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Abstract: Subclinical mastitis (SCM) is a very common disease of dairy cows. Currently, somatic
cell count (SCC) is used for SCM diagnoses. There are no prognostic tests to detect which cows
may develop SCM during the dry-off period. Therefore, the objectives of this study were to identify
metabolic alterations in the serum of pre-SCM cows during the dry-off period, at −8 and −4 weeks
before calving, through a targeted mass spectrometry (MS) assay. Fifteen cows, free of any disease, and
10 cows affected only by SCM postpartum served as controls (CON) and the SCM group, respectively.
Results showed 59 and 47 metabolites that differentiated (p ≤ 0.05) CON and pre-SCM cows at –8 and
−4 weeks prior to the expected date of parturition, respectively. Regression analysis indicated that a
panel of four serum metabolites (AUC = 0.92, p < 0.001) at −8 weeks and another four metabolites
(AUC = 0.92, p < 0.01) at −4 weeks prior to parturition might serve as predictive biomarkers for SCM.
Early identification of susceptible cows can enable development of better preventive measurements
ahead of disease occurrence.
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1. Introduction

Subclinical mastitis (SCM) is the most common intramammary infection (IMI) of dairy
cows. It poses a significant challenge for cow’s health and profitability of dairy farms [1,2].
Routinely, the most frequently used methods to identify SCM cows are the California
Mastitis Test (CMT), Somatic Cell Count (SCC), and Electrical Conductivity (EC) tests
which are normally attached to milking systems in the barn [3,4]. It should be noted that
there are no SCM tests available during the nonlactating (dry-off) period [5].

During the dry-off period, cows have been found to be in a state of low-grade chronic
inflammation at −8 and −4 weeks prepartum [6,7]. The potential reason for the chronic
low-grade inflammatory state might be translocation of pathogenic bacteria, presence of
bacterial endotoxins, or transport of proinflammatory cytokines from the sub-clinically
infected udder to the systemic circulation [8]. Thus, the need to monitor cows during
the dry-off period to identify cows at risk of SCM is critical in developing preventative
measures and better farm management strategies.

Given that not all dairy cows are equally susceptible to mastitis or subclinical mas-
titis [9,10], there is a need to develop a pen-side test with a panel of metabolites that can
distinguish between cows that are more susceptible to developing mastitis from healthy
controls. Our hypothesis is that serum metabolic changes might occur at the beginning
(−8 weeks) and in the middle (−4 weeks) of the dry period in pre-subclinical mastitis cows.
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We also hypothesized that a panel of screening biomarkers with high accuracy could be
identified that can be used in the future to develop reliable pen-side tests for predicting
SCM. Therefore, the objectives of this study were to identify prognostic serum metabolites
at −8 weeks and −4 weeks for SCM in dry-off cows.

2. Materials and Methods
2.1. Animals, Diets, and Blood Samples

In this nested case-control study, a total of 145 multiparous Holstein cows were
selected from which blood samples were collected from the coccygeal vein. Primiparous
cows were excluded because milk samples were collected prior to dry off to determine SCC.
Cows were selected from a commercial dairy farm in the province of Alberta, Canada. All
experimental procedures were approved by the University of Alberta Animal Care and Use
Committee for Livestock and conducted following the Canadian Council’s guidelines on
Animal Care [11], with protocol number AUP00003216.

Cows were selected based on their expected date of calving. Sampling occurred at the
beginning of the dry-off period and in the middle, respectively, at −8 weeks (55–58 days)
and −4 weeks (27–30 days) before parturition. The blood samples were allowed to clot
in ice. All metabolomic analyses were conducted at The Metabolomics Innovation Centre
(TMIC, University of Alberta, Edmonton, AB, Canada). Blood samples were centrifuged
at 2090 RCF (relative centrifugal force × g) for 15 min (Rotanta 460 R centrifuge, Hettich
Zentrifugan, Tuttlingen, Germany) to collect serum samples. The separated serum was
aspirated into sterile tubes using a transfer pipette (Fisher Scientific, Toronto, ON, Canada).
Two hundred µL of serum were transferred into aliquots and stored at −80 ◦C to be run
later on liquid chromatography tandem mass spectrometry (LC-MS/MS).

Cows sampled prepartum presented various disease conditions including mastitis,
metritis, retained placenta, laminitis, displaced abomasum, milk fever, and ketosis postpar-
tum. Health records for the periparturient diseases were gathered from the farm’s database.
Data were collected for the number of culled cows or those that were removed by the
veterinarian’s decision. Positive SCM cases were considered only for those cows having
two or more consecutive weeks with milk SCC equal to or higher than 200,000 cells/mL.
By this judgement, 15 dairy cows were considered healthy (CON), whereas only 10 cows
had abnormally high SCC levels and were free of other diseases which were classified as
pre-SCM. SCM cows did not develop clinical mastitis for the entire postpartum observa-
tional period (55–58 days). Body condition score (BCS) was measured for both groups
during the sampling weeks. The feed ingredients, on a dry matter basis, offered to cows
pre- and postpartum is presented in Tables 1 and 2.

Table 1. Ingredients of the prepartum diet for the dry-off cows.

Ingredient Weight/Cow (kg) DM 1 (%) Final DMI 1 (kg)

Hay 5.50 85.14% 4.68
Oats 5.75 36.20% 2.08
Corn 8.84 30.30% 2.68

Protein 2.00 93.00% 1.86
Ground Barley 0.75 97.26% 0.66

Minerals 0.42 97.26% 0.41
Total 23.36 53.17% 12.37

1 Dry matter intake (DMI) is calculated based on the DM% over the offered amount (kg) of feed. Daily DMI is
formulated to 2% of cow’s body weight.
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Table 2. Feed ingredients of cows during early lactation.

Ingredient Weight/Cow (kg) DM 1 (%) Final DMI 1 (kg)

Hay Dairy 2.50 88.50 2.21
Grass Silage 10.75 31.80 3.42

Oats 5.99 36.20 2.17
Barley-Dakota 11.50 40.00 4.80

Corn 13.52 31.50 4.26
Whey 2.75 17.00 0.47

Protein 4.75 93.30 4.43
Energy Dairy 4.25 88.00 3.74

Ground Barley 1.75 88.00 1.54
Mineral and Fat 1.26 97.26 1.23

Total 59.02 47.56 28.07
1 Dry matter intake (DMI) is calculated based on the DM% over the offered amount (kg) of feed. Daily DMI is
formulated to 2% of cow’s body weight.

