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Abstract: An adaptor signature can be viewed as a signature concealed with a secret value and, by
design, any two of the trio yield the other. In a multiparty setting, an initial adaptor signature allows
each party to create additional adaptor signatures without the original secret. Adaptor signatures
help address scalability and interoperability issues in blockchain. They can also bring some important
advantages to cryptocurrencies, such as low on-chain cost, improved transaction fungibility, and
fewer limitations of a blockchain’s scripting language. In this paper, we propose a new two-party
adaptor signature scheme that relies on quantum-safe hard problems in coding theory. The proposed
scheme uses a hash-and-sign code-based signature scheme introduced by Debris-Alazard et al. and
a code-based hard relation defined from the well-known syndrome decoding problem. To achieve
all the basic properties of adaptor signatures formalized by Aumayr et al., we introduce further
modifications to the aforementioned signature scheme. We also give a security analysis of our scheme
and its application to the atomic swap. After providing a set of parameters for our scheme, we show
that it has the smallest pre-signature size compared to existing post-quantum adaptor signatures.

Keywords: post-quantum cryptography; blockchain; code-based cryptography; adaptor signature;
scriptless scripts

1. Introduction

In cryptocurrencies and other blockchain applications, transactions are validated by
miners, using decentralized consensus protocols. A transaction is akin to an application
formed by scripts. The scripting language of a blockchain allows the encoding of potential
functionalities and rules that make a transaction valid. Therefore, the fee for a transaction
corresponds to the storage and computational cost of executing the transaction’s script
by a miner. The fee sometimes can be excessively high for some cryptocurrencies with a
scripting language that enables a more complex transaction logic. In addition to the high
fee issue, the public verifiability feature of transactions and the permissionless nature of
consensus protocols pose some other challenges with regard to scalability, privacy and
transaction throughput.

The main approach to addressing the aforementioned issues is to reduce the size of
on-chain transactions by handing off some transactions to off-chains. The goal is to use as
few scripts as possible for on-chain transactions. Current promising solutions are payment
channel networks (PCNs) [1–7]. They allow an off-chain payment between a sender and
receiver through an intermediary. However, they do it by relying on the scripting-based
functionality, which is available only with a few cryptocurrencies. To address this scripting
issue, Poelstra [8] introduced a technique called scriptless script that enables us to create
smart contracts without a script. The technique was later formalized as an adaptor signature
by Fournier [9]. Recently, Aumayr et al. [10] have presented a full formalization of the
adaptor signature as a cryptographic primitive.

An adaptor signature is a two-step signing algorithm bound to a secret. It is defined
from a digital signature scheme and a hard relation. In the adaptor signature, the first
pre-signature is generated by a user with knowledge of a witness of the hard relation.
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The complete signature reveals the witness and can be verified by its corresponding
verification algorithm. In blockchain applications, adaptor signatures bring some advan-
tages to cryptocurrencies, such as a reduction in the on-chain cost and an improvement of
each transaction’s fungibility.

Since the work by Poelstra, several articles on adaptor signature have appeared,
e.g., [9–17]. In [10], the authors introduced two adaptor signature schemes based on
Schnorr’s signature and the elliptic curve digital signature algorithm (ECDSA), respectively.
Authors of [12] showed that signature schemes that are constructed from identification
schemes with some additional homomorphic properties can be transformed into adaptor
signature schemes. In [14], the authors showed how to provide an adaptor signature
instance from any one-way homomorphic function. In [12] (respectively [17]), the authors
designed a post-quantum adaptor signature based on lattices (respectively, isogenies).

1.1. Motivation

The adaptor signature is one of the central primitives in today’s cryptocurrency-based
payment ecosystem. A few exceptions aside, most of the existing adaptor signature schemes
will, however, be broken with the arrival of sufficiently large quantum computers. Thus,
it is important to explore various ways to design efficient adaptor signature schemes that
are quantum safe. Code-based cryptography, which has been studied for many years, is
considered resistant against quantum-computer attacks and is one of the finalists in the
current post-quantum cryptography (PQC) standardization process undertaken by the
National Institute of Standards and Technology (NIST). To our knowledge, no adaptor
signature scheme based on coding theory exists in the literature. Therefore, even if key
sizes are large in code-based cryptography, designing a code-based adaptor signature is of
interest to ensure the post-quantum security of blockchain applications.

1.2. Our Contributions

In this paper, we present a post-quantum adaptor signature scheme using crypto-
graphic assumptions rooted in coding theory. To design our scheme, we use a hash-
and-sign code-based signature scheme, called Wave, which was introduced by Debris-
Alazard et al. [18]. The hard relation used in our scheme is defined from the well-known
NP-complete problem in coding theory. However, in order to achieve the pre-signature
correctness and pre-signature adaptability for adaptor signatures, we introduce a few mod-
ifications to Wave. After designing our scheme, we show that it satisfies the pre-signature
correctness and the pre-signature adaptability property of the adaptor. We present a secu-
rity analysis of our scheme and compare the latter with existing post-quantum adaptor
signature schemes. We also give an application of our scheme to the atomic swap.

