
����������
�������

Citation: Gueron, S.; Persichetti, E.;

Santini, P. Designing a Practical

Code-Based Signature Scheme from

Zero-Knowledge Proofs with Trusted

Setup. Cryptography 2022, 6, 5.

https://doi.org/10.3390/

cryptography6010005

Academic Editor: Nicolas T. Courtois

Received: 10 December 2021

Accepted: 11 January 2022

Published: 27 January 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

cryptography

Article

Designing a Practical Code-Based Signature Scheme from
Zero-Knowledge Proofs with Trusted Setup
Shay Gueron 1,2, Edoardo Persichetti 3,* and Paolo Santini 4

1 Amazon Web Services Inc., Seattle, WA 98101, USA; shay@math.haifa.ac.il
2 Department of Mathematics, University of Haifa, Haifa 3498838, Israel
3 Department of Mathematical Sciences, Florida Atlantic University, Boca Raton, FL 33431, USA
4 Department of Engineering, Marche Polytechnic University, 60121 Ancona, Italy; p.santini@staff.univpm.it
* Correspondence: epersichetti@fau.edu

Abstract: This paper defines a new practical construction for a code-based signature scheme. We
introduce a new protocol that is designed to follow the recent paradigm known as “Sigma protocol
with helper”, and prove that the protocol’s security reduces directly to the Syndrome Decoding
Problem. The protocol is then converted to a full-fledged signature scheme via a sequence of generic
steps that include: removing the role of the helper; incorporating a variety of protocol optimizations
(using e.g., Merkle trees); applying the Fiat–Shamir transformation. The resulting signature scheme is
EUF-CMA secure in the QROM, with the following advantages: (a) Security relies on only minimal
assumptions and is backed by a long-studied NP-complete problem; (b) the trusted setup structure
allows for obtaining an arbitrarily small soundness error. This minimizes the required number of
repetitions, thus alleviating a major bottleneck associated with Fiat–Shamir schemes. We outline an
initial performance estimation to confirm that our scheme is competitive with respect to existing
solutions of similar type.

Keywords: code-based; signature; zero-knowledge; syndrome decoding

1. Introduction

Most of the public-key cryptosystems currently in use are threatened by the devel-
opment of quantum computers. Due to Shor’s algorithm [1], for example, the widely
used RSA and Elliptic-Curve Cryptography (ECC) will be rendered insecure as soon as
a large-scale functional quantum computer is built. To prepare for this scenario, there is
a large body of active research aimed at providing alternative cryptosystems for which
no quantum vulnerabilities are known. The earliest among those is the McEliece cryp-
tosystem [2], which was introduced over four decades ago, and relies on the hardness
of decoding random linear codes. Indeed, a modern rendition of McEliece’s scheme [3]
is one of the major players in NIST’s recent standardization effort for quantum-resistant
public-key cryptographic schemes [4].

Lattice-based cryptosystems play a major role in NIST’s process, especially due to
their impressive performance figures. Yet, code-based cryptography, the area comprising
the McEliece cryptosystem and its offspring, provides credible candidates for the task of
key establishment (other examples being HQC [5] and BIKE [6], both admitted to the final
round as “alternates”). The situation, however, is not the same when talking about digital
signatures. Indeed, NIST identified a shortage of alternatives to lattice-based candidates, to
the point of planning a reopening of the call for proposals (see for instance [7]).

There is a long history of code-based signatures, dating back to Stern’s work [8],
which introduced a Zero-Knowledge Identification Scheme (ZKID). It is known that ZKIDs
can be turned into full-fledged signature schemes via the Fiat–Shamir transformation [9].
Stern’s first proposal has since been extended, improved and generalized (e.g., [10–12]).
However, all of these proposals share a common drawback: a high soundness error, ranging

Cryptography 2022, 6, 5. https://doi.org/10.3390/cryptography6010005 https://www.mdpi.com/journal/cryptography

https://doi.org/10.3390/cryptography6010005
https://doi.org/10.3390/cryptography6010005
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/cryptography
https://www.mdpi.com
https://doi.org/10.3390/cryptography6010005
https://www.mdpi.com/journal/cryptography
https://www.mdpi.com/article/10.3390/cryptography6010005?type=check_update&version=2

Cryptography 2022, 6, 5 2 of 17

from 2/3 to (asymptotically close to) 1/2. This implies that the protocol requires multiple
repetitions and leads to very long signatures. Other schemes, based on different techniques,
have also been proposed in the literature. Trapdoor-based constructions (e.g., [13,14])
usually suffer from a problem strictly connected to the (Hamming) code-based setting:
to be precise, unlike the case of the RSA-based Full-Domain Hash (FDH) and similar
schemes, a randomly chosen syndrome is, in general, not decodable. This makes signing
very slow, since multiple attempts need to be made, and furthermore leads to parameter
choices for the underlying linear codes that yield very large public keys. This issue is
somewhat mitigated in [14], although key sizes are still large (3.2 MB for 128 security bits)
and signing is still hindered by complex sampling techniques. Protocols based on code
equivalence (e.g., [15,16]) show promising performance numbers, yet are very new and
require further study before becoming established; the attack presented in [17], for instance,
suggests that the exact hardness of the code equivalence problem has yet to be established
in practice. Finally, there exists a literature on schemes using a different metric, such as the
rank metric [18,19] or the “restricted” metric [20]. All of these schemes typically show very
good performance, yet the hardness of the underlying problems is also not fully trusted; for
instance, RankSign was broken in [21], Durandal attacked in [22], and the scheme of [20]
appears to be vulnerable to subset-sum solvers.

Our Contribution

We present a new code-based zero-knowledge scheme that improves on the existing
literature by featuring an arbitrarily low soundness error, typically equal to the reciprocal
of the size q of the underlying finite field. This allows us to greatly reduce the number of
repetition rounds needed to obtain the target security level, consequently reducing the
signature size. To do this, our construction leverages the recent approach by Katz et al. [23],
using a Multi-Party Computation (MPC) protocol with preprocessing. More concretely, we
design a “Sigma protocol with helper”, following the nomenclature of [24]. We then show
how to convert it to a full-fledged signature scheme and provide an in-depth analysis of
various techniques utilized to refine the protocol. Our scheme is equipped with a wide
range of optimizations, to balance the added computational cost that stems from the MPC
construction. In the end, we are able to achieve very satisfactory performance figures,
with a very small public key, and rather short signatures.

It is worth remarking on security aspects. First of all, our scheme rests on an incredibly
solid basis: the security of the main building block, in fact, is directly connected to the
Syndrome Decoding Problem (SDP). To the best of our knowledge, the only other code-
based schemes to do so are the original Stern construction and its variants which, however,
pay a heavy price in terms of signature size. Our signature scheme is obtained via standard
theoretical tools, which exploit the underlying zero-knowledge and naturally do not add
any vulnerabilities. In the end, we obtain a scheme that is secure in the QROM with strong
security guarantees and minimal assumptions. We deem this as a very important feature of
our proposal.