2.2. Animals, Diets, and Blood Samples
2.2.1. Sample Preparation

Blood samples were collected before the morning feed, between 07:00–08:00, us-
ing 10 mL vacutainer tubes (clot activator and serum separator tube; Becton Dickinson,
Franklin Lakes, NJ, USA). Samples were then thawed on ice and vortexed before analy-
sis. For the analysis of biogenic amines (BAs), amino acids (AAs), lipids, acylcarnitines
(ACs), and glucose, 10 µL each of flow injection analysis (FIA) running buffer and LC
internal standards (ISTD) were loaded into a 96-well filter plate, except for the first well,
which acted as a double blank. From the second to the 14th well of the filter plate, three
phosphate-buffer saline (PBS) “zero-point” control samples, seven calibration curve stan-
dards, and three quality control (QC) samples were added. Thawed serum samples were
then added to the remaining wells. For samples and standards, a total of 10 µL was added
to the respective wells. The plate was then incubated and dried under a flow of nitrogen
(Zanntek Analytical Evaporator (Glas-Col, Terre Haute, IN, USA)) for 30 min. After being
dried, 50 µL of 5% phenylisothiocyanate (PITC) solution was added to each well, and the
plate was incubated at room temperature for 20 min. The plate was then dried again for
90 min under a flow of nitrogen. Extraction of the metabolites was accomplished by adding
300 µL methanol, containing 5 mM ammonium acetate. The plate was then placed on a
shaker, shaking at 330 rpm for 30 min and then centrifuged for 5 min at 50× g, (Sorvall
Evolution RC Superspeed Centrifuge (Fisher Scientific, Toronto, ON, Canada)), into the
lower 96 deep-well plate. For the analysis of AAs and BAs, the extract was diluted with
water 1:1, and 10 µL was injected into the column. For the analysis of ACs, lipids, and
glucose, 150 µL of the extract was diluted with 400 µL of FIA running buffer, and 20 µL
was injected in the column.

Protein precipitation was first conducted for the analysis of organic acids. In 1.5 mL
Eppendorf tubes, 10 µL of an ISTD mixture solution, 50 µL of the samples (three phosphate-
buffered saline (PBS) blank samples, seven calibration standards, three quality control sam-
ples and serum samples) and 150 µL ice-cold methanol were added. In total, 3:1 methanol:
water was used in place of methanol for the blanks, calibration standards, and QC samples.
Tubes then were vortexed and placed at −20 ◦C overnight. Samples were centrifuged
at 21,000× g for 15 min before use. Following centrifugation, 50 µL of the samples were
pipetted into the 96-deep well plate’s wells. Twenty-five microliters of each of the following
three solutions: (1) 3-nitrophenylhydrazine (250 mM in 50% aqueous methanol), 1-Ethyl-
3-(3-dimethyl aminopropyl) carbodiimide (150 mM in methanol) and pyridine (7.5% in
75% aqueous methanol) were added to each well. The whole plate was then shaken at
450 rpm for 2 h at room temperature to complete the derivatization reaction. After the
reaction, 350 µL of water and 50 µL MeOH were added to each well to dilute and stabilize
the solution for LC-MS/MS analysis.
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2.2.2. FIA/LC—MS/MS Method

Identification of metabolites in serum samples was done through a targeted metabolomics
approach using a TMIC Prime kit in Agilent 1100 series liquid chromatographic system
(LC) (Agilent, Palo Alto, CA, USA) equipped with an Agilent reversed-phase Zorbax
Eclipse XDB C18 column (3.0 × 100 mm, 3.5 µM particle size, 80 Å pore size) with a
Phenomenex (Torrance, CA, USA) SecurityGuard C18 pre-column (4.0 × 3.0 mm) coupled
with AB SCIEX QTRAP® 4000 mass spectrometer (Sciex Canada, Concord, ON, Canada).
LC/MS grade formic acid and HPLC grade water were purchased from Fisher Scientific
(Ottawa, ON, Canada). Ammonium acetate, phenylisothiocyanate (PITC) and HPLC grade
acetonitrile (ACN) were purchased from Sigma-Aldrich (St. Louis, MO, USA). The LC-
MS assay workflow was controlled through the Analyst® 1.6.2 software (Sciex Canada,
Concord, ON, Canada).

The LC parameters used to analyze AAs and BAs were as follows: mobile phase A
0.2% (v/v) formic acid in water and mobile phase B 0.2% (v/v) formic acid in acetonitrile.
The gradient profile was as follows: t = 0 min, 0% B; t = 0.5 min, 0% B; t = 5.5 min, 95% B;
t = 6.5 min, 95% B; t = 7.0 min, 0% B; and t = 9.5 min, 0% B. The column oven was set at
50 ◦C. The flow rate was 500 µL/min, and the sample injection volume was 10 µL.

For the analysis of organic acids by LC-MS/MS, the solvents used were (A) 0.01% (v/v)
formic acid in water and (B) 0.01% (v/v) formic acid in methanol. The column oven temper-
ature was set to 40 ◦C. The flow rate was 300 µL/min, and the sample injection volume
was 10 µL. The mass spectrometer was assigned to a negative electrospray ionization mode
with scheduled multiple reaction monitoring (MRM) scanning.

2.3. Statistcal Analysis

Univariate analyses were conducted using Wilcoxon rank-sum test from the emmeans
package in R (v4.0.2; Vienna, Austria (r-project.org)) with a significance level of p ≤ 0.05. The
adjusted p values were performed using the false discovery rate (FDR) method and a value
of q < 0.005. Multivariate statistical and biomarker analyses were run using MetaboAnalyst
(v4.0; Edmonton, AB, Canada (metaboanalyst.ca)) following specific guidelines described
in reference protocols [12,13]. Data normalization of all metabolite concentrations was
done using data transformation and scaling options to create a Gaussian distribution
(a bell-shaped curve). Metabolites with >50% of missing values were removed from further
analysis. Half of the minimum concentration value was imputed in those with <50% of
missing values.