1.3. Organization

The remainder of the paper is organized as follows. Section 2 provides some prelimi-
naries on coding theory and adaptor signature. In Section 3, we present the design of our
code-based adaptor signature scheme and its security analysis. In Section 4, we provide
a set of parameters for our scheme and its comparison with other post-quantum adaptor
signature schemes. In Section 5, we give the application of our scheme in an atomic swap.
Finally, we conclude in Section 6.

2. Preliminaries
2.1. Coding Theory

Let F be the finite field Fq with q = pm and p a prime number. A linear code C of
length n and dimension k over F is a vector subspace of dimension k of Fn. It can be
specified by a full rank matrix G ∈ Fk×n called the generator matrix. The rows of G span
the code C. Specifically, a linear code can be defined by its generator matrix as follows:

C =
{

mG s.t. m ∈ Fk
}
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A linear code can be also defined by the right kernel of matrix H called parity-check
matrix of C:

C =
{

x ∈ Fn s.t. xHT = 0
}

The Hamming distance between two codewords is the number of positions (coor-
dinates) where they differ. The minimal distance of a code is the minimal distance of
all codewords.

The weight of a word/vector x ∈ Fn denoted by wt(x) is the number of its non-zero
positions. Then, the minimal weight of a code C is the minimal weight of all non-zero
codewords. In the case of linear code C, its minimal distance is equal to the minimal weight
of the code.

In this paper, the set of vectors of length n and weight ω is denoted by Sq,n,ω = {x ∈ Fn

s.t. wt(x) = ω}. For two given integers a and b, where a < b < n, we denote the set of
vectors of length n with wt(x) ∈ [a, b] by Sq,n,[a,b] = {x ∈ Fn s.t. a ≤ wt(x) ≤ b}.

2.2. Hard Problems in Coding Theory

In this subsection, we recall some NP-complete problems in coding theory.

Problem 1. (Binary Syndrome Decoding (SD) problem)
Input: A matrix H ∈ Fr×n

2 , a vector s ∈ Fr
2, and an integer ω > 0.

Output: A vector y ∈ Fn
2 such that wt(y) ≤ ω and s = yHT .

The SD problem was proved to be NP-complete in 1978 by McEliece and Van Tilbord [19].
Some of its instances can be solved in polynomial time, depending on the input. In par-
ticular, when the parameter ω is in the interval

[ r
2 , n− r

2
]
, solving it becomes easy—first,

determine a pseudo-inverse H−1 of the matrix H and then compute the product sH−1 to
return a valid solution with a high probability. However, when the value of the parameter
ω is not in

[ r
2 , n− r

2
]
, if a single solution exists, finding it is much harder. For non-binary

finite field Fq, the corresponding interval is given by
[
(q−1)r

q , n− r
q

]
[18]. We now give the

following definition.

Definition 1. Let n, k, and ω be non-zero integers. Let H ∈ Fr×n
q be a matrix, where r = n− k.

Let e ∈ Sq,n,ω be an error vector such that s = eHT . We say that an instance of a syndrome
decoding problem is ε-hard if for all probabilistic polynomial time (PPT) algorithm A with input
(H, s) we have

Pr[e←− A(H, s)] ≤ ε

The syndrome decoding problem is equivalent to the following problem.

Problem 2 (General Decoding (GBD) problem).

Input: A matrix G ∈ Fk×n
q , a vector y ∈ Fn

q , and an integer ω > 0.
Output: Two vectors m ∈ Fk

q and e ∈ Fn
q such that wt(e) = ω and y = mG + e.

Problem 3 (Generalized (U, U + V) code distinguishing problem).

Input: A matrix H ∈ Fr×n
q .

Output: Decide whether H is a parity-check matrix of a generalized (U, U + V) code.

Problem 3 is one of the problems on which the security assumption of our adaptor
signature scheme relies. It is hard in the worst case; for more information about its hardness
or NP-completeness, we refer the reader to [18,20].

The following problem is used in the security proof of the underlying signature scheme
that we use in this paper. It was first considered by Johansson and Jonsson in [21] and was
analyzed later by Sendrier in [22].
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Problem 4 (Decoding One Out of Many (DOOM) problem).

Input: A matrix H ∈ Fr×n
q , a set of vectors s1, s2,. . . ,sN ∈ Fr

q and an integer ω.
Output: A vector e ∈ Fn

q and an integer i such that 1 ≤ i ≤ N, wt(e) = ω and si = eHT .

2.3. Hard Relation

A hard relation is a relation R with a statement–witness pair such that the follow-
ing hold:

• There is a PPT algorithm Gen(1˘) with input of the security parameter λ and output
of a statement–witness pair (Y, x).