2. Preliminaries

We will use the following conventions throughout the rest of the paper:

a a scalar
a a vector
A a matrix
A a function or algorithm
A a protocol
In the n× n identity matrix
λ a security parameter

[a; b] the set of integers {a, a + 1, . . . , b}

Cryptography 2022, 6, 5 3 of 17

2.1. Coding Theory

An [n, k]-linear code C of length n and dimension k over Fq is a k-dimensional vec-
tor subspace of Fn

q . It is usually represented in one of two ways. The first identifies a
matrix G ∈ Fk×n

q , called generator matrix, whose rows form a basis for the vector space,
i.e., C = {uG, u ∈ Fk

q}. The second way, instead, describes the code as the kernel of a

matrix H ∈ F(n−k)×n
q , called parity-check matrix, i.e., C = {x ∈ Fn

q : xH> = 0}. Linear codes
are usually measured using the Hamming weight, which corresponds to the number of
non-zero positions in a vector. Isometries for the Hamming metric are given by monomial
transformations τ = (v; π) ∈ F∗nq o Sn, i.e., permutations combined with scaling factors.
In this paper, we will denote by FWV(q, n, w) the set of vectors of length n with elements in
Fq and fixed Hamming weight w. The parity-check representation for a linear code leads to
the following well-known problem.

Definition 1 (Syndrome Decoding Problem (SDP)). Let C be a code of length n and dimension
k defined by a parity-check matrix H ∈ F(n−k)×n

q , and let s ∈ Fn−k
q , w ≤ n. Find e ∈ Fn

q such
that eH> = s and e is of weight w.

SDP was proved to be NP-complete for both the binary and q-ary cases [25,26], and is
thus a solid base to build cryptography on. In fact, the near-entirety of code-based cryp-
tography relies more or less directly on SDP. The main solvers for SDP belong to the
family of Information-Set Decoding (ISD); we will expand on this when discussing practical
instantiations and parameter choices, in Section 5.

2.2. Technical Tools

We recall here the characteristics of a Sigma protocol with helper, as formalized in [24].
This is an interactive protocol between three parties (which we model as PPT algorithms):
a prover P = (P1,P2), a verifier V = (V1,V2) and a trusted third party H called helper.
The protocol takes place in the following phases:

I. Setup: the helper takes a random seed seed as input, generates some auxiliary information
aux, then sends the former to the prover and the latter to the verifier.
II. Commitment: the prover uses seed, in addition to his secret sk, to create a commitment
c and sends it to the verifier.
III. Challenge: the verifier selects a random challenge ch from the challenge space and
sends it to the prover.
IV. Response: the prover computes a response rsp using ch (in addition to his previous
information), and sends it to the verifier.
V. Verification: the verifier checks the correctness of rsp, then checks that this was correctly
formed using aux, and accepts or rejects accordingly.

A Sigma protocol with helper is expected to satisfy the following properties, which
are closely related to the standard ones for ZK protocols:

• Completeness: if all parties follow the protocol correctly, the verifier always accepts.
• 2-Special Soundness: given an adversary A that outputs two valid transcripts

(aux, c, ch, rsp) and (aux, c, ch′, rsp′) with ch 6= ch′, it is possible to extract a valid
secret sk′. Note that this is not necessarily the one held by the prover, but could in
principle be any witness for the relation (pk, sk).

• Special Honest-Verifier Zero-Knowledge: there exists a probabilistic polynomial-
time simulator algorithm that is capable, on input (pk, seed, ch), to output a transcript
(aux, c, ch, rsp) which is computationally indistinguishable from one obtained via an
honest execution of the protocol.

Of course, the existence of a helper party fitting the above description is not realistic,
and thus it is to be considered just a technical tool to enable the design of the protocol.

Cryptography 2022, 6, 5 4 of 17

In Section 3.2, we will show the details of the transformation to convert a Sigma protocol
with helper into a customary 3-pass ZK protocol.

The design of such a protocol will crucially rely on several building blocks, in addition
to those coming from coding theory. In particular, we employ a non-interactive commitment
function Com : {0, 1}λ × {0, 1}∗ → {0, 1}2λ. The first λ bits of input, chosen uniformly at
random, guarantee that the input message is hidden in a very strong sense, as captured in
the next definition.

Definition 2. Given an adversary A, we define the two following quantities:

AdvBind(A) = Pr
[
Com(r, x) = Com(r′, x′) | (r, x, r′, x′)← A(1λ)

]
;

AdvHide(A, x, x′) =
∣∣∣ Pr
r← {0, 1}λ

[
A(Com(r, x)) = 1

]
− Pr

r← {0, 1}λ

[
A(Com(r, x′)) = 1

]∣∣∣.
We say that Com is computationally binding if, for all polynomial-time adversaries A,

the quantity AdvBind(A) is negligible in λ. We say that Com is computationally hiding if, for all
polynomial-time adversaries A and every pair (x, x′), the quantity AdvHide(A) is negligible in λ.

Informally, the two properties defined above ensure that nothing about the input is
revealed by the commitment and that, furthermore, it is infeasible to open the commitment
to a different input.

3. The New Scheme

The new Sigma protocol with helper is described in Algorithm 1. Next, we proceed to
prove that the scheme satisfies the three fundamental properties of a Sigma protocol with
helper, which we described in Section 2.2.

3.1. Security

Correctness: we have that τ(y)H> = τ(u + zẽ)H> = τ(u)H> + zτ(ẽ)H> and the
second addendum is exactly zs, which yields τ(u)H> as expected.

Soundness: intuitively, this is based on the fact that enforcing τ to be an isometry is
equivalent to checking that ẽ has the correct weight. In fact, we want to show that, given two
transcripts that differ in the challenge, we are able to extract a solution for SDP. Consider
then the two transcripts (aux, c, z, r, rz, τ, y) and (aux, c, z′, r′, rz′ , τ′, y′) with z 6= z′. Now let
t = τ(y)H> − zs and t′ = τ′(y′)H> − z′s. By the binding properties of the commitment
(hash, etc.), the verifier only accepts if c = Com(r, τ, t) = Com(r′, τ′, t′), so in particular
this implies τ = τ′ and t = t′. Since the helper computed everything honestly, and aux
is properly formed, the verifier also requires that cz = Com(rz, u + zẽ) = Com(rz, y) and
cz′ = Com(rz′ , u + z′ẽ) = Com(rz′ , y′), from which it follows, respectively, that y = u + zẽ
and y′ = u + z′ẽ. We now put all the pieces together, starting from t = t′, τ = τ′ and
substituting in. We obtain that τ(u + zẽ)H> − zs = τ(u + z′ẽ)H> − z′s, which implies
that zτ(ẽ)H> − zs = z′τ(ẽ)H> − z′s. Rearranging and gathering common terms leads
to (z− z′)τ(ẽ)H> = (z− z′)s and since z 6= z′, we conclude that τ(ẽ)H> = s. It follows
that τ(ẽ) is a solution to SDP as desired. Note that this can easily be calculated since
y− y′ = (z− z′)ẽ, from which ẽ can be obtained and hence τ(ẽ) (since τ is known).

Zero-knowledge: it is easy to prove that there is no knowledge leaked by honest
executions. To show this, we construct a simulator which proceeds as follows. Take
as input H, s a challenge z and the seed. The simulator then reconstructs aux, rz and
y = u + zẽ, having obtained u and ẽ from the seed. It then selects a random permutation
π and computes t = π(y)H> − zs. Finally, it generated a randomness r, calculates the
commitment as c = Com(r, π, t), and outputs a transcript (aux, c, z, r, rz, π, y). It is easy to
see that such a transcript passes verification, and in fact it is identical to the one produced
by an honest prover, with the exception of π being used instead of τ.

Cryptography 2022, 6, 5 5 of 17

Algorithm 1: Our Proposed Sigma Protocol with Helper
Public Data
Parameters q, n, k, w ∈ N, a full-rank matrix H ∈ F(n−k)×n

q and a commitment
function Com : {0, 1}λ × {0, 1}∗ → {0, 1}2λ.