To perform a standard cross-sectional two-group analysis, we compared healthy cows
(CON) and the pre-SCM group at each time point, −8 weeks and −4 weeks prepartum.
Multivariate statistical analyses, such as principal component analysis (PCA) and partial
least-squares–discriminant analysis (PLS-DA), were conducted via MetaboAnalyst (v4.0;
Edmonton, AB, Canada (metaboanalyst.ca)). Metabolic pathway analysis and identification
of biomarker profiles were also performed following guidelines with MetaboAnalyst [13].
PCA and PLS-DA were used to distinguish the CON and pre-SCM cows using Score
plots. Model validation was carried out using a cross-validation test, and a 2000 set
permutation test was implemented to validate the reliability of the model [14]. In addition,
the most influential compounds were ranked using Variable Importance in Projection (VIP)
plots. Metabolites with p < 0.05 and VIP scores > 1 were the most discriminatory between
the groups.

Metabolite set enrichment analysis (MSEA) was used to identify perturbed metabolic
pathways, as implemented in MetaboAnalyst (v4.0; Edmonton, AB, Canada (metaboana-
lyst.ca)). Metabolite sets obtained from quantitative enrichment pathway analysis were
considered statistically significant if the Holm corrected p value was < 0.05. The quality
of the biomarker sets was determined using the receiver-operating characteristic (ROC)
curve as generated by Monte-Carlo cross-validation (MCCV). ROC curves are often as-
sessed using a single metric known as the area under the ROC curve (AUROC), which
indicates a test’s accuracy for correctly distinguishing one group from another, such as
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pre-SCM cows from CON cows. A general guide for assessing the utility of a biomarker set
based on its AUROC is: 0.9–1.0 = excellent; 0.8–0.9 = good; 0.7–0.8 = fair; 0.6–0.7 = poor;
0.5–0.6 = fail [15]. Supervised classification methods, such as support vector machine (SVM)
and logistic regression analyses for several significant metabolites, were also performed to
train the model.

3. Results

Cows were selected based on the development of SCM postpartum. The distinction
between pre-SCM and CON was made possible by measuring SCC postpartum in the milk.
We grouped cows into those that presented SCM against the CON group (Tables 3 and 4).
A cut-off value of > 200,000 SCC/mL of milk is a good indicator of an infected udder and
for the diagnosis of SCM [16,17]. Of the recorded data, just 10 cows were diagnosed as
affected by subclinical mastitis only (SCM, n = 10; 424,710 SCC/mL), free of other diseases,
and 15 cows that were ascertained to be completely free of periparturient diseases (CON,
n = 15; 27,450 SCC/mL). Control and pre-SCM cows had an average BCS of 3.78 and 3.95
and 3.70 and 3.92 at −8 and −4 weeks, respectively. See Table 3 for lactation data, BCS
(body condition score), and milk yield.

Table 3. General cow performance data (average), such as body condition score (BCS) and lactation
number at −8 weeks and −4 weeks prior to the expected date of calving as well as somatic cell count
(SCC) and milk yield measured for 8 weeks after calving.

−8 Weeks −4 Weeks +1 to +8 Weeks

CON Pre-SCM CON Pre-SCM CON SCM-O

Lactation 2.5 3.1 2.5 3.1 3.5 4.1
BCS 3.78 3.70 3.95 3.92 - -

SCC (×1000) NA 1 NA NA NA 27.45 424.71
Milk Yield (L) NA NA NA NA 49.35 36.25

1 NA = not applicable.

Table 4. Concentration of serum metabolites (MEAN ± SEM, (p ≤ 0.05)) in pre-subclinical mastitis
cows only (pre-SCM, n = 10) and healthy controls (CON, n = 15) cows at −8 weeks before parturition,
as identified by LC-MS/MS.

Metabolites (µM)
MEAN ± SEM

p Value Fold Change SCM/CON
Pre-SCM (n =10) CON (n=15)

Glycine 317 ± 22.8 372 ± 20 0.005 0.85 down
Alanine 215 ± 15.7 266 ± 13.8 0.004 0.81 down
Valine 250 ± 26.3 202 ± 23.2 0.03 1.24 up

trans-Hydroxyproline 10.9 ± 0.671 12 ± 0.591 0.03 0.91 down
Leucine 248 ± 21.2 183 ± 18.7 0.002 1.36 up

Isoleucine 137 ± 11.24 111 ± 9.89 0.03 1.23 up
Asparagine 27.4 ± 2.67 32.1 ± 2.35 0.04 0.85 down

alpha-Aminoadipic acid 2.79 ± 0.387 1.74 ± 0.34 0.02 1.6 up
Phenylalanine 56.5 ± 3.36 46.8 ± 2.95 0.01 1.21 up

Methionine-sulfoxide 1.8 ± 0.241 2.35 ± 0.212 0.02 0.77 down
Arginine 149 ± 9.19 123 ± 8.09 0.05 1.21 up

Asymmetric dimethylarginine 0.875 ± 0.0686 0.647 ± 0.0603 0.002 1.35 up
Carnosine 14 ± 2.27 24.3 ± 1.99 0.001 0.58 down
Ornithine 62.6 ± 6.02 49.2 ± 5.58 0.001 1.27 up

Lysine 88.5 ± 8.09 72.1 ± 7.12 0.01 1.23 up
Betaine 154.1 ± 20.6 76.6 ± 19.1 <0.001 2.01 up
Choline 15.3 ± 1.85 10.3 ± 1.63 0.01 1.49 up

Citric acid 218 ± 26.5 267 ± 23.3 0.02 0.82 down
Butyric acid 7.07 ± 3.45 13.92 ± 3.03 0.01 0.51 down

Propionic acid 16.2 ± 7.29 29.6 ± 6.41 0.05 0.55 down
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Table 4. Cont.