• The relationR is in poly-time decidable.
• For all PPT adversaries A, there is a negligible function ε such that

Pr
[
(Y, x∗) ∈ R (Y, x)←− Gen(1λ)

x∗ = A(Y)

]
≤ ε(λ)

The language associated to the relationR is the set denoted by LR and defined by

LR = {Y | ∃ x s.t. (Y, x) ∈ R}

2.4. Code-Based Signature Scheme

The first secure code-based signature is due to Courtois et al. (CFS) [23]. It uses
two security assumptions: the indistinguishability of random binary linear codes and the
hardness of the syndrome decoding problem. This scheme is not considered practical
due to the difficulty of finding a random decodable syndrome. It was later modified by
Dallot [24] and became to be known as the mCFS (modified Courtois–Finiasz–Sendrier)
signature scheme. One of the security assumptions in mCFS is the indistinguishability
of random Goppa binary codes. This led to the emergence of an attack [25]. Currently,
the latest code-based signature scheme of this type is due to Debris-Alazard et al. [18].
Their scheme is called Wave and is based on generalized (U, U + V) codes over Fq with
q ≥ 3. Wave is currently one of the most secure and efficient code-based signature schemes
designed from a framework other than the Fiat–Shamir transformation. A description of
Wave is given in Figure 1.

Common parameters: Length n, dimensional kU (resp. kV) of U (resp. V),
vector error weight ω, a cryptographic hash function H : {0; 1}∗ −→ Fn−k

3 ,
where k = kU + kV

Secret key: sk := (S, Hsk, P) where S ∈ F(n−k)×(n−k)
q is an invertible matrix,

Hsk ∈ F(n−k)×n
q a random generalized (U, U + V) code over F3 of length n and

dimension k = ku + kv, and P ∈ Fn×n
2 is a permutation matrix.

Public key: pk := Hpk where Hpk = SHskP.

Sign(sk, m):

1. r $← Fλ
2

2. Compute v := H(m‖r)
3. Compute e := DHsk

(v(S−1)T)
4. Return σ := (eP, r)

Verif(pk, m, σ):
1. Parse σ as (ẽ, r̃)
2. Compute s := H(m‖r̃)
3. if s 6= ẽHT

pk or wt(ẽ) 6= ω:

Return 0
4. Return 1

Figure 1. Wave signature scheme [18].
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2.5. Adaptor Signature Scheme

In this subsection, we recall the formal definition of the adaptor signature followed by
its basic security properties.

Definition 2 (Adaptor signature [10]). An adaptor signature ΠR,Ξ defined with respect to hard
relation R and a digital signature scheme Ξ = (Gen,Sign,Verif) is a tuple of four algorithms
(PreSign,PreVerif,Adapt,Ext), where the following hold:

• PreSign(sk, m, Y) is a PPT algorithm that takes as input a secret key sk, a statement Y and a
message m ∈ F∗2 , and outputs a pre-signature σ̃

• PreVerif(pk, m, Y, σ̃) is a DPT algorithm that takes as input a public key pk, a statement Y,
and a pre-signature σ̃, and produces 0 or 1 as output.

• Adapt(σ̃, x) is a DPT algorithm that takes as input a pre-signature σ̃ and witness y and
outputs a valid signature σ.

• Ext(Y, σ, σ̃) is a DPT algorithm that on input a signature σ, pre-signature σ̃ and statement
Y ∈ LR, outputs a witness x such that (Y, x) ∈ R, or the symbol ⊥.

Note that adaptor signature schemes inherit the key generation, signature and verifi-
cation algorithms of the underlying signature scheme and hence, acquire the correctness
of the standard digital signature scheme. An adaptor signature scheme, however, has to
verify some supplementary properties given by the following definitions.

Definition 3 (Pre-signature correctness [10]). An adaptor signature ΠR,Ξ satisfies pre-correctness
if for every λ ∈ N, every message m ∈ {0; 1}∗ and every statement/witness pair (Y, x) ∈ R,
the following holds:

Pr


PreVerif(pk, m, Y, σ̃) = 1

∧ (sk, pk)← Gen(1λ)
Verif(pk, m, σ) = 1 σ̃← PreSign(sk, m, Y)

∧ σ := Adapt(pk, x, σ̃)
(Y, x′) ∈ R x′ := Ext(σ, σ̃, Y)

 = 1

More precisely, the pre-signature correctness states that a valid pre-signature σ̃, which
is honestly generated w.r.t. a statement Y ∈ LRHpk

, could be adapted into a valid signa-
ture. From this signature, we can extract a witness x for the statement Y. The second
basic required property for the adaptor signature is the pre-signature adaptability. This
second one is stronger than the pre-signature correctness property. It is given by the
following definition.

