and cosmetics to range an healthy beauty in a
clean environment. The proposed production of smart cosmeceutical-tissues packed by
nature-derived materials seem to go in the right direction because made by biodegradable
and natural polymers, including chitin and lignin, obtained by food byproducts through a
sustainable technology at zero waste [38,39,80,124–128]. Moreover, as reported previously
these innovative products don’t contain preservatives, emulsifiers, fragrances and other
chemical compounds often cause of allergic and/or sensitizing problems [18,58–60]. In
conclusion, it is necessary to stop the planet global warming, restore biodiversity and
protect lands and oceans, building an ecosystem that really enables the truly circularity
of biomaterials and economy for all. Thus the urgent need to develop new value chains,
and innovative technologies and infrastructures capable to create a future comfortable and
green planet for the future generations.

So doing people of all countries could obtain wellbeing and sufficient money, living in
more green cities consuming biodegradable and safe food produced by a circular bioecon-
omy, using healthy fashion, cosmetics and goods to live in a more equal world [140–147].
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