Metabolites (µM)
MEAN ± SEM

p Value Fold Change SCM/CON
Pre-SCM (n =10) CON (n=15)

Fumaric acid 1.23 ± 0.36 1.84 ± 0.316 0.04 0.67 down
Pyruvic acid 77.3 ± 7.9 62.9 ± 6.95 0.03 1.23 up

Hippuric acid 57.5 ± 4.79 64.4 ± 4.21 0.05 0.89 down
LYSOC14:0 0.994 ± 0.1045 1.327 ± 0.0919 <0.001 0.75 down
LYSOC16:0 27 ± 2.93 29.5 ± 2.58 0.05 0.92 down
LYSOC16:1 1.37 ± 0.153 1.71 ± 0.135 0.004 0.8 down
LYSOC18:0 17 ± 1.92 19.6 ± 1.68 0.01 0.87 down
LYSOC18:1 13.4 ± 1.67 18.3 ± 1.47 <0.001 0.73 down
LYSOC18:2 30.2 ± 3.65 41.9 ± 3.21 <0.001 0.72 down
LYSOC26:0 0.12 ± 0.0323 0.161 ± 0.0284 0.02 0.75 down
LYSOC26:1 0.0462 ± 0.0078 0.0628 ± 0.00686 0.003 0.74 down
LYSOC28:0 0.234 ± 0.0346 0.373 ± 0.0305 <0.001 0.63 down
LYSOC28:1 0.298 ± 0.0445 0.519 ± 0.0391 <0.001 0.57 down
PC32:2AA 8.69 ± 1.25 14.93 ± 1.1 <0.001 0.58 down
PC36:0AE 2.24 ± 0.27 4.03 ± 0.237 <0.001 0.56 down
PC36:0AA 11.5 ± 1.79 25.4 ± 1.57 <0.001 0.45 down
PC36:6AA 3.08 ± 0.336 4.08 ± 0.295 <0.001 0.75 down
PC38:0AA 1.82 ± 0.287 4.02 ± 0.252 <0.001 0.45 down
PC38:6AA 2.95 ± 0.291 4.82 ± 0.256 <0.001 0.61 down
PC40:6AE 1.89 ± 0.191 2.61 ± 0.168 <0.001 0.72 down
PC40:6AA 1.89 ± 0.191 2.61 ± 0.168 <0.001 0.72 down
PC40:1AA 0.312 ± 0.0317 0.495 ± 0.0279 <0.001 0.63 down
PC40:2AA 0.918 ± 0.14 2.062 ± 0.123 <0.001 0.45 down

16:0SM 128 ± 12.2 160 ± 10.8 <0.001 0.8 down
16:1SM 14.5 ± 1.2 17.8 ± 1.06 <0.001 0.81 down
18:0SM 20.6 ± 1.88 27.7 ± 1.66 <0.001 0.74 down
18:1SM 22.6 ± 1.91 29.3 ± 1.68 <0.001 0.77 down
20:2SM 2.46 ± 0.258 3.52 ± 0.227 <0.001 0.7 down

14:1SMOH 11.6 ± 1.18 14.2 ± 1.04 0.002 0.82 down
16:1SMOH 13.7 ± 1.26 17.4 ± 1.11 <0.001 0.79 down
22:1SMOH 21.4 ± 2.56 30.8 ± 2.26 <0.001 0.69 down
22:2SMOH 10.9 ± 1.042 14.7 ± 0.917 <0.001 0.74 down
24:1SMOH 2.54 ± 0.204 3.35 ± 0.179 <0.001 0.76 down

C4OH 0.0219 ± 0.00315 0.0328 ± 0.00277 0.001 0.67 down
C5:1DC 0.0159 ± 0.00186 0.0189 ± 0.00164 0.01 0.84 down

C5DC/C6OH 0.0106 ± 0.001101 0.0118 ± 0.000968 0.05 0.9 down
C6:1 0.0239 ± 0.00224 0.0296 ± 0.00197 0.006 0.81 down
C8 0.0184 ± 0.00192 0.0114 ± 0.00169 0.009 1.61 up

C14:1OH 0.00859 ± 0.000792 0.00985 ± 0.000697 0.01 0.87 down

In this study, a total of 126 metabolites were identified and quantified by FIA/LC-
MS/MS from the samples collected prior to disease diagnosis. From this set, we found
59 metabolites at −8 weeks and 47 metabolites at −4 weeks prepartum that differentiated
the two groups (p ≤ 0.05), presented in Tables 4 and 5. Non-significant metabolites are
found in Tables S1 and S2 in Supplementary Materials.

The univariate mean ± SEM concentration values, p values, and direction of change
of these metabolites are provided in respective tables (Tables 4 and 5), for both −8 and
−4 weeks prepartum. Multivariate analysis, using both PCA and PLS-DA, showed a clear
separation between pre-SCM (n = 10) vs. CON (n = 15) with respect to serum metabolites
at −8 weeks prior to calving (Figure 1a,b).
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Table 5. Concentration of serum metabolites (MEAN ± SEM, (p ≤ 0.05)) in pre-subclinical mastitis
cows only (pre-SCM, n = 10) and healthy controls (CON, n = 15) cows at −4 weeks before parturition,
as identified by LC-MS/MS.

Metabolites (µM)
MEAN ± SEM

p Value Fold Change SCM/ CON
Pre-SCM (n = 10) CON (n = 15)

Alanine 201 ± 11.6 249 ± 10.5 <0.001 0.81 down
Serine 75 ± 4.17 81.8 ± 3.77 0.03 0.92 down
Proline 82.6 ± 5.4 99.4 ± 4.88 0.002 0.83 down
Valine 275 ± 12.9 311 ± 11.6 0.001 0.88 down

Isoleucine 137 ± 5.73 151 ± 5.17 0.005 0.91 down
Asparagine 27.3 ± 1.88 31.9 ± 1.7 0.01 0.86 down
Methionine 27.2 ± 1.38 31.3 ± 1.25 <0.001 0.87 down
Histidine 67.5 ± 2.76 73.9 ± 2.5 0.005 0.91 down

Methionine-sulfoxide 2.39 ± 0.222 2.99 ± 0.2 <0.001 0.8 down
Acetyl-ornithine 2.86 ± 0.463 4.05 ± 0.418 0.01 0.71 down

Ornithine 59.9 ± 3.44 65.6 ± 3.1 0.03 0.91 down
Lysine 91.2 ± 8.47 107.2 ± 7.65 0.04 0.85 down

Lactic acid 2107 ± 409 1166 ± 370 0.03 1.81 up
Pyruvic acid 82.7 ± 7.58 71.7 ± 6.85 0.03 1.15 up

Methylmalonic acid 0.545 ± 0.0762 0.285 ± 0.0688 0.01 1.91 up
Glucose 4928 ± 99.5 4045 ± 89.9 0.03 1.22 up