Definition 4 (Pre-signature adaptability). An adaptor signature ΠR,Ξ satisfies pre-signature
adaptability if for any λ ∈ N, any message m ∈ {0; 1}∗, any statement/witness pair (Y, x) ∈ R,
any key pair (sk, pk) ←− Gen(1λ) and any pre-signature σ̃ with PreVerif (pk, m, Y, σ̃) = 1,
we have

Pr[Verif(pk, m,Adapt(pk, m, σ̃)] = 1

The pre-signature adaptability states that in reality, all valid pre-signature w.r.t. a
statement Y ∈ LR can be adapted to a valid one, using a witness x such that (Y, x) ∈ R.

For an adaptor signature, there are two main required security properties: the unforge-
ability under chosen message attacks and witness extractability. These security properties
are defined formally by Aumayr et al. [10]. Below, we recall the formal definition of
the existential unforgeability under the chosen message attack for the adaptor signature
(aEUF-CMA) and that of witness extractability.
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Definition 5 (aEUF–CMA security [10]). An adaptor signature scheme ΠR,Ξ is aEUF-CMA
secure if for every PPT adversary A, there exists a negligible function ε such that

Pr
[
aSigForgeA,ΠR,Ξ

(λ) = 1
]
≤ ε(λ)

where aSigForgeA,ΠR,Ξ
is the experiment given below in Figure 2.

aSigForgeA,ΠR,Ξ
(λ)

1. Q := ∅
2. (sk, pk)←− Gen(1λ)

3. m←− AOS(·),OpS(·,·)(pk)

4. (Y, x)←− GenR(1λ)
5. σ̃←− PreSign(pk, m, Y)
6. σ←− AOS(·),OpS(·,·)(σ̃, Y)
7. Return (m /∈ Q∧ Verif(pk, m, σ))

OS(m)

1. σ←− Sign(sk, m)
2. Q := Q∪ {m}
3. Return σ

OpS(m)

1. σ̃←− PreSign(sk, m, Y)
2. Q := Q∪ {m}
3. Return σ̃

Figure 2. aEUF-CMA game.

The definition of the unforgeability in tthe adaptor signature is similar to that of
existential unforgeability under chosen message attacks in the standard digital signature.
However, in the case of the adaptor signature, there are some additional requirements:
even given a pre-signature on m w.r.t. a random statement Y ∈ LR, producing a forgery σ
has to be hard.

The witness extractability experiment and criteria for an adaptor signature are given
by the following definitions.

Definition 6 (Witness extractability [10]). An adaptor signature scheme ΠR,Ξ is witness ex-
tractability if for every PPT adversary A, there exists a negligible function ε such that

Pr
[
aWitExtA,ΠR,Ξ(λ) = 1

]
≤ ε(λ)

where aWitExtA,ΠR,Ξ is the experiment in Figure 3.

aSigForgeA,ΠR,Ξ
(λ)

1. Q := ∅
2. (sk, pk)←− Gen(1λ)

3. (m, Y)←− AOS(·),OpS(·,·)(pk)
4. σ̃←− PreSign(pk, m, Y)
5. σ←− AOS(·),OpS(·,·)(σ̃, Y)
6. x′ ←− Ext(pk, σ, σ̃, Y)
7. Return (m /∈ Q ∧ (Y, x′) /∈ R∧

Verif(sk, m, σ))

OS(m)

1. σ←− Sign(sk, m)
2. Q := Q∪ {m}
3. Return σ

OpS(m)

1. σ̃←− PreSign(sk, m, Y)
2. Q := Q∪ {m}
3. Return σ̃

Figure 3. Witness extractability game.

The main difference between the witness extractability and the aEUF-CMA experiment
is that in the first one, the adversary is allowed to choose a forgery statement Y. Assuming
that the adversary knows a witness for Y, it can therefore generate a valid signature for the
forgery message m. Then, it wins when the valid signature does not reveal a witness for Y.

The following is the definition of a secure adaptor signature.
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Definition 7 (Secure adaptor signature). An adaptor signature ΠR,Ξ is said to be secure, if it is
aEUF-CMA secure, pre-signature adaptable and witness extractable.

3. Code-Based Adaptor Signature
3.1. Description of Our Scheme

In this section, we present our code-based adaptor signature scheme ΠRHpk
,Wave. Its

security relies on the hardness of the syndrome decoding problem.
Let C be a random q-ary linear code of length n, dimension k, with parity-check matrix

Hpk and error correction capability t. Let x ∈ Sq,n,t and Y ∈ Fn−k
q . Let the relationRHpk

be
defined by

RHpk
= {(Y, x) s.t. Y = xHT

pk and wt(x) = t}

We denote the language associated to the relationRHpk
by LRHpk

, which is defined by

LRHpk
= {Y ∈ Fn−k

q | ∃ x ∈ Sq,n,t s.t. (Y, x) ∈ RHpk
}

For signing a message m in Wave, the sender chooses a random vector r ∈ F2λ
2 ,

computes s = H0(m‖r) and decodes s by using its secret key to find the error vector e of
weight ω such that s = eHT . Therefore, the signature corresponding to the message m is
given by the pair σ = (eP, r).

