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Abstract: Frequent itemset mining (FIM) is a common approach for discovering hidden frequent
patterns from transactional databases used in prediction, association rules, classification, etc. Apriori
is an FIM elementary algorithm with iterative nature used to find the frequent itemsets. Apriori is
used to scan the dataset multiple times to generate big frequent itemsets with different cardinalities.
Apriori performance descends when data gets bigger due to the multiple dataset scan to extract the
frequent itemsets. Eclat is a scalable version of the Apriori algorithm that utilizes a vertical layout.
The vertical layout has many advantages; it helps to solve the problem of multiple datasets scanning
and has information that helps to find each itemset support. In a vertical layout, itemset support can
be achieved by intersecting transaction ids (tidset/tids) and pruning irrelevant itemsets. However,
when tids become too big for memory, it affects algorithms efficiency. In this paper, we introduce
SHFIM (spark-based hybrid frequent itemset mining), which is a three-phase algorithm that utilizes
both horizontal and vertical layout diffset instead of tidset to keep track of the differences between
transaction ids rather than the intersections. Moreover, some improvements are developed to decrease
the number of candidate itemsets. SHFIM is implemented and tested over the Spark framework,
which utilizes the RDD (resilient distributed datasets) concept and in-memory processing that tackles
MapReduce framework problem. We compared the SHFIM performance with Spark-based Eclat
and dEclat algorithms for the four benchmark datasets. Experimental results proved that SHFIM
outperforms Eclat and dEclat Spark-based algorithms in both dense and sparse datasets in terms of
execution time.

Keywords: big data; frequent pattern mining; horizontal layout; vertical layout; diffset; Spark

1. Introduction

We are currently living in the big data age. Data appear everywhere in a variety of
formats and types ranging from structured to unstructured data and are produced by a huge
number of sources across a wide range of disciplines and types, including transactional
systems, user interactions, social networks, the Internet of Things, the World Wide Web,
and many others. Companies and individuals gather and store all these generated data
to analyze them for insight, knowledge, and decision making. Therefore, we have been
swamped with big data, not just because we already have large amounts of data that need
to be processed but also because the amount of data is rapidly growing every moment. The
concept of big data has some properties that are collectively known as the “3Vs” model.
Volume is defined as the amount of data; enormous amounts of data are generated and
gathered. Velocity refers to the high rate at which data are created, gathered, and processed
(streams, batch, near-real-time, and real-time). Variety indicates the different types of data:
audio, images/video, and text; conventional structured data; and mixed data. In addition,
there are two more features added to the “3Vs” model and known as the “5Vs” model.
Veracity refers to how much the data is accurate and trusted when it comes from various
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sources with different reliability. Value refers to how important the data are and the benefit
that data should bring [1–3].

Today, distributed storage systems, which are designed to carefully manage access
and administration in a fault-tolerant way, are frequently used to tackle the problem of big
data gathering. Parallelization of algorithms is a solution for processing big data. This is
usually done in one of two methods: data parallelism, in which the data are divided into
partitions and each partition is calculated at the same time, or task parallelism, in which
the algorithm is divided into stages that may be executed concurrently [4]. The rising
availability of massive volumes of data has increased the importance of big data analytic
systems and the interest in data mining, a critical collection of techniques for extracting
useful knowledge from data. Big data analytics problems present significant challenges
for researchers. Indeed, applying standard data mining methods and techniques to large
amounts of data is difficult, and several of the most current data mining techniques had
to be redeveloped to cope with the new environment. The key research field on which
big data analytics depend is data mining with machine learning. It covers (i) clustering
methods for detecting hidden structures in unlabeled data [5], (ii) FIM (frequent itemset
mining) methods for detecting correlations between data [6], and (iii) supervised learning
methods to predict what will happen in the future [2].