LYSOC20:3 2.97 ± 0.28 3.41 ± 0.253 0.03 0.87 down
LYSOC28:1 0.243 ± 0.0312 0.35 ± 0.0282 0.001 0.69 down
PC32:2AA 7.63 ± 0.844 12.45 ± 0.762 <0.001 0.61 down
PC36:0AE 2.22 ± 0.219 3.48 ± 0.198 <0.001 0.64 down
PC36:0AA 7.65 ± 0.807 14.3 ± 0.729 <0.001 0.53 down
PC36:6AA 2.53 ± 0.265 3.87 ± 0.24 <0.001 0.65 down
PC38:0AA 0.985 ± 0.106 1.944 ± 0.096 <0.001 0.51 down
PC38:6AA 2.21 ± 0.217 3.55 ± 0.196 <0.001 0.62 down
PC40:6AE 0.719 ± 0.0704 1.147 ± 0.0636 <0.001 0.63 down
PC40:6AA 1.46 ± 0.194 2.43 ± 0.175 <0.001 0.6 down
PC40:1AA 0.256 ± 0.0278 0.415 ± 0.0251 <0.001 0.62 down
PC40:2AA 0.543 ± 0.0602 1.02 ± 0.0544 <0.001 0.53 down

18:0SM 14.4 ± 1.51 18.1 ± 1.36 0.01 0.8 down
18:1SM 17 ± 1.39 19.1 ± 1.25 0.02 0.89 down
20:2SM 2.41 ± 0.196 2.81 ± 0.177 0.006 0.86 down

22:2SMOH 7.5 ± 0.881 10.2 ± 0.795 0.007 0.74 down
22:1SMOH 13.1 ± 1.76 18.3 ± 1.59 0.008 0.72 down
24:1SMOH 1.93 ± 0.22 2.44 ± 0.199 0.03 0.79 down

C4:1 0.0198 ± 0.00229 0.0138 ± 0.00206 0.02 1.43 up
C5:1 0.0217 ± 0.00205 0.0134 ± 0.00185 0.01 1.62 up

C5:1DC 0.0156 ± 0.00167 0.0114 ± 0.00151 0.03 1.37 up
C5DC/C6OH 0.01717 ± 0.00351 0.00681 ± 0.00317 0.04 2.52 up

C9 0.0222 ± 0.00547 0.0047 ± 0.00494 0.02 4.72 up
C10:2 0.0255 ± 0.00302 0.0178 ± 0.00273 0.05 1.43 up
C12 0.0271 ± 0.00252 0.0199 ± 0.00228 0.02 1.36 up

C14:1 0.0363 ± 0.00652 0.0532 ± 0.00589 0.008 0.68 down
C14:2OH 0.00867 ± 0.000547 0.00693 ± 0.000494 0.04 1.25 up

C16 0.0207 ± 0.00159 0.0254 ± 0.00144 0.01 0.81 down
C16:1OH 0.00883 ± 0.000583 0.01033 ± 0.00052 0.01 0.85 down

C18 0.0222 ± 0.00324 0.0303 ± 0.00293 0.02 0.73 down
C18:1 0.0113 ± 0.00207 0.0179 ± 0.00187 0.008 0.63 down
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group, as seen on heatmap as well (Figure 1d). At the same time, four metabolites, namely 
Leu, Phe, Orn, and choline were found to be higher in pre-SCM cows. Permutation testing 
with 2000 repetitions yielded a p = 0.007, which shows that the PLS-DA separation was 
statistically significant. 

The top five metabolites found from the PLS-DA VIP plot showed an excellent per-
formance in their respective ROC curve models (Figure 2a; AUC = 1; 95% CI: 1–1; p = 
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Figure 1. (a) Principal component analysis (PCA) and (b) partial least square—discriminant anal-
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cows at −8 weeks before parturition; (c) metabolites ranked by variable importance in projection
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identified variables.

The VIP plot (Figure 1c) for the PLS-DA ranks the top metabolites responsible for the
differentiation between the two groups of cows, highlighting several glycerophospholipids
and one sphingomyelin (SM) which were lower in the pre-SCM group than the CON group,
as seen on heatmap as well (Figure 1d). At the same time, four metabolites, namely Leu,
Phe, Orn, and choline were found to be higher in pre-SCM cows. Permutation testing
with 2000 repetitions yielded a p = 0.007, which shows that the PLS-DA separation was
statistically significant.

The top five metabolites found from the PLS-DA VIP plot showed an excellent perfor-
mance in their respective ROC curve models (Figure 2a; AUC = 1; 95% CI: 1–1; p = 0.002).
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Figure 2. (a) AUC of the top 5 VIP PLS-DA metabolites (PC aaC38:0, PC aa C36:0, PC ae C36:0, PC
aa C40:2, PC aa C38:6) at −8 weeks before parturition; (b) AUC of model’s classification; (c) default
linear SVM AUC of Leu, Betaine, Ala, and Orn (AUC = 0.92; p = 0.001) and (d) ROC plot with 10-fold
CV for logistic regression of these 4 amino acids (AUC = 0.81; p = 0.05).

Overall, the multivariate exploratory analysis presented the best AUROC for the first
10 most important features with zero samples classified to the wrong group (Figure 2b). In
support of building a significant panel of biomarkers, we selected specific variables from the
univariate analysis (Tables 4 and 5), the VIP plot (Figure 1c), and the metabolic pathways
(Table 6) to build a default linear support vector machine (SVM) model (AUC = 0.92;
p = 0.001; Figure 2c) and a logistic regression model (AUC = 0.81; p = 0.05; Figure 2d).
To prevent optimistic and over-fitting results, 10-fold cross-validation (CV) was used to
evaluate performance of each model.
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Table 6. Significant metabolic pathways identified from quantitative enrichment analysis and in-
volved prior to occurrence of subclinical mastitis at −8 and −4 weeks before calving.

Metabolic Pathways Total Compounds Hits Significant Metabolites Holm
p-Value

Glycine and Serine metabolism a 59 12
Betaine; Ornithine; Glycine; L-Alanine; Pyruvic

acid; Creatine; L-Serine; L-Arginine; L-Threonine;
L-Methionine; L-Glutamic acid; Oxoglutaric acid

0.004

Methionine metabolism a 43 7 Betaine; Choline; Glycine; Methionine sulfoxide;
L-Serine; L-Methionine; Spermidine 0.01

Betaine metabolism a 21 3 Betaine; Choline; Methionine 0.02

Glucose-Alanine Cycle b 13 5 D-Glucose; L-Glutamic acid; L-Alanine;
Oxoglutaric acid; Pyruvic acid 0.03

Selenoamino Acid metabolism b 28 2 L-Alanine; L-Serine 0.05

a Significant metabolic pathway at –8 weeks before parturition. b Significant metabolic pathway at –4 weeks
before parturition.