In our scheme, we use the ternary finite field F3. We also use two different hash
functionsH0 : {0; 1}∗ −→ Fn−k

3 andH1 : {0; 1}∗ −→ S3,n,δ for a well-chosen value of the
integer δ. In the PreSign algorithm of our adaptor signature, we first randomly choose r
in F2λ

2 . Then, for all given (Y, y) ∈ RHpk
, we compute s = H0(m‖Y−H1(r)HT

pk) ∈ Fn−k
3

instead of s = H0(m‖r). The PreVerif algorithm of our scheme is similar to the verification
algorithm Verif of Wave. Indeed, the receiver has to check that the following equality holds.

eHT
pk = H0(m‖Y−H1(r)HT

pk)

Compared to Wave, the signature of a message m in our scheme is a pair σ = (e, r′)
with eHT

pk = H0(m‖r′HT
pk) and r′ ∈ Fn

2 instead of eHT
pk = H0(m‖r′) and r′ ∈ F2λ

2 .
The Adapt algorithm in our scheme takes as input a tuple ((ẽ, r̃), x) and output the

pair (e, r), where r = x− H1(r̃) and e = ẽ. To extract the witness corresponding to a
statement Y, we execute the algorithm Ext which takes as input (Y, σ̃, σ), where σ̃ = (ẽ, r̃)
is a pre-signature and σ = (e, r) is the corresponding signature. The algorithm Ext outputs
x′ = H1(r̃) + r if Y = x′HT

pk and wt(x′) = ω. Otherwise, it returns the abort symbol. See
Figure 4 for the description of our scheme.

3.2. Security Analysis

Before giving the security analysis of our scheme, let us verify the pre-signature
correctness and the pre-signature adaptability of our scheme.

Proposition 1. The code-based adaptor signature ΠRHpk
,Wave described in Figure 4 satisfies the

pre-signature adaptability.

Proof. Let sk := (S, Hsk, P) be an arbitrary secret key. Let m ∈ F∗2 be an arbitrary message.
Let pk := Hpk be the corresponding public key of sk, where Hpk := SHskP and Hsk is
the parity-check matrix of a (U, U + V) code. Let us consider (Y, x) ∈ RHpk

. Let σ̃ be a
pre-signature generated w.r.t. Y. Then σ̃ is the tuple (ẽ, r̃) so if PreVerif(pk, m, Y, σ̃) = 1, we
know that ẽ is actually computed by the owner of the secret key sk.

According to the design of Adapt, we have (e, r) := Adapt(σ̃ := (ẽ, r̃), x) where r :=
x−H1(r̃). We can therefore verify that
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H0(m‖rHT
pk) = H0(m‖(x−H1(r̃))HT

pk

= H0(m‖xHT
pk −H1(r̃)HT

pk)

= H0(m‖Y−H1(r̃)HT
pk)

= ẽHT
pk

Common parameters:

Length n, dimensional kU (resp. kV) of a U (resp. V), vector error weight
ω, witness weight t and integer δ such 0 < |δ− t| and δ + t < 2(n−k)

3 where
k = kU + kV . Two cryptographic hash functions H0 : {0; 1}∗ −→ Fn−k

3 and
H1 : {0; 1}∗ −→ S3,n,δ

Secret Key: sk := (S, Hsk, P), where Hsk is a parity of a random (U, U + V)
code over F3 of length n, dimension k = ku + kv and decoding algorithm DHsk

.

Public Key: pk := Hpk where Hpk = SHskP, S ∈ F(n−k)×(n−k)
3 is an invertible

matrix and P a permutation matrix of size n× n.

PreSign((sk, pk), m, Y):

1. r̃ $← F2λ
2

2. Compute u = H0(m‖Y −
H1(r̃)HT

pk)

3. Compute s̃ := u(S−1)T .
4. Compute e := DHsk

(s̃). [Success-
ful decoding satisfies wt(e) = ω]

5. ẽ := eP
6. Parse σ̃ := (ẽ, r̃)

Adapt(σ̃, x):
1. Parse σ̃ as (e, r̃)
2. Compute r′ := x−H1(r̃)
3. Return σ := (e, r′)

PreVerif(pk, m, Y, σ̃):
1. Parse σ̃ as (ẽ, r̃)
2. Compute s := H0(m‖Y −

H1(r̃)HT
pk)

3. If s 6= ẽHT
pk

Return 0
4. Return 1
Ext(Y, σ̃, σ):
1. Parse σ̃ as (ẽ‖r̃)
2. Parse σ as (e‖r)
3. If wt(r) /∈ [|δ− t|, δ + t]:

Return ⊥
4. Compute z := r̃ +H1(r)
5. If wt(z) 6= t or Y 6= zHT

pk:

Return ⊥
6. Return z

Figure 4. Code-based adaptor signature.