Private Key
A vector e ∈ FWV(q, n, w).
Public Key
The syndrome s = eH>.
I. Setup (H)
Input: Uniform random seed ∈ {0, 1}λ.
1. Generate u ∈ Fn

q and ẽ ∈ FWV(q, n, w) from seed.
2. For all v ∈ Fq:

i. Generate randomness rv ∈ {0, 1}λ from seed.
ii. Compute cv = Com(rv, u + vẽ).

3. Set aux = {cv | v ∈ Fq}.
II. Commitment (P1)
Input: H, e and seed.

1. Regenerate u ∈ Fn
q and ẽ ∈ FWV(q, n, w) from seed.

2. Determine isometry τ such that e = τ(ẽ).
3. Generate randomness r ∈ {0, 1}λ.
4. Compute c = Com(r, τ, τ(u)H>).

III. Challenge (V1)
Input: -
1. Sample uniform random z ∈ Fq.
2. Set ch = z.

IV. Response (P2)
Input: ch and seed.

1. Regenerate rz from seed.
2. Compute y = u + zẽ.
3. Set rsp = (r, rz, τ, y).

V. Verification (V2)
Input: H, s, aux, c and rsp.

1. Compute t = τ(y)H> − zs.
2. Check that Com(r, τ, t) = c and that τ is an isometry.
3. Check that Com(rz, y) = cz.
4. Output 1 (accept) if both checks are successful, or 0 (reject) otherwise.

3.2. Removing the Helper

We now explain how the protocol above can be converted into a standard Zero-
Knowledge protocol (without the artificial helper). The main idea is to use a “cut-and-
choose” technique, as suggested by Katz et al. [23]. The simplest way to accomplish this is
the following. The prover can simulate the work of the helper by performing all the duties
of the precomputation phase; namely, the prover is able to generate a seed, run the Setup
process to obtain aux and generate the protocol commitment c. The verifier can then hold
the prover accountable by asking to do this several times, and then querying on a single
random instance, which gets executed. The other instances are still checked, by simply
using the respective seeds, which are transmitted along with the protocol response of the
one selected instance. To be more precise, we give a schematic description of the new
protocol in Algorithm 2, below.

Cryptography 2022, 6, 5 6 of 17

Algorithm 2: Generic Transformation to Transform Sigma Protocol with Helper
into a Zero-Knowledge Proof

Public Data, Private Key, Public Key
Same as in Figure 1.
I. Commitment (Prover)
Input: Public data and private key.
1. For all i ∈ [0; N − 1]:

i. Sample uniform random seed(i) ∈ {0, 1}λ.
ii. Compute aux(i) = H(seed(i)).
iii. Compute c(i) = P1(H, e, seed(i)).

2. Send aux(0), . . . , aux(N−1) and c(0), . . . , c(N−1) to verifier.

II. Challenge (Verifier)
Input: -

1. Sample uniform random index I ∈ [0; N − 1].
2. Sample uniform random challenge z ∈ Fq.
3. Set ch = {I, z}.
III. Response (Prover)
Input: ch and seed(I).

1. Compute rsp(I) = P2(ch, seed(I)).
2. Send rsp(I) and {seed(i)}i 6=I to verifier.

IV. Verification (Verifier)
Input: H, s, aux(0), . . . , aux(N−1), c(0), . . . , c(N−1), rsp(I) and {seed(i)}i 6=I .

1. For all i ∈ [0; N − 1], i 6= I:

i. Compute aux(i) = H(seed(i)).
ii. Check that this is equal to aux(i).

2. Set b = 1 if all checks are successful, and b = 0 otherwise.
3. Compute b′ = V2(H, s, aux(I), c(I), rsp(I)).
4. Output b⊕ b′.

It is possible to see that this new protocol yields a zero-knowledge proof of knowledge.
More specifically, we have the following result.

Theorem 1. Let P be a Sigma protocol with helper with challenge space C, and let I be the
identification protocol described in Figure 2. Then I is an honest-verifier zero-knowledge proof of
knowledge with challenge space [0; N − 1]× C and soundness error

ε = max{ 1
N

,
1
|C| }.

A proof was given in [27] (Theorem 3) in all generality. In our case the challenge space
is Fq, a challenge is a random value z ∈ Fq, and therefore we have |C| = q. The protocol
can then be iterated, as customary, to obtain the desired soundness error of 2−λ; namely,
the protocol is repeated t times, with t = d−λ/ log εe. Katz et al. [23] also show how it is
possible to beat parallel repetition, by using a more sophisticated approach. In order to
have a clearer description of the costs, we postpone the discussion on this approach until
the end of the next section.

3.3. Obtaining a Signature Scheme

The standard way to obtain a signature scheme from a ZKID is the Fiat–Shamir
transformation. In fact, this allows to securely convert an interactive scheme (identification)

Cryptography 2022, 6, 5 7 of 17

into a non-interactive one (signature). To be precise, the following theorem was proved
in [28], stating the security of a generalized version of the Fiat–Shamir transformation.

Theorem 2. Let I be a canonical identification protocol that is secure against impersonation
under passive attacks. Let S = FS(I) be the signature scheme obtained applying the Fiat–Shamir
transformation to I . Then, S is secure against chosen-message attacks in the random oracle model.

The main idea is to replace the interaction with the verifier in the challenge step with
an automated procedure. Namely, the prover can generate the challenge by computing it as
a hash value of the message and commitment. The signature will consist of the commitment
and the corresponding response. The verifier can then regenerate the challenge himself,
and proceed with the same verification steps as in the identification protocol. The process
is summarized in Algorithm 3, where we indicate with ` the challenge length.

Algorithm 3: The Fiat–Shamir Transformation
Public Data, Private Key, Public Key
Same as in I , plus a collision-resistant hash function HashFS : {0, 1}∗ → {0, 1}`.

I. Signature (Signer)
Input: Public data, private key and message m.
1. Generate commitment cmt as in I .
2. Compute challenge ch = HashFS(m, cmt).
3. Produce response rsp as in I .
4. Output signature σ = (cmt, rsp).

II. Verification (Verifier)
Input: Public data, public key, message m and signature σ.

1. Parse σ as (cmt, rsp).
2. Compute challenge ch = HashFS(m, cmt).
3. Perform verification as in I .
4. Accept or reject accordingly.

Note that the security result in Theorem 2 is intentionally vague, as the exact result
depends on the specific security notions defined for identification and signature schemes.
In our case, we rely on the fact that the underlying identification scheme provides honest-
verifier zero-knowledge, with negligible soundness error, to achieve EUF-CMA security
(see for example [29]). Moreover, note that, as per theorem statement, security depends
on the hash function being modeled as a random oracle. This could, in principle, generate
doubts about whether such a scheme would still be secure in the scenario that consid-
ers an adversary equipped with quantum capabilities. However, following some recent
works [30,31], we are able to claim that applying Fiat–Shamir to our identification scheme
is enough to produce a signature scheme whose EUF-CMA security is preserved in the
Quantum Random Oracle Model (QROM). The author in [27] (Theorem 3) argues that the
schemes satisfy the collapsing property, although this property is not explicitly defined in
the paper. Thus, we present its definition below, following the generalized version of [30].