Unsupervised multivariate analysis such as PCA managed to satisfactorily separate
the two groups of cows at −4 weeks before calving, whereas PLS-DA yielded excellent
separation (Figure 3a,b).
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Figure 3. (a) Principal component analysis (PCA) and (b) PLS-DA (permutation test: p < 0.05) of 15 CON and 10 pre-SCM 
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groups. Among those, methylmalonate, trimethylamine N-oxide, lactate, pyruvate, and 
eight ACs were higher in the serum of those cows that developed SCM. This time, we 
selected the top 25 important features from VIP to display other variables apart from sev-
eral glycerophospholipids similar to the −8 weeks group. Indeed, those new metabolites 
were able to differentiate between both classes, even during pathway analysis. For exam-
ple, as seen on the VIP plot (Figure 3c), pyruvate and lactate were found to be higher in 
pre-SCM cows than CON cows at −4 weeks prepartum. 

The top scoring metabolites from the PLS-DA contributed the most to the separation 
of clusters. In particular, PC aa 38:0, PC aa 40:0, C9, PC aa 36:0, and PC aa 32:2 (Figure 3c) 

Figure 3. (a) Principal component analysis (PCA) and (b) PLS-DA (permutation test: p < 0.05) of
15 CON and 10 pre-SCM cows at −4 weeks before parturition; (c) VIP plot of top 25 important
features, and (d) heatmap of both samples and features based on PLS-DA to further investigate the
identified variables.
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Figure 3c,d show the metabolites that had the most impact in separating the two
groups. Among those, methylmalonate, trimethylamine N-oxide, lactate, pyruvate, and
eight ACs were higher in the serum of those cows that developed SCM. This time, we
selected the top 25 important features from VIP to display other variables apart from several
glycerophospholipids similar to the −8 weeks group. Indeed, those new metabolites were
able to differentiate between both classes, even during pathway analysis. For example, as
seen on the VIP plot (Figure 3c), pyruvate and lactate were found to be higher in pre-SCM
cows than CON cows at −4 weeks prepartum.

The top scoring metabolites from the PLS-DA contributed the most to the separation
of clusters. In particular, PC aa 38:0, PC aa 40:0, C9, PC aa 36:0, and PC aa 32:2 (Figure 3c)
demonstrated excellent cluster separation between the pre-SCM group and the CON group
(Figure 4a; p = 0.001) at −4 weeks prepartum.
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mance, were achieved from a model with 10 features, which generated a zero-confusion 
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In general, the best multivariate ROC curves, based on the cross-validation perfor-
mance, were achieved from a model with 10 features, which generated a zero-confusion
matrix (Figure 4b). Specific metabolites (methylmalonate, lactate, pyruvate, and Ala) that
showed outstanding performance throughout the analysis, produced two AUCs using two
different algorithms: respectively, the default linear SVM model (AUC = 0.92; p = 0.01;
Figure 4c) and logistic regression model (AUC = 0.81; p = 0.04; Figure 4c).

Figure 5 displays the results of the quantitative enrichment analysis performed via
MetaboAnalyst using various summary plots.
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At the same time, Table 6 presents the significant components of the metabolic path-
ways involved in the onset and progression of subclinical mastitis (Holm p ≤ 0.05).  
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Figure 5. Summary plots for quantitative enrichment analysis at (a) −8 weeks and (b) −4 weeks
before calving.
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At the same time, Table 6 presents the significant components of the metabolic path-
ways involved in the onset and progression of subclinical mastitis (Holm p ≤ 0.05).

Metabolites involved in betaine, methionine, glycine, and serine metabolism were
significantly higher in pre-SCM at −8 weeks before parturition. Pathway analysis also
indicated that up to −4 weeks before parturition, other perturbed metabolic sets, such as
glucose-alanine cycle and seleno-amino acid metabolism were affected in cows susceptible
to SCM.

The most discriminatory metabolites between pre-SCM and CON at −8 weeks (Figure 1c)
and at −4 weeks (Figure 3c) were phosphatidylcholines (PCs) and lysophosphatidylcholines
(LPCs), which have lower concentrations compared to other metabolites in the serum. The
rationale for selecting the specific metabolites (Figure 2c,d; Figure 4c,d) for our predictive
biomarker model is because these are more abundant and easily measured in a convenient
pen-side test. However, a lab-based mass-spec test could use PCs and LPCs for high-
throughput blood analysis.

4. Discussion

We hypothesized that cows affected postpartum by SCM might show serum metabolic
changes starting from −8 and −4 weeks prior to calving. If this is proved to be correct, a
panel of serum biomarkers could be constructed for predicting SCM. Indeed, the results
of this study indicated that multiple serum metabolites were altered between pre-SCM
and CON cows during the two dry-off time points measured. As a result, two specific
metabolite panels were constructed. Given that cows were in a state of pre-SCM, it is
assumed that systemic metabolite-changes were triggered from local immune responses in
the mammary gland to support the host in the fight against mammary infection. Our data
showed that in pre-SCM cows at −8 weeks prepartum, there was a total of 10 PCs, 10 LPCs,
10 SMs, 6 ACs, 17 AAs, and 6 organic acids (OAs) that differentiated pre-SCM from the
CON cows. At −4 weeks prepartum, there was a total of 12 AAs, 3 OAs, 1 glucose/hexose,
2 LPCs, 10 PCs, 6 SMs, and 13 ACs that differentiated healthy cows from the pre-SCM ones.
Identifying and understanding these metabolic changes is essential to predict the risk of
cows developing SCM prior to diagnosis of SCM infection.