Proposition 2. The code-based adaptor signature ΠRHpk
,Wave described in Figure 4 satisfies the

pre-signature correctness.

Proof. Let sk := (S, Hsk, P) be a secret key. Let m ∈ F∗2 be an arbitrary message. Let
pk = Hpk be the corresponding public key linked to sk, where Hpk := SHskP and Hsk is
the parity-check matrix of a (U, U + V) code with decoding algorithm DH0 . Let us consider
(Y, x) ∈ RHpk

.
Using the public key pk (respectively, the secret key sk), we can compute the syn-

drome s := H0(m‖Y − H1(r̃)HT
pk) (respectively the corresponding error vector ẽ′ :=
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DHsk
(s(U−1)T)). Therefore, the pre-signature of the message m is given by σ̃ := (ẽ, r̃),

where ẽ = ẽ′P. For the pre-verification, we have to check the following equality:

ẽHT
pk = H0(m‖Y−H1(r̃)HT

pk) (1)

When ẽ is honestly computed, equality (1) always holds and then PreVerif(pk, m, Y, σ̃) = 1.
According to Figure 4, the output of the adaptor algorithm is given by σ = (e, r) =

Adapt(σ̃, x), where r = x−H1(r̃) with (Y, x) ∈ RHpk
and that of the extractor algorithm is

given byH1(r̃) + r = x−H1(r̃) +H1(r̃) = x with (Y, x) ∈ RHpk
. The fact that ẽ is honestly

computed, we have

H0(m‖rHT
pk) = H0(m‖(x−H1(r̃))HT

pk) = H0(m‖Y−H1(r̃)HT
pk) = ẽ

Therefore, in our scheme, σ = (e, r) is a valid signature for the message m.

For the security analysis of the scheme, below, we state the assumptions which the
security of our scheme relies on:

Assumption 1. The advantage of probabilistic polynomial time algorithm A to solve the syndrome
decoding problem is negligible with respect to the length n and the dimension k of the code.

Assumption 2. The advantage of probabilistic polynomial time algorithm A to solve the (U, U + V)
code distinguishing problem is negligible with respect to the length n and dimension k of the code.

Assumption 3. The advantage of probabilistic polynomial time algorithmA in solving the decoding
out of many (DOOM) problem is negligible with respect to the length n and dimension k of the code.

Under Assumption 1, the relationRHpk
defined in Section 3.1 is a hard relation and

under Assumptions 1 and 2, the Wave signature is EUF-CMA secure [18]. Therefore, we
have the following.

Theorem 1 (aEUF-CMA Security). Under Assumptions 1, 2 and 3, the code-based adaptor
ΠRHpk

,Wave defined in Figure 4 is aEUF-CMA secure.

Proof. Let A be an adversary against our scheme in the aEUF-CMA game. Let εaCMA be
the probability that a PPT adversary wins against our scheme in the aEUF-CMA game.
The proof of Theorem 1 consists of coming up with a bound for the adversary advantage
Adv(A). Suppose that there is a PPT adversary A which attacks the aEUF-CMA security
of our code-based adaptor signature. That means that A is able to forge a valid signature
σ′ = (e′, r′) on a targeted message m∗ after receiving the pair pre-signature/statement
(σ̃, Y) from the challenger. σ̃ = (ẽ, r̃) is a pre-signature w.r.t. Y of the target message m∗

sent to the challenger by A. Let σ = (e, r) be a valid signature obtained w.r.t. the witness x
of the Y after executing the adaptor algorithm, i.e., r = x−H1(r̃). If σ′ is a valid signature,
then we have either σ′ = σ or σ′ 6= σ.

• If σ′ = σ, which is equivalent to (e′, r′) = (e, r), thenA is able to find r′ ∈ S3,n,[|δ−t|,δ+t],
such that r′ = r = x−H1(r̃) for a given r̃ and Y such that Y = xHT

pk. The best way to
find such a vector r′ is to solve the equation Y = xHT

pk, i.e., to solve a hard instance of
the syndrome decoding problem.

• If σ′ 6= σ, we have two cases:

? e′ = e and r′ 6= r: this case implies that

e′HT
pk = H0(m∗‖r′HT

pk) = H0(m∗‖rHT
pk) = eHT

pk
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It means that either we have r′HT
pk = rHT

pk or A is able to find a collision of
the hash function H0. With the collision resistance of the hash function H0,
the probability that this case happen is less than

1
3n−k + ν(λ)

where 1
3n−k is the probability for having the equality r′HT

pk = rHT
pk (see [18]).

? e′ 6= e and r 6= r′: this last case means that the adversary A is able to forge a
valid signature using the modified version of Wave that we use in our scheme,
which is EUF-CMA secure.