Definition 3. Let R : X × Y → {0, 1} be a relation with |X| and |Y| superpolynomial in the
security parameter λ, and define the following two games for any polynomial-time two-stage
adversary A = (A1,A2),

Game 1 : (S, X, Y)→ A1, r → R(X, Y), X →M(X), Y →M(Y), b→ A2(S, X, Y)

Game 2 : (S, X, Y)→ A1, r → R(X, Y), Y →M(Y), b→ A2(S, X, Y)

Cryptography 2022, 6, 5 8 of 17

where X and Y are quantum registers of dimension |X| and |Y|, respectively,M denotes a measure-
ment in the computational basis, and applying R to quantum registers is achieved by computing
the relation coherently and measuring it. We say that R is collapsing from X to Y, if an adversary
cannot distinguish the two experiments when the relation holds, i.e., if for all adversaries A∣∣∣ Pr

A,Game 1
[r = b = 1]− Pr

A,Game 2
[r = b = 1]

∣∣∣ ≤ negl(λ).

The above property allows to show that a Sigma protocol has quantum computationally
unique responses, which is necessary to achieve existential unforgeability in the QROM. We
then have the following result.

Theorem 3. Let Com and PRNG be modeled as a quantum random oracles. Then, the signature
scheme obtained by applying the Fiat–Shamir transformation to the scheme in Figure 2 is EUF-CMA
secure in the QROM.

Proof. We follow the steps of [27] (Theorem 4), and note that these are standard (for in-
stance, they are similar to those given for the proof of the Picnic signature scheme, see
Section 6.1 of [30]). First, consider the setup algorithm, which consists of expanding a
randomness seed using PRNG, generating values accordingly, and then committing to
them using Com. Note that, since Com is modeled as a quantum random oracle, then it is
collapsing, as shown in [32]. As for PRNG, this is injective with overwhelming probability
(as the output is much longer than the input), and so is the computation of the values
derived from it. Since the composition of collapsing functions is also collapsing, as shown
in [33], and composing a collapsing function with an injective one preserves collapsingness,
we conclude that the setup algorithm is overall collapsing. Next, we examine protocol re-
sponses: these consist only of preimages of Com (the commitment openings) and preimages
of the setup algorithm, and thus we are able to argue that the protocol has quantum com-
putationally unique responses, as mentioned above. The thesis then follows by applying
Theorems 22 and 25 from [30].

4. Communication Cost and Optimizations

Several optimizations are presented in [27], albeit in a rather informal way. Moreover,
these are all combined together and nested into each other, so that, in the end, it is quite
hard to have a clear view of the full picture. In here, we strive to present the optimizations
in full detail, one at a time, show how they can all be applied to our protocol, and illustrate
their impact on the communication cost. To begin, we analyze the communication cost of
a single iteration of the protocol, before any optimizations are applied. This consists of
several components:

• N copies of the auxiliary information aux(i), each consisting of q hash values.
• N copies of the commitment c(i), each consisting of a single hash value.
• The index I and the challenge z, respectively an integer and a field element.
• The protocol response (r, rz, τ, y), consisting of two λ-bit randomness strings, an isom-

etry, and a length-n vector with elements in Fq.
• The N − 1 seeds {seed(i)}i 6=I , each a λ-bit string.

The bit-length of most of the objects listed above is self-explanatory. For linear isome-
tries, recall from Section 2.1 that these are composed by a permutation, combined with
scaling factors. The former can be compactedly represented with a list of entries using
ndlog ne bits, while the latter amount to n non-zero field elements (each corresponding to
dlog qe bits). This leads to the following formula for the communication cost (in bits):

Cryptography 2022, 6, 5 9 of 17

2λqN

{aux(i)}

+ 2λN
{c(i)}

+ dlog Ne
I

+ dlog qe
z

+ 2λ
r,rz

+ n
(
dlog ne+ dlog qe

)
τ

+ ndlog qe
y

+ λ(N − 1)

{seed(i)}i 6=I

, (1)

where all logarithms are assumed to be in base 2. Note that we have chosen to leave the
above formula in its unsimplified version, in order to highlight all the various components.
This will be helpful when analyzing the impact of the different optimizations.

4.1. Protocol Commitments

The first optimization that we discuss regards the commitments c(i); we choose to
present this first, because it involves the first verifier check, and also because it can serve as
a blueprint for other optimizations. Now, note that the prover transmits N copies of c(i),
but only one of them is actually employed in the verification (the one corresponding to
instance I). It follows that the transmission cost can be reduced, by employing a Merkle
tree T of depth d = dlog Ne, whose leaves are associated to c(0), . . . , c(N−1).

To be more precise, we define a function MerkleTree, which uses a collision-resistant
hash function Hashtree : {0, 1}∗ → {0, 1}2λ, and, on input a list of elements (a0, . . . , a2d−1),
generates a Merkle tree in the following way. First, generate the leaves as

Td,l = Hashtree(al) (2)

for 0 ≤ l ≤ 2d − 1. Then, the internal nodes are created, starting from the leaves and
working upwards, as

Tu,l = Hashtree(Tu+1,2l ||Tu+1,2l+1) (3)

for 0 ≤ u < d and 0 ≤ l ≤ 2u − 1. Only the root of the tree, root = T0,0, needs to be initially
transmitted to the verifier; the prover will then include the authentication path of the tree
in his response, after receiving the challenge. By authentication path, we mean the list of the
hash values corresponding to the siblings of the nodes on the path from the leaf to the root.
This can be used as input to a function ReconstructRoot, together with the corresponding
leaf, to recalculate root, by using the supplied nodes inside (3). In our case, using a tree
Tc = MerkleTree(c(0), . . . , c(N−1)) and transmitting only its root and a path, the component
2λN in Equation (1) is reduced to 2λ(1 + dlog Ne).

4.2. Auxiliary Information

We now illustrate how to deal with the cost of transmitting the N copies of the auxiliary
information aux(i). This can be greatly reduced, using two distinct optimizations.

First, notice that only one out of the q commitment values is employed in a single
protocol execution, namely, in the second verifier check. This means that we can again use
a Merkle tree, with a setup similar as the previous optimization; in this case, the leaves
will be associated to the values {cv | v ∈ Fq}. Thus, once more, only the root needs to be
transmitted initially, and the authentication path can be included in the response phase.
Accordingly, the component 2λqN in Equation (1) is reduced to 2λN(1 + dlog qe).

Furthermore, we can look at the previous improvement in another light: only one of the
N instances is actually executed, while the other ones are simply checked by recomputing
the setups using the seeds. Thus, there is no need to transmit all N copies of aux(i), even in
the above simplified version consisting of root + path. Instead, the prover can compute a
hash of the roots, send it to the verifier, and include in his response only the authentication
path for instance I. In the verification phase, the root for instance I is computed via protocol
execution, while the other roots are recomputed via the seeds {seed(i)}i 6=I ; then, the verifier
hashes the newly computed roots and checks the resulting value against the transmitted
one. In the end, with this second technique, the component 2λN(1 + dlog qe) that we
previously obtained is reduced to 2λ(1 + dlog qe).

Cryptography 2022, 6, 5 10 of 17

4.3. Seeds

We are going to use a binary tree again, to reduce the communication cost associated
with the N − 1 seeds sent by the prover along with his response. However, this is not
going to be a Merkle tree; instead, in this case, the tree is built starting from the root
(i.e., the opposite of what one does to build Merkle trees). The prover begins by choosing a
random seed to be the root of the tree. He then uses a pseudo-random generator PRNG :
{0, 1}λ → {0, 1}2λ to generate internal nodes.