4.1. Blood Lipid Alterations and Related Metabolites in Pre-SCM Cows

One of the most important findings of the present study is the large number of PC
species (10 out of 10 identified and measured) that differentiate the pre-SCM cows from
healthy CON. All serum PCs were lowered in pre-SCM versus CON cows. These PCs were
very-long-chain fatty acid species with C:32-C:40 carbon atoms. Most of the PCs found
in blood are produced in the liver and secreted as part of lipoprotein fractions. It should
be noted that PCs, triacylglycerol, and cholesterol are required for the assembly of the
lipoprotein particles in the liver [18]. If production of any of these three lipid components
is suppressed, then lipoprotein synthesis and secretion is downregulated. Suppression of
lipid synthesis from the liver is associated with accumulation of lipids in hepatic cells and
development of fatty liver. It is not clear why serum PCs decreased in the systemic circula-
tion. One potential reason might be the inhibitory effects of systemic lipopolysaccharide
(LPS) on lipoprotein synthesis and release from the liver. In support of this hypothesis
are data reported by Minuti et al. (2015) that showed that intramammary infusion of LPS
was associated with systemic inflammation and accumulation of triacylglycerols in the
liver. Previously, we demonstrated that pre-SCM cows starting from −8 and −4 weeks
prepartum were in a state of systemic inflammation [6]. Besides being part of lipoproteins,
PCs have been proven to have anti-inflammatory activities [19]. Given that concentrations
of PCs in the blood of pre-SCM cows were lowered, this might perpetrate the presence of a
chronic low-grade inflammatory state in those cows.

Concentrations of all SMs (10 species at −8 weeks) and LysoPCs (10 species at
−8 weeks) that differentiated pre-SCM cows from CON ones in pre-SCM cows were lower.
Lower SMs in the blood is potentially desirable because they have been shown to suppress



Dairy 2022, 3 72

inflammatory responses against LPS. It has been shown that feeding 0.1% (wt/wt) milk
sphingomyelins in an obesogenic diet lowers concentrations of proinflammatory cytokines
including tumor necrosis factor (TNF), interleukin-6 (IL-6), and interferon-g (IFN-g) [20].
Given that pre-SCM cows had lowered SMs in the systemic circulation, this might have
favored inflammatory processes that are necessary to clean bacterial antigens. In a previous
study we reported that pre-SCM cows were in a state of chronic inflammatory condition
during the dry-off period (at −8 and −4 weeks prepartum and during diagnosis week) as
indicated by greater TNF and serum amyloid A (SAA) in the serum [6].

Results of this study showed that several serum LPCs were lowered in pre-SCM
compared with CON cows. It is of note that LPCs have very important immunological
functions, especially in infectious disease states. Not only do LPCs have bactericidal effects
by increasing permeability of bacterial cell membrane, but at the same time they can also
increase the antibiotic sensitivity of antibiotic resistant bacteria [21,22]. LPCs have also
anti-inflammatory effects, which are related to the length of fatty acid associated with
them. For example, arachidonoyl-LysoPC and 2-docohexaenoyl LPC have been reported to
inhibit leakage of plasma, whereas docosahexaenoic acid at the sn-1 position and 18:0 LPC
can lower concentration of several cytokines including TNF, IL-6, interleukin-1 (IL-1),
and interleukin-10 (IL-10) [23,24]. The number of carbon atoms in the fatty acids’ com-
ponent of LPCs in our study ranged from C14 to C28. All these important and potential
antibacterial components were lowered in pre-SCM cows. Besides their direct bacterici-
dal activities, LPCs can stimulate nicotinamide adenine dinucleotide phosphate oxidase
(NADPH oxidase) activity and production of superoxide ions in neutrophils, increasing
their antibacterial and inflammatory activity [25]. Neutrophils are the most dominant cells
in the mammary gland during mastitis. Therefore, the decrease in several species of LPC
in the serum of pre-mastitis cows during the dry off might have lowered the immune
functions of cows and predisposed them to infection from bacterial pathogens.

Acylcarnitines were altered at both time points of this study. Out of six ACs identified
as altered at −8 weeks prepartum in pre-SCM cows, five ACs were downregulated and
only one was upregulated. At −4 weeks prepartum there were seven ACs that were
upregulated and five that were downregulated. Therefore, there was not a specific trend
with regard to changes in blood ACs in pre-SCM cows. Acylcarnitines derive from defective
fatty acid b-oxidation in mitochondria [26] and they have been shown to affect cytokine
production in T helper-17 (Th17 cells) [27]. Additionally, high ACs are correlated with
the increased presence of pro-inflammatory mediators such as toll-like receptor (TLR),
TNF, and interleukin-8 (IL-8) [28]. Most elevated AC in our study were short-chain fatty
acids ACs, which are common during states of high reactive oxygen species (ROS) in the
body [29]. Our results are in line with our earlier findings showing increased blood ACs in
pre-ketotic and pre-metritic cows and the fact that those cows were in a state of chronic
inflammatory state during the pre-calving period [30–32].

4.2. Blood Amino Acid Changes in Pre-SCM Cows

It is important to note that concentrations of AAs in the serum had no specific trends.
Thus, at −8 weeks prepartum there were 11 AAs that were upregulated and six AAs that
were downregulated in pre-SCM-O cows vs. the CON cows. Similarly, at −4 weeks prepar-
tum there were eight AAs that were upregulated and four AAs that were downregulated
in pre-SCM cows vs. the CON cows. There are only two amino acids that were consistently
increased at both −8 and −4 weeks prepartum: Val and Ile.

Branched-chain amino acids (BCAA) including Val, Leu, and Ile were higher in the
serum of pre-SCM vs. CON ones. These results agree with a previous study from our
lab demonstrating greater blood concentrations of all three BCAA in pre-SCM cows [33].
Unlike most AAs, only a minor fraction of the dietary BCAAs are metabolized by the liver;
whereas the majority of them enter the systemic circulation to reach their main metabolism
sites, including skeletal muscles, adipose tissue, and brain [34,35]. Earlier data show that
BCAA can trigger direct production of ROS and activation of nuclear factor-κB (NF-κB)
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in systemic peripheral blood mononuclear cells (PBMCs), as well as overexpression of
proinflammatory cytokines including TNF and IL-6 [36]. The latter immune cells consist of
lymphocytes (T-, B-, and natural killer (NK) cells) and monocytes.