Frequent itemsets mining (FIM) is a basic data mining model that refers to attempting
to extract or mine knowledge from large amounts of data [1]. Many other problems, such
as association rules, correlations, and classifications, can use FIM as a primary calculation
phase. In general, FIM counts the frequencies of co-occurring items, known as itemsets, in
records of unique items from a transaction-oriented dataset. Moreover, FIM identifies all
frequent itemsets with frequencies greater than or equal to a given support threshold. In
the real world, FIM has been used in various real-world applications where many physical
objects or activities appear together in scenarios and events. For example, FIM is used in
health care for analyzing and forecasting the risk level of heart disease based on selected
symptoms to assist medical professionals in determining the disease’s risk at an early
stage [7]. Market basket analysis utilizes FIM to find linkages between entities and things
that frequently occur together, such as the products in a shopper’s cart [8]. Additionally,
text mining uses FIM to detect common bigrams, trigrams, or phrases in texts, as well as
word co-occurrences in terms of adjacency [9]. More on this, FIM has many other usages in
other domains including network traffic data [10], biological data [11], energy data [12],
and images [13]. As a result, FIM is important; it plays a vital role in data mining and has a
wide variety of applications. There are many FIM algorithms used to discover frequent
patterns such as Apriori, Eclat, dEclat, and more [9].

Apriori [14,15] is an elementary iterative algorithm used to mine frequent itemset in
datasets. It follows the horizontal layout (a data format in which each transaction contains
a list of items) datasets and the repetitive dataset scan strategy to discover the frequent
pattern. Each dataset scan (iteration) is responsible for two main processes. The first process
is the candidate generation in which Apriori generates a set of candidate itemsets that are
recommended to be frequent, while the second process computes the support (frequency)
of an itemset, then prunes itemsets whose support is greater than or equal to the minimum
support threshold given by the user to determine which candidate itemset is frequent.

Eclat [16,17] is a depth-first search algorithm that stands for Equivalence Class Clus-
tering and bottom-up Lattice Traversal. Eclat is a more efficient and scalable version of
Apriori algorithm that uses datasets in vertical layout. Each item has a list of transaction
ids where the item appears. In vertical data format, every item is associated with its tidset
(the set of transactions’ identifiers that have the item). Eclat computes itemsets’ support
via tidset intersections. Furthermore, dEclat [18] is a more scalable version of Eclat that
is better suited for dense datasets. Instead of intersections, it computes the differences
between tidsets/diffsets. Diffset is the set difference between two related itemsets’ tid-
sets/diffsets. When compared to tidset, diffset consumes less memory because it shrinks
with each iteration. Because execution time and memory consumption are both important
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elements in addressing FIM problems, diffset will enhance execution time and memory
consumption because smaller sets will be mined in less time and consume less space. FIM
algorithms are efficient when practicing on small datasets, but when the data gets bigger,
they start to suffer. Hence, big data parallel processing frameworks including Hadoop,
Spark, and Flink [19] are employed to accelerate the execution time of FIM algorithms and,
consequently, the frequent itemset patterns are discovered in a reasonable period of time.

Many people mistakenly believe Hadoop and MapReduce [20,21] are synonymous;
however, this is not the case. Hadoop was first released in 2007 as an open-source imple-
mentation of the MapReduce processing engine coupled with a distributed file system [4],
but it has since grown into a vast web of projects covering every aspect of a big data
workflow, including data collection, storage, processing, and more. MapReduce [22] is
one of the most common parallel processing frameworks used to write the intermediate
files generated to local disk to use these files in reduce phase; this process consumes lots of
time. Unlike MapReduce, Spark stores the intermediate results in cache memory to speed
up data processing. Spark also provides some other libraries such as Spark SQL, Spark
streaming, Spark MLIB in one framework, and supports different languages such as Scala,
Python, and Java. Some work is being done to support R as well.

Spark [23,24] is one of the most effective open-source big data tools used in running
large-scale data analytics applications across clusters of nodes. Spark is a parallel process-
ing framework that can handle both batch and real-time analytics and data processing
workloads. It was designed to fill the shortcomings of Hadoop [21], especially in the data
processing. Fault tolerance in Spark [25,26] aims to recover any failure or other loss in data
that happened by rebuilding the RDDs by applying all the transformations found in the
DAG (directed acyclic graph). Furthermore, Spark moves the processing and computations
close to the data instead of moving the data itself to the computations; this is called data
locality. Data locality is the process of moving the processing to data location instead of
moving the data through the networks, and thus reducing the network communication
and increasing the throughput of the system.

Bloom Filter (BF) [27] is a compact data structure that is used in the probabilistic
representation of a set of variables to make sure whether an element in the set exist certainly
or isn’t existing in the set. BF is a very quick way of checking if something is in a set of data
that gives one of two answers either: “x is not in this data set” or “x might be in this data
set.” BF provides a particularly useful optimization which means most of the queries can
return “not found” without having to start looking through your indexes.