To be precise, we define a function SeedTree that, on input seed, generates a full binary
tree as follows. First, set T0,0 = seed. Then, on input a node Tu,l , returns two nodes

(Tu+1,2l ||Tu+1,2l+1) = PRNG(Tu,l)

for 0 ≤ u ≤ d− 1 and 0 ≤ l ≤ 2u − 1, where d = dlog Ne. In the end, the tree will produce
N values as leaves, which are going to be exactly the N seeds to be used in the protocol.
Now, one seed is used and the remaining N − 1 need to be made available to the verifier.
Indeed, seedI should not be revealed, so the prover cannot transmit the root of the tree.
Instead, the prover transmits the list pathseed of the d internal nodes that are “companions”,
i.e., siblings to the parents (and grandparents etc.) of seedI . An illustration is given in
Figure 1. With this technique, the component λ(N − 1) in Equation (1) is reduced to just
λdlog Ne. For more details about the “Seed Tree” primitive, we refer to [34], where an
extensive treatment is given.

T0,0

T1,0

T2,0

seed0 seed1

T2,1

seed2 seed3

T1,1

T2,2

seed4 seed5

T2,3

seed6 seed7

Figure 1. Example of binary tree for N = 8. The chosen seed (in green) is used and not revealed.
The prover transmits the red nodes and the verifier can generate the remaining seeds (but not the
chosen one) by applying PRNG to T2,0 and T1,1 (and hence to T2,2 and T2,3). The nodes generated in
this way are colored in gray. The leaves obtained are highlighted with the thick line.

4.4. Executions

We are now ready to discuss the more sophisticated approach of Katz et al. [23],
which will yield better performance compared to a simple parallel repetion of the pro-
tocol. The main idea is to modify the “cut-and-choose” technique as follows. Currently,
the protocol precomputes N distinct instances and only executes one, then repeats this
process t times; thus, one has to precompute a total of tN instances, out of which only t
are executed. As mentioned above, this leads to a soundness error of 2−λ = εt, where
ε = max{1/N, 1/q}. ε = 1/N. Instead, the same soundness error can be obtained by
having a larger number of instances, say M, but executing a subset of them, rather than just

Cryptography 2022, 6, 5 11 of 17

one; this entirely avoids the need for repetition. In fact, as explained in [27], the soundness
error, in this case, is bounded above by

max
e∈[0,s]

(M−e
s−e)

(M
s)q

s−e
(4)

where s is the number of executed instances (which are indexed by a set S ⊆ {0, . . . , M− 1})
and e ≤ s is a parameter that indicates how many instances are incorrectly precomputed by
an adversary. Note that, for these instances, the adversary would not be able to produce
values seedi, and therefore, the only chance he has to win, is if the verifier chooses to execute
exactly all such instances; this happens with probability equal to (M−e

s−e)/(
M
s). The remaining

term in Equation (4) is given by the probability of answering correctly (which is 1/q) in
each of the remaining s− e instances. For a formal proof of this fact, we refer the reader
to [23].

In terms of communication cost, the total amount for the method using plain par-
allel repetition is given by t times the cost of one execution, refined with the previous
optimizations. This is given (in bits) by

t
(

2λ(1 + dlog qe)
{aux(i)}

+ 2λ(1 + dlog Ne)
{c(i)}

+ λdlog Ne
{seed(i)}i 6=I

+ Ccr

)
(5)

where we have simplified to Ccr = 2λ + dlog Ne+ ndlog ne+ (2n + 1)dlog qe the cost of
transmitting the challenge and response, which is fixed. In comparison, with the new
method, the various tree roots need only be transmitted once. This would lead to the
following total cost (again, in bits)

2λ(1 + sdlog qe)
{aux(i)}

+ 2λ(1 + sdlog Me)
{c(i)}

+ sλdlog Me
{seed(i)}i/∈S

+ sC′cr (6)

with C′cr = 2λ + dlog Me + ndlog ne + (2n + 1)dlog qe. While the number of instances
necessarily increases (i.e., M > N), the number of executions remains about the same
as for the case of parallel repetition (i.e., s ≈ t). Since the former number appears only
logarithmically in the cost, while the latter is linear, the above optimization allows us to
greatly reduce the total number of setups needed (from tN down to M) without increasing
communication cost.

It is worth commenting on the behavior of some of the logarithmic terms in Equation (6),
which correspond to the different trees used in the various optimizations. First of all, since
the executed instances are chosen among the same set, all of the commitments {c(i)} are
taken from a single tree. In this case, the different authentication paths will present some
common nodes, and fewer nodes need to be transmitted in practice. More specifically,
it is enough to transmit at most sdlog(M/s)e nodes, to be able to simultaneously check
membership for all leaves. This leads to a noticeable cost reduction.

For the tree of the {seed(i)}, it is possible to follow a similar process, so that it is not
necessary to send multiple paths, and, instead, the required M− s seeds can all be obtained
in batch using a variable number of nodes. This number depends on the position of the
chosen leaves; an illustration is given in Figure 2.

Cryptography 2022, 6, 5 12 of 17

T0,0

T1,0

T2,0

seed0 seed1

T2,1

seed2 seed3

T1,1

T2,2

seed4 seed5

T2,3

seed6 seed7

(a)

T0,0

T1,0

T2,0

seed0 seed1

T2,1

seed2 seed3

T1,1

T2,2

seed4 seed5

T2,3

seed6 seed7

(b)

Figure 2. Example of two binary trees for M = 8, s = 3. Color codes are the same as in
Figure 1. For tree (a), it is necessary to transmit 4 nodes, whereas for tree (b), only 2 nodes need to
be transmitted.

With simple calculations, one can find that, in the worst case, the number of nodes
which must be transmitted is given by

2dlog(s)e + s(dlog(M)e − dlog(s)e − 1).

Conservatively, we will then estimate the cost as λ times this number, and substitute
this in Equation (6), obtaining the final cost formula (again, in bits):

2λ(1 + sdlog qe)
{aux(i)}

+ 2λ(1 + sdlog(M/s)e)
{c(i)}

+ λ
(
2dlog(s)e + s(dlog(M)e − dlog(s)e − 1)

)
{seed(i)}i/∈S

+ sC′cr. (7)

To give a complete picture, that sums up all the optimizations we consider, we present
a schematic description in Algorithm 4.

5. Practical Considerations

We now move on to a discussion about practical instantiations. We start by summariz-
ing some important facts about SDP.

As a first consideration, note that, once one fixes the code parameters (i.e., the values
of q, k and n), the difficulty to solve SDP depends heavily on the weight w of the searched
solution. Generically, hard instances are those in which the ratio w/n is outside the range
[q−1

q (1− k
n);

q−1
q + k

nq] (for a detailed discussion about this topic, we refer the interested
reader to [14] (Section 3)). Roughly speaking, the problem is hard when the weight of the
solution is either high or low: in the first case SDP admits multiple solutions, while in the
latter case we essentially expect to have a single solution. In this paper we will consider
the low weight regime: as it is essentially folklore in coding theory, for random codes the
hardest instances are obtained when w is close to the Gilbert–Varshamov (GV) distance,
which is defined as

d(q, n, k) = max

{
d ∈ N

∣∣∣∣∣ d−1

∑
j=0

(
n
j

)
(q− 1)j ≤ qn−k

}
.

Cryptography 2022, 6, 5 13 of 17

Algorithm 4: The Optimized Zero-Knowledge Proof
Public Data
Parameters q, n, k, w ∈ N, a full-rank matrix H ∈ F(n−k)×n

q , a commitment function
Com : {0, 1}λ × {0, 1}∗ → {0, 1}2λ and a collision-resistant hash function
Hashroot : {0, 1}2λM → {0, 1}2λ.

Private Key
A vector e ∈ FWV(q, n, w).
Public Key
The syndrome s = eH>.
I. Commitment (Prover)
Input: H and e.
1. Sample uniform random seed ∈ {0, 1}λ.
2. Compute seed(0), . . . , seed(M−1) = SeedTree(seed).
3. For all i ∈ [0; M− 1]:

i. Compute aux(i) = H(seed(i)).
ii. Build tree T(i)

aux = MerkleTree(aux(i)) and call root(i)aux its root.