Two other serum amino acids, Ser and Gly, were lower in the pre-SCM cows compared
to CON ones at −8 weeks prepartum. It is interesting to note that both serine and glycine
have been found to decrease in the systemic circulation during Gram-negative bacterial
infection including Listeria monocytogenes and Pasteurella multocida [37]. A recent study
in a rodent model showed that intramuscular administration of L-serine in mice infected
with P. multocida increased survival rate [37]. Furthermore, the same authors indicated
that exogenous L-serine lowered bacterial colonization of the lungs as well as suppressed
cytokine production by macrophages and neutrophils. On the other hand, glycine has been
shown to play an anti-inflammatory activity by lowering ROS production by macrophages
and neutrophils [38]. There are two aspects of the effects of serine and glycine. The first
one is that lowered Ser and Gly might help macrophages and neutrophils to produce
proinflammatory cytokines to address the potential subacute infection in pre-SCM cows.
The second aspect of lower Ser and Gly can be interpreted as a weakening of innate immune
responses and increased susceptibility of those cows to periparturient infections including
mammary gland infection. In support of this speculation, researchers have provided data
indicating that long-term glycine exposure blunts activation of alveolar macrophages and
neutrophils by lipopolysaccharide [39].

Two amino acid derivatives, choline and betaine, were higher in pre-SCM cows at
−8 weeks prior to parturition but not at −4 weeks prepartum. These two metabolites are
interconnected. Choline is an essential nutrient for the host because it takes part in many
processes, including lipid metabolism and cell signaling. It is a constituent of PC, lysoPC,
SM, acetylcholine, and a precursor for methyl-group donors such as betaine and Met [40,41].
At −8 weeks, choline and betaine were higher in pre-SCM cows, but PC and Met were
lower than the CON cows. On the other hand, betaine is not only a metabolite of choline
but also a methyl group donor that participates in methylation. Methylation, such as that
of DNA and protein, is an essential biochemical process in animals. A previous study
has shown that the availability of methyl group donors influences methylation levels [42].
It has been acknowledged that betaine, methionine, and choline are the most important
methyl group donors present in diets. Betaine has several anti-inflammatory effects includ-
ing inhibition of NF-κB and NLRP3 (NOD-, LRR- and pyrin domain-containing protein
(3) activation) [43]. NF-κB includes a variety of genes involved in inflammation including
TNF, IL-1, and interleukin-23 (IL-23) [43]. In an in vitro study, betaine treatment prevented
LPS-induced (LPS is specific activator of TLR-4) NF-κB activation in RAW 264.7 murine
macrophage cells [44]. Additionally, an earlier study demonstrated that betaine treatment
can significantly inhibit NLRP3 inflammasome-related proteins, such as NLRP3 and mature
caspase-1, and the levels of pro-inflammatory cytokines, including IL-1 [45].

4.3. Changes in Carbohydrate and Organic Acids in the Blood of Pre-SCM Cows

Blood glucose was higher at -8 prepartum but not at −4 weeks prepartum in pre-
SCM cows. Among other functions of glucose, as a source of energy for multiple body
functions and cells it is necessary to supply immune cells with sufficient energy, especially
neutrophils [46]. Neutrophils are the most predominant cells in the mammary gland during
both subclinical and clinical mastitis. They are predominantly glycolytic cells that produce
ROS through the cytosolic enzyme NOX (nicotinamide adenine dinucleotide phosphate-
oxidase). This process is essential for pathogen killing and regulation of inflammation.
A recent study reported that induction of inflammation by administration of LPS was
associated with increased glucose uptake by neutrophils, high production of ROS, and
downregulation of genes associated with TCA (tricarboxylic acid) cycle [47]. Given that pre-
mastitis cows during the dry-off period have been found to be under a chronic inflammatory
state, it is plausible that high glucose might serve as a metabolite to energize neutrophils to
migrate to the udder of pre-mastitis cows.
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Another metabolite found to be higher in the serum and that differentiated the pre-
SCM cows from the healthy ones was trimethylamine-N-oxide (TMAO). This is a molecule
that derives from trimethylamine (TMA), which is produced when gut microbiota metabo-
lizes choline, choline-containing compounds, betaine, and carnitine in the ration [42]. Once
in the liver, TMA is converted to TMAO. TMAO has been shown to induce pathological
changes to endothelial cells that increase adhesion of monocytes and leukocytes to blood
vessels [48,49]. A growing body of evidence has shown that human subjects with high
blood TMAO are in a state of systemic inflammation [50,51]. On the other hand, TMAO
is suspected to be a danger-associated molecular pattern (DAMP) that interacts with the
host’s PRR (pattern-recognition receptors), activating the innate immune response [52].
This is in line with our previous finding that pre-SCM cows were in a chronic low-grade
inflammatory state [6].

5. Conclusions

In conclusion, preliminary results of this study showed that there were major changes
in the concentrations of several lipid species, AAs, and OAs metabolites in pre-SCM cows
versus CON ones at both −8 and −4 weeks prepartum. Data showed that most of the
lipid species of PCs, SMs, LPC, and ACs were lowered in pre-SCM cows. Lipid metabo-
lites, besides their structural and energy roles, play important roles in immune responses.
Phosphatidylcholines, SMs, LPCs, and ACs have been shown to have anti-inflammatory
effects. All lipid species measured in the blood of pre-SCM cows were lowered, which
suggests that this creates conditions for mounting of an inflammatory response to clear
the mammary gland from potential udder subclinical infections. Regarding blood AAs,
some of them were increased and some others were lowered. Data showed that BCAAs
were increased in pre-SCM cows, whereas Ser and Gly were lowered. BCAAs have been
shown to trigger proinflammatory responses in peripheral blood mononuclear cells. Low-
ered Ser and Gly might also create conditions to support proinflammatory responses in
pre-SCM cows. However, increased betaine and choline in pre-SCM cows might contribute
to downregulation of inflammatory responses. Among organic compounds, glucose and
TMAO were increased in the blood of pre-SCM cows. Glucose is used by neutrophils to
support production of ROS and TMAO, which might serve as DAMP to activate innate
immune responses. It should be noted that the study has a few limitations regarding the
small number of cows in both experimental groups and related to the fact that experimental
animals were taken from one dairy farm only. There were also no microbiological analyses
to determine the potential presence of pathogenic bacterial at the time of sampling which
might have caused the subclinical inflammatory condition. Additionally, all predictive
biomarkers identified require further validation analysis in a larger and multiple site cohort
of animals.
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cows at −4 weeks before parturition, as identified by LC-MS/MS.
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