By putting it all together, we have

Adv(A) ≤ 1
3n−k + AdvSD +AdvWave + ν(λ)

where AdvWave is the advantage of an adversary against Wave in the EUF-CMA game, and
AdvSD is that for solving the syndrome decoding problem.

Theorem 2. (Witness Extractability) Under Assumptions 2 and 3, the code-based adaptor ΠRHpk
,Wave

defined in Figure 4 is witness extractable.

Proof. Let σ̃ = (ẽ, r̃) be the pre-signature correctly computed w.r.t. a statement Y. Let
σ′ = (e′, r′) be a valid signature. Let x′ = Ext(Y, σ̃, σ) be the witness extracted from σ̃ and
σ. According to the algorithm Ext in our scheme, we have wt(x′) = t and Y = x′HT

pk. That
means if Ext outputs x′, we have (Y, x′) ∈ RHpk

with a high probability.
Let σ = (e, r) be a valid signature computed w.r.t. σ̃ by the honest witness owner.

The fact that in the witness extractability game, we should have (Y, x′) /∈ RHpk
, we have

(Y, x′) /∈ RHpk
=⇒ r 6= r′ =⇒ σ 6= σ′.

Therefore, the rest of the proof corresponds to the second part of the proof of Theorem 1.

4. Parameter Set and Experimental Results
4.1. Parameter Values and Signature Sizes

Referring to Figure 4 and [26], we can see that the length of pre-signature is given by
|σ̃| = k + 2λ and that of the signature is given by |σ| = k + n. For numerical values of the
pre-signature and signature for security Level 1 of NIST PQC standard, our scheme will
need to use δ = 517 and t = 12. Using other necessary parameters from [26], specifically,
λ = 128, q = 3, n = 8492, ω = 7980, kU = 3558, kV = 2047 and d = 81, we obtain the exact
sizes of the pre-signature and the signature as 1143 bytes and 2793 bytes, respectively.

Using the above-mentioned parameter values, we give in Table 1 a numerical com-
parison of the pre-signature and signature sizes of our scheme with those of [12,17]. In
the table, we see that for these parameter values, our scheme has a shorter pre-signature
size but a slightly larger signature size. Specifically, for the parameter values given above,
the pre-signature size of the scheme described in Figure 4 is more than 2.8× and 16×
smaller than those in [12,17], respectively. On the other hand, the signature size of the
proposed scheme is 1.5× lager than that of [17] and 0.97× smaller than that of [12].

Table 1. Comparison of pre-signature and signature sizes (in bytes)

Post-Quantum Adaptor Signature Pre-Signature Signature

[17] 18327 ≤ |σ̃| ≤ 19944 263 ≤ |σ| ≤ 1880

[12] |σ̃| = 3210 |σ| = 3210

Our paper |σ̃| = 1143 |σ| = 2793
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4.2. Software Prototype

We implemented the proposed scheme in software using the C programming language.
For this, we adapted the source code of Bamegas et al. [26] by including necessary add
ons, such as our code for the adaptor and extractor algorithms, the generation of random
vectors of a given weight and transformation of their signature scheme to our pre-signature
algorithm. The timing results of the execution of the code are based on VitualBox Intel@
core i7-1065G7 CPU@1.30 GHZ, LLVM 10.0.0 128 bits, with 4 GB RAM under Ubuntu
18.04.6 64-bits. The code is compiled with GCC 10.3. The source code corresponding to our
scheme is available at https://github.com/klambel-hash/Code-based-Adaptor-Signature
(accessed on 24 January 2022).

For the purpose of comparison, we also ran the code of the adaptor signature scheme
of [17] available at https://github.com/etairi/Adaptor-CSI-FiSh (accessed on 24 January
2022) on the aforementioned platform. In Table 2, we report the timing results of our
scheme as well as those of [17]. In the table, the parameters for [17] are given as (S, tS, k),
where S is the number of pubic key used, tS is the number of repetitions performed and
k is the rate of the slow hash function (see [17] page 16, for more details). Except for key
generation and signature, our scheme consistently requires less time than [17] for all other
components, namely, pre-signature, pre-verification, adaption and extraction.

Table 2. Timings (in ms) for various component algorithms.

Scheme Parameters Key Generation Pre-signature Pre-verification Sign Verify Adapt Extract

[17]

(21, 56, 16) 151.28 14,708.86 14,780.20 3103.45 3031.59 5.07 5.09

(22, 38, 14) 267.59 13747.47 13,612.15 2077.47 2002.63 4.86 4.95

(23, 28, 16) 473.412 12,746.86 12,636.88 1552.05 1490.81 4.74 4.91

(24, 23, 13) 929.40 13,247.47 13,217.23 1290.09 1237.94 4.76 4.87

(26, 16, 16) 3411.34 12267.46 12,164.13 924.91 868.56 4.88 4.77

(28, 13, 11) 13,169.98 12,448.40 12,310.03 722.81 679.16 4.73 4.64

(210, 11, 7) 56,174.03 13,861.66 13,512.42 717.34 607.41 5.13 5.07

This paper Section 4.1 2552.53 2097.81 348.95 2097.81 348.95 0.13 0.11

5. An Application of Code-Based Adaptor Signature

In this section, we provide an example blockchain application, namely atomic swap,
utilizing our adaptor signature. For this, we assume that the underlying blockchain is
using the Wave signature based on coding theory or a full domain hash signature based on
coding theory.