4. Compute h = Hashroot(root
(0)
aux, . . . , root(M−1)

aux).
5. For all i ∈ [0; M− 1]:

i. Compute c(i) = P1(H, e, seed(i)).

6. Build tree Tc = MerkleTree(c(0), . . . , c(M−1)) and call rootc its root.
7. Send h and rootc to verifier.

II. Challenge (Verifier)
Input: -

1. Sample uniform random S ⊆ [0; M− 1] with |S| = s.
2. For all j ∈ S:

i. Sample uniform random z(j) ∈ Fq.
3. Set ch = {S, {z(j)}j∈S}.
III. Response (Prover)
Input: ch and {seed(j)}j∈S.

1. For all j ∈ S:
i. Compute rsp(j) = P2(z(j), seed(j)).

2. Send {rsp(j)}j∈S, {path(j)
aux}j∈S, {path(j)

c }j∈S and pathseed to verifier.

IV. Verification (Verifier)
Input: H, s, h, rootc, {rsp(j)}j∈S, {path(j)

aux}j∈S, {path(j)
c }j∈S and pathseed.

1. For all j ∈ S:
i. Compute t(j) = τ(j)(y(j))H> − z(j)s.
ii. Compute c(j) = Com(r(j), τ,(j) t(j)).
iii. Compute rootc = ReconstructRoot(path

(j)
c , c(j)).

iv. Check that this is equal to rootc.

2. Set b = 1 if all checks are successful, and b = 0 otherwise.
3. For all j ∈ S:

i. Compute c
(j)
z(j) = Com(r

(j)
z , y(j)).

ii. Compute root
(j)
aux = ReconstructRoot(path

(j)
aux, c(j)

z(j)).

4. For all j /∈ S:

i. Recover seed(j) from pathseed.
ii. Compute aux(j) = H(seed

(j)
).

iii. Build tree Taux(j) = MerkleTree(aux(j)) and call root(j)
aux its root.

5. Compute h = Hash(root(0)aux, . . . , root(M−1)
aux)

6. Set b′ = 1 if h = h and b′ = 0 otherwise.
7. Output b⊕ b′.

Cryptography 2022, 6, 5 14 of 17

In such a regime, the best SDP solvers are known as ISD algorithms, as we mentioned
in Section 2.1. Introduced by Prange in 1962 [35], ISD techniques have been characterized
by a significant interest along the years, which has ultimately led to a strong confidence
about their performance. In particular, for the case of non-binary codes, the state-of-the-art
is represented by Peters’ algorithm [36], proposed in 2010 and still unbeaten in practice.
In our scheme we will always set w = d(q, n, k) and, to guarantee a security of λ bits, will
choose parameters q, n and k so that the complexity resulting from Peters’ ISD [36] is at
least 2λ.

Taking the above reasoning into account, we have devised several parameters sets,
for different values of M. The resulting parameters are reported in Table 1, below.

Table 1. Parameters for the proposed instances, for different values of M.

M s q n k w Pk Size (B) Signature Size (kB)

512 23 128 220 101 90 104.2 24.6
1024 19 256 207 93 90 114 22.2
2048 16 512 196 92 84 117 20.2
4096 14 1024 187 90 80 121.3 19.5

We observe that our scheme offers an interesting trade-off between the signature
size and the computational efficiency: increasing M leads to a significant reduction in the
signature size, but this comes at the cost of an increase in the number of operations for
signing and verification. Indeed, we expect the computational overhead to be dominated
by the computation of hash functions, whose number grows proportionally to Mq (these
are required to obtained the M values of {aux(i)}). Optimization of the scheme can leverage
a choice of efficient primitives for such short-input hashes. In addition, we note that these
hashes operate on independent inputs, so software and hardware performance can enjoy
potential parallelization efficiency.

Remark 1. We note that, in order to decrease the algorithmic complexity of the scheme, one can
reduce the size of the challenge space. Recall that, in the commitment phase, the prover uses all
the values from Fq to prepare the values aux(i); this means that, for each setting, the prover has to
compute a Merkle tree having q leaves in the base layer. The same operations are essentially repeated
by the verifier and, as we have already said, we expect this step to be the most time-consuming.
Indeed, to select the challenges (and consequently, to prepare the aux(i) values), one can use a subset
C ⊆ Fq, of size q′ < q. By doing so, the computation cost will decrease greatly. On the other
hand the soundness error will also change, since in (4) we need to replace q with q′, and thus
the code parameters may have to change accordingly; however, this has very little impact on the
communication cost, which will essentially remain unchanged (actually, it may become slightly
smaller if representing the challenges requires fewer bits).

Remark 2. We would also like to point out that, while we have chosen all values of q that are powers
of 2, this does not have to be the case. For the smallest parameter sets, for example, we estimate that
a practical choice for the value of q would be either q = 28 or the prime q = 251. In both cases,
the field arithmetic in the chosen field Fq could be implemented efficiently. For example, for the
case q = 28, note that Intel has recently included (as of microarchitecture codename "Ice Lake")
the Galois Field New Instructions (GF-NI). These instructions (namely VGF2P8AFFINEINVQB,
VGF2P8AFFINEQB, VGF2P8MULB) allow software to compute multiplications and inversions in
F28 over the wide registers that are available with the AVX512 architectures.

To explain the potential of our scheme, we present next a comparison with the current
scenario of code-based signature schemes. Note that most of the considered schemes make
use of a public matrix which, however, does not depend on the private key. As suggested,
for instance, in [19], this matrix can be generated from a seed and, consequently, its size

Cryptography 2022, 6, 5 15 of 17

can be excluded from the calculations relative to the public key (it is instead included
in the column “Public data”). We have taken this into account to compute the various
numbers for the schemes that we consider in Table 2. Note that the original papers of
Durandal [19] and LESS-FM [16] already do this, while we have recomputed the public
key size for the following schemes: Stern [8], Veron [10], CVE [12] and cRVDC [37]. For a
comprehensive list of these algorithms parameters, we refer the interested reader to Table 2
in [37] (accessed on 9 December 2021), which is the preprint version of [37]. The public
data expression for Stern, Veron, CVE and cRVDC is given by, respectively, k(n− k) log2(q),
k(n− k) log2(q), k(n− k) and km log2(q). Finally, in the comparison we have also included
Wave [14], which is based on the hash-and-sign framework and does not make use of any
additional public matrix.

Table 2. A comparison of public keys and signature sizes with other code-based signature schemes.
All sizes are in Kilobytes (kB).

Scheme Security Public Public Sig. PK + Sig. Security
Level Data Key Assumption

Stern 80 18.43 0.048 113.57 113.62 Low-weight Hamming
Veron 80 18.43 0.096 109.06 109.16 Low-weight Hamming
CVE 80 5.18 0.072 66.44 66.54 Low-weight Hamming

Wave 128 - 3205 1.04 3206.04 High-weight Hamming

cRVDC 125 0.050 0.15 22.48 22.63 Low-weight Rank
Durandal-I 128 307.31 15.24 4.06 19.3 Low-weight Rank
Durandal-II 128 419.78 18.60 5.01 23.61 Low-weight Rank

LESS-FM-I 128 9.78 9.78 15.2 24.97 Linear Equivalence
LESS-FM-II 128 13.71 205.74 5.25 210.99 Permutation Equivalence
LESS-FM-III 128 11.57 11.57 10.39 21.96 Permutation Equivalence

The results in Table 2 capture the current status of code-based signatures, highlighting
the advantages and disadvantages of each type of approach. For the schemes that work
with multiple repetitions of a single-round identification protocol (namely, Stern, Veron,
CVE and cRVDC), we have extremely compact public keys, at the cost of rather large
signatures. In this light, our scheme presents a clear improvement, as the signature size is
smaller in all cases. On the other hand, the most compact signatures are obtained with Wave
which, unfortunately, needs very large public keys. Durandal, which follows a modified
version of the Schnorr–Lyubashevsky approach [38], yields very good performance overall;
however, like cRVDC, the scheme is based on the rank metric, which relies on relatively
recent security assumptions, which are sometimes ad hoc and whose security is not yet
completely understood [21,22,39,40]. Still, our work compares well with such schemes,
for example when considering the sum of public key and signature sizes, a measure which
is relevant in several situations where key/signature pairs are transmitted, as in TLS.
Finally, we have included numbers for the LESS-FM scheme, which is constructed via a
very different method, exploiting a group action associated to the notion of code equivalence.
Thanks to this, the scheme is able to leverage various techniques aimed at manipulating
public key and signature size; this leads to a trade-off between the two, with an overall
high degree of flexibility (as is evident from the three parameter sets). In all cases, our
scheme presents a clear advantage, especially when considering the size of the public key.

Remark 3. In a recently-appeared preprint [41], Feneuil, Joux and Rivain introduce a scheme built
using very similar techniques to ours, leveraging the trusted setup in conjunction with an ad hoc
affine transformation. The scheme is very interesting and offers attractive performance; however,
given that it was posted after the submission of this manuscript, in order to avoid changing this
manuscript from the form it was accepted in, we limit ourselves to cite it here, and commit to include
a detailed comparison in the full version of this work (available online at [42]).

Cryptography 2022, 6, 5 16 of 17

Author Contributions: Conceptualization: S.G., E.P. and P.S.; writing: E.P. and P.S. All authors have
read and agreed to the published version of the manuscript.

Funding: This research was partly supported by: National Science Foundation (grant number
1906360); NSF-BSF (grant number 2018640); The Israel Science Foundation (grant number 3380/19);
The Center for Cyber Law and Policy at the University of Haifa, in conjunction with the Israel
National Cyber Bureau in the Prime Minister’s Office.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented in this study are available in article.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Shor, P. Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on a Quantum Computer. SIAM J. Comput.

1997, 26, 1484–1509. [CrossRef]
2. McEliece, R. A Public-Key Cryptosystem Based On Algebraic Coding Theory. Deep Space Netw. Prog. Rep. 1978, 44, 114–116.
3. Albrecht, M.R.; Bernstein, D.J.; Chou, T.; Cid, C.; Gilcher, J.; Lange, T.; Maram, V.; von Maurich, I.; Misoczki, R.;

Niederhagen, R.; et al. Classic McEliece: Conservative Code-Based Cryptography. In NIST Post-Quantum Standardiza-
tion, 3rd Round; 2021. Available online: https://www.hyperelliptic.org/tanja/vortraege/mceliece-round-3.pdf (accessed on 9
December 2021).

4. 2017. NIST Call for Standardization. Available online: https://csrc.nist.gov/Projects/Post-Quantum-Cryptography (accessed on
24 January 2022).

5. Melchor, C.A.; Aragon, N.; Bettaieb, S.; Bidoux, L.; Blazy, O.; Bos, J.; Deneuville, J.C.; Arnaud Dion, I.S.; Gaborit, P.; Lacan, J.; et al.
HQC: Hamming Quasi-Cyclic. In NIST Post-Quantum Standardization, 3rd Round; 2021. Available online: https://pqc-hqc.org/
doc/hqc-specification_2021-06-06.pdf (accessed on 9 December 2021).

6. Aragon, N.; Barreto, P.S.L.M.; Bettaieb, S.; Bidoux, L.; Blazy, O.; Deneuville, J.C.; Gaborit, P.; Gueron, S.; Güneysu, T.;
Melchor, C.A.; et al. BIKE: Bit Flipping Key Encapsulation. In NIST Post-Quantum Standardization, 3rd Round; 2021. Avail-
able online: https://bikesuite.org/files/v4.2/BIKE_Spec.2021.07.26.1.pdf (accessed on 9 December 2021).

7. 2021. NIST Status Update. Available online: https://csrc.nist.gov/Presentations/2021/status-update-on-the-3rd-round (accessed
on 24 January 2022).

8. Stern, J. A new identification scheme based on syndrome decoding. In Advances in Cryptology—CRYPTO’ 93; Stinson, D.R., Ed.;
Springer: Berlin/Heidelberg, Germany, 1994; pp. 13–21.

9. Fiat, A.; Shamir, A. How to prove yourself: Practical solutions to identification and signature problems. In CRYPTO; Springer:
Berlin/Heidelberg, Germany, 1986; pp. 186–194.

10. Véron, P. Improved identification schemes based on error-correcting codes. Appl. Algebra Eng. Commun. Comput. 1997, 8, 57–69.
[CrossRef]

11. Gaborit, P.; Girault, M. Lightweight code-based identification and signature. In Proceedings of the 2007 IEEE International
Symposium on Information Theory, Nice, France, 24–29 June 2007; pp. 191–195.

12. Cayrel, P.L.; Véron, P.; El Yousfi Alaoui, S.M. A zero-knowledge identification scheme based on the q-ary syndrome decoding
problem. In Selected Areas in Cryptography; Springer: Berlin/Heidelberg, Germany, 2011; pp. 171–186.

13. Courtois, N.T.; Finiasz, M.; Sendrier, N. How to Achieve a McEliece-Based Digital Signature Scheme. Lect. Notes Comput. Sci.
2001, 2248, 157–174.

14. Debris-Alazard, T.; Sendrier, N.; Tillich, J.P. Wave: A new family of trapdoor one-way preimage sampleable functions based on
codes. In ASIACRYPT; Springer: Berlin/Heidelberg, Germany, 2019; pp. 21–51.

15. Biasse, J.F.; Micheli, G.; Persichetti, E.; Santini, P. LESS is More: Code-Based Signatures Without Syndromes. In AFRICACRYPT;
Nitaj, A., Youssef, A., Eds.; Springer: Berlin/Heidelberg, Germany, 2020; pp. 45–65.

16. Barenghi, A.; Biasse, J.F.; Persichetti, E.; Santini, P. LESS-FM: Fine-tuning Signatures from a Code-based Cryptographic Group
Action. PQCrypto 2021, 2021, 23–43.

17. Beullens, W. Not Enough LESS: An Improved Algorithm for Solving Code Equivalence Problems over Fq. In Proceedings of the In-
ternational Conference on Selected Areas in Cryptography, Halifax, NS, Canada, 21–23 October 2020; Springer: Berlin/Heidelberg,
Germany, 2020; pp. 387–403.

18. Gaborit, P.; Ruatta, O.; Schrek, J.; Zémor, G. RankSign: An efficient signature algorithm based on the rank metric. In International
Workshop on Post-Quantum Cryptography; Springer: Berlin/Heidelberg, Germany, 2014; pp. 88–107.

19. Aragon, N.; Blazy, O.; Gaborit, P.; Hauteville, A.; Zémor, G. Durandal: A Rank Metric Based Signature Scheme. In Advances in
Cryptology–EUROCRYPT 2019; Ishai, Y., Rijmen, V., Eds.; Springer International Publishing: Cham, Switzerland, 2019; pp. 728–758.