5.1. Atomic Swap in a Nutshell

Atomic swap is a peer-to-peer protocol which allows two different users to exchange
cryptocurrencies without a trusted party. Its main goal is to allow an exchange of cryp-
tocurrencies from two different blockchains.

During the atomic swap process, users have full ownership and control of their
respective private keys. When one of the participants aborts a transaction or does not
correctly fulfill the atomic swap process, funds are automatically returned to their original
owners. This is possible in an atomic swap because of the use of a particular contract
called hash timelock contract (HTLC). The main feature of HTLC is to technically enable
the implementation of time-bound transactions between two users or participants. Indeed,
when a user receives a HTLC transaction, it has to submit a cryptographic proof within a
specific time frame. Otherwise, the funds will be returned to the original sender.

5.2. Atomic Swaps Using Code-Based Adaptor Signature

Let (ski, pki) be the key pair of user ui for i = 1, 2. Below, we describe how atomic
swap could be executed, using our code-based adaptor signature.

https://github.com/klambel-hash/Code-based-Adaptor-Signature
https://github.com/etairi/Adaptor-CSI-FiSh
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• We start with user u1, who randomly generates (Y, x) ∈ RHpk
. The user also generates

transaction Tx1 to spend currency c for user u2.
• User u1 computes the pre-signature σ̃1 = PreSign(sk1, Tx1, Y) and then sends (σ̃1, Tx1, Y)

to user u2.
• User u2 checks σ̃1 using the pre-verification algorithm PreVerif. If the verification is

successful, it generates transaction Tx2 to spend currency c′ for user u1.
• User u2 computes a pre-signature σ̃2 = PreSign(sk2, Tx2, Y) and sends the tuple

(σ̃2, Tx2, Y) to user u1. Otherwise, it aborts the transaction.
• After receiving (σ̃2, Y, Tx2), user u1 computes the pre-verification algorithm on σ̃2.

If the pre-verification fails, it aborts the transaction. When the pre-verification on
σ̃2 is successful, user u1 runs the adaptor algorithm Adapt to compute the signature
σ2 = Adapt(σ̃2, x), publishes σ2 on the blockchain and sends it to user u2.

• After receiving σ2, user u2 computes the extractor algorithm Ext to extract the witness
x′ = Ext(Y, σ2, σ̃2). It then runs the adaptor algorithm Adapt to compute the signature
σ1 = Adapt(σ̃1, x′). To finish, u2 publishes σ1 on the blockchain.

The above procedure is depicted in Figure 5.

User u1((sk1, pk1), pk2, ) User u2((sk2, pk2), pk1, )

(x, Y) $← Gen()
Generates transaction Tx1 to spend
c for user u2
σ̃1 ← PreSign(sk1, Tx1, Y)

σ̃1, Y, Tx1−−−−−→
If Pre-verification of σ̃1 fails, abort.
Generates transaction Tx2 to spend
c′ for user u1
σ̃2 ← PreSign(sk2, Tx2, Y)

σ̃2, Tx2←−−−−−
If Pre-verification of σ̃ fails, abort.
σ2 ← Adapt(σ̃2, x)
If σ2 is not a valid signature, abort.
Publish σ2, on blockchain

σ2−−−−−→
x′ ← Ext(Y, σ2, σ̃2)
σ1 ← Adapt(σ̃1, x′)
If σ1 is not a valid signature, abort.
Publish σ1, on blockchain if σ1 6=⊥

Figure 5. Atomic swap using the proposed code-based adaptor signature.

6. Conclusions

In this paper, we proposed an adaptor signature scheme based on hard problems in
coding theory. We used the code-based signature scheme Wave as our underlying signature
scheme. In order to equip our scheme with common features and security properties, we
presented some modifications to the Wave signature. We showed that the proposed adaptor
signature scheme is secure under the hardness of the SD and the indistinguishability of
generalized (U, U + V) code problems, both of which are considered quantum safe. We
also gave a set of parameters for adaptor signature uses and compared the proposed
scheme with other post-quantum adaptor signature schemes in terms of pre-signature and
signature sizes. For parameter values corresponding to Level 1 NIST PQC security, our
scheme has a slightly larger signature size compared to that of [17], but a considerably
smaller pre-signature size than those of [12,17]. With the smaller pre-signature size, our
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scheme has the potential to reduce the overall communication cost in an atomic swap, as
there are more exchanges of pre-signatures than signatures.
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