20. Baldi, M.; Battaglioni, M.; Chiaraluce, F.; Horlemann-Trautmann, A.L.; Persichetti, E.; Santini, P.; Weger, V. A new path to
code-based signatures via identification schemes with restricted errors. arXiv 2020, arXiv:2008.06403.

http://doi.org/10.1137/S0097539795293172
https://www.hyperelliptic.org/tanja/vortraege/mceliece-round-3.pdf
https://csrc.nist.gov/Projects/Post-Quantum-Cryptography
https://pqc-hqc.org/doc/hqc-specification_2021-06-06.pdf
https://pqc-hqc.org/doc/hqc-specification_2021-06-06.pdf
https://bikesuite.org/files/v4.2/BIKE_Spec.2021.07.26.1.pdf
https://csrc.nist.gov/Presentations/2021/status-update-on-the-3rd-round
http://dx.doi.org/10.1007/s002000050053

Cryptography 2022, 6, 5 17 of 17

21. Debris-Alazard, T.; Tillich, J.P. Two attacks on rank metric code-based schemes: RankSign and an IBE scheme. In Proceedings
of the International Conference on the Theory and Application of Cryptology and Information Security, Brisbane, Australia,
2–6 December 2018; Springer: Berlin/Heidelberg, Germany, 2018; pp. 62–92.

22. Bardet, M.; Briaud, P. An algebraic approach to the Rank Support Learning problem. arXiv 2021, arXiv:2103.03558.
23. Katz, J.; Kolesnikov, V.; Wang, X. Improved non-interactive zero knowledge with applications to post-quantum signatures.

In Proceedings of the 2018 ACM SIGSAC Conference on Computer and Communications Security, Toronto, ON, Canada,
15–19 October 2018; pp. 525–537.

24. Beullens, W. Sigma Protocols for MQ, PKP and SIS, and Fishy Signature Schemes. Eurocrypt 2020, 12107, 183–211.
25. Berlekamp, E.; McEliece, R.; van Tilborg, H. On the inherent intractability of certain coding problems (Corresp.). IEEE Trans. Inf.

Theory 1978, 24, 384–386. [CrossRef]
26. Barg, S. Some new NP-complete coding problems. Probl. Peredachi Informatsii 1994, 30, 23–28.
27. Beullens, W. Sigma protocols for MQ, PKP and SIS, and fishy signature schemes. In Proceedings of the Annual Interna-

tional Conference on the Theory and Applications of Cryptographic Techniques, Zagreb, Croatia, 10–14 May 2020; Springer:
Berlin/Heidelberg, Germany, 2020; pp. 183–211.

28. Abdalla, M.; An, J.H.; Bellare, M.; Namprempre, C. From identification to signatures via the Fiat-Shamir transform: Minimizing
assumptions for security and forward-security. In EUROCRYPT; Springer: Berlin/Heidelberg, Germany, 2002; pp. 418–433.

29. Kiltz, E.; Lyubashevsky, V.; Schaffner, C. A concrete treatment of Fiat-Shamir signatures in the quantum random-oracle model.
In Proceedings of the Annual International Conference on the Theory and Applications of Cryptographic Techniques, Tel Aviv,
Israel, 29 April–3 May 2018; Springer: Berlin/Heidelberg, Germany, 2018; pp. 552–586.

30. Don, J.; Fehr, S.; Majenz, C.; Schaffner, C. Security of the Fiat-Shamir Transformation in the Quantum Random-Oracle Model. In
CRYPTO; Springer: Cham, Switzerland, 2019; pp. 356–383.

31. Liu, Q.; Zhandry, M. Revisiting Post-quantum Fiat-Shamir. In Advances in Cryptology-CRYPTO 2019; Springer: Cham, Switzerland,
2019; pp. 326–355.

32. Unruh, D. Computationally binding quantum commitments. In Proceedings of the Annual International Conference on the
Theory and Applications of Cryptographic Techniques, Vienna, Austria, 8–12 May 2016; pp. 497–527.

33. Fehr, S. Classical proofs for the quantum collapsing property of classical hash functions. In Proceedings of the Theory of
Cryptography Conference, Panaji, India, 11–14 November 2018; Springer: Berlin/Heidelberg, Germany, 2018; pp. 315–338.

34. Beullens, W.; Katsumata, S.; Pintore, F. Calamari and Falafl: Logarithmic (linkable) ring signatures from isogenies and lattices. In
Proceedings of the International Conference on the Theory and Application of Cryptology and Information Security, Daejeon-gu,
Korea, 7–11 December 2020; Springer: Berlin/Heidelberg, Germany, 2020; pp. 464–492.

35. Prange, E. The use of information sets in decoding cyclic codes. IRE Trans. Inf. Theory 1962, 8, 5–9. [CrossRef]
36. Peters, C. Information-set decoding for linear codes over Fq. In International Workshop on Post-Quantum Cryptography; Springer:

Berlin/Heidelberg, Germany, 2010; pp. 81–94.
37. Bellini, E.; Caullery, F.; Gaborit, P.; Manzano, M.; Mateu, V. Improved Veron Identification and Signature Schemes in the Rank

Metric. In Proceedings of the 2019 IEEE International Symposium on Information Theory (ISIT), Paris, France, 7–12 July 2019;
pp. 1872–1876.

38. Lyubashevsky, V. Fiat-Shamir with Aborts: Applications to Lattice and Factoring-Based Signatures. In ASIACRYPT; Springer:
Berlin/Heidelberg, Germany, 2009; pp. 598–616.

39. Bardet, M.; Briaud, P.; Bros, M.; Gaborit, P.; Neiger, V.; Ruatta, O.; Tillich, J.P. An algebraic attack on rank metric code-based
cryptosystems. In Proceedings of the Annual International Conference on the Theory and Applications of Cryptographic
Techniques, Zagreb, Croatia, 10–14 May 2020; Springer: Berlin/Heidelberg, Germany, 2020; pp. 64–93.

40. Bardet, M.; Bros, M.; Cabarcas, D.; Gaborit, P.; Perlner, R.; Smith-Tone, D.; Tillich, J.P.; Verbel, J. Improvements of Algebraic
Attacks for solving the Rank Decoding and MinRank problems. In Proceedings of the International Conference on the Theory
and Application of Cryptology and Information Security, Daejeon-gu, Korea, 7–11 December 2020; Springer: Berlin/Heidelberg,
Germany, 2020; pp. 507–536.

41. Feneuil, T.; Joux, A.; Rivain, M. Shared Permutation for Syndrome Decoding: New Zero-Knowledge Protocol and Code-Based
Signature. Cryptology ePrint Archive: Report 2021/1576. Available online: https://eprint.iacr.org/2021/1576 (accessed on
9 December 2021).

42. Gueron, S.; Persichetti, E.; Santini, P. Designing a Practical Code-Based Signature Scheme from Zero-Knowledge Proofs with
Trusted Setup. Cryptology ePrint Archive: Report 2021/1020. Available online: https://eprint.iacr.org/2021/1020 (accessed on
9 December 2021).

http://dx.doi.org/10.1109/TIT.1978.1055873
http://dx.doi.org/10.1109/TIT.1962.1057777
https://eprint.iacr.org/2021/1576
https://eprint.iacr.org/2021/1020

	Introduction
	Preliminaries
	Coding Theory
	Technical Tools

	The New Scheme
	Security
	Removing the Helper
	Obtaining a Signature Scheme

	Communication Cost and Optimizations
	Protocol Commitments
	Auxiliary Information
	Seeds
	Executions

	Practical Considerations
	References