Recently, big data have impacted many aspects of life, including economics, politics,
and culture, as well as science and technology. Big data have a lot of advantages in
terms of production, trading, services, management, discovery, and so on; however, it
also has a lot of challenges in terms of computer science and information technology, such
as management, storage, and processing and analysis, security, and visualization. Data
Mining generally and Frequent Itemsets Mining (FIM) especially play a critical role in
that impact. Parallel FIM algorithms are still inefficient to cope with large amounts of big
data, despite various techniques and methodologies addressing execution efficiency and
memory optimization. FIM must be equipped with methodologies and solutions to operate
effectively and reliably on such large datasets without out-of-memory and quickly enough
to satisfy users. These requirements are significantly challenging for FIM. As a result, it is
important to develop a new efficient algorithm for discovering the frequent itemset mining
pattern as quickly as possible to meet customers’ expectations with the wise use of memory.

In this paper, we introduce SHFIM, a new hybrid Spark-based method that attempts
to improve FIM efficiency while detecting common patterns. SHFIM is divided into three
phases, the first of which tries to extract the first frequent itemset. Next, the second
phase concentrates on extracting the second most frequent itemset without candidate
generation and converting the horizontal dataset layout to a vertical layout in a single step
using BF. Because the candidate generation and vertical layout transformation processes
are time expensive in conventional FIM algorithms, we combine them into a single step
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using BF. Finally, in the third phase, SHFIM extracts the remaining frequent itemsets
in parallel using diffset, which is more memory and time efficient. Because FIM is an
iterative problem that requires many dataset scans, we chose Spark because it is 100 times
quicker than Hadoop in data processing due to in-memory processing and lazy evaluation,
which causes Spark to delay the execution of transformations until action is encountered.
Furthermore, Spark can considerably improve the efficiency of repetitive algorithms that
visit the same dataset regularly. As a result, the proposed algorithm is developed and
tested using the Spark framework and written in such a way that it improves time by
leveraging Spark best practices such as using broadcasted variables to speed up the lookup
process and reduceByKey instead of groupByKey to avoid the shuffling steps. At last, we
compared SHFIM performance with Spark-based algorithms (Eclat and dEclat) built on
the same cluster, using four benchmark datasets (two sparse and two dense) to evaluate
execution time.

The contribution work is summarized as follows (1) Developing and designing a new
hybrid framework and algorithm on Spark. (2) Utilizing both the horizontal and vertical
layout (3) Developing some improvements to eliminate the candidate itemset generation (4)
SHFIM uses diffset to minimize the memory consumption (5) SHFIM uses shared variables
to share datasets among cluster nodes (6) Conducting an Experiment on a multi-node
cluster using four datasets. (7) Evaluate and discuss the proposed algorithm (SHFIM)
against other FIM Algorithms.

The rest of the paper is structured as follows: Section 2 discusses FIM algorithms and
their disadvantages. Section 3 demonstrates the fundamental concepts of FIM. SHFIM’s
proposed framework is depicted in Section 4. Section 5 addresses the Spark cluster require-
ments, dataset characteristics and SHFIM experiments. The evaluation and discussion are
covered in Section 6. Section 7 depicts the suggested algorithm’s complexity. Section 7 is
dedicated to the conclusion and future work.

2. Related Work

This section provides an overview of the most common FIM algorithms used in large
data mining. Section 2.1 addresses horizontal layout-based algorithms, Section 2.2 discusses
vertical layout-based algorithms, and Section 2.3 discusses tree-based FIM techniques.

2.1. Horizontal Layout-Based Algorithms

EAFIM [28] is a parallel version of Apriori that has been implemented over Spark that
enhances the Apriori by generating the candidate itemsets “on-the-fly” and applying a
database reduction after each iteration. EAFIM outperforms YAFIM in almost all iterations
and performs better than R-Apriori in all iterations except the second one due to the BF.

Adaptive-Miner [29] is a parallel version of Apriori that has been implemented over
Spark. It makes execution plans before every iteration to decide which data structure
should be used either BF or hash-Trees based on the cost of execution plans. The approach
of taking decisions before every iteration makes Adaptive-Miner scalable and more efficient
than YAFIM. Adaptive-Miner is used to generate the candidate itemsets in a separate step,
then iterates over the dataset to fetch transaction by transaction to calculate the support of
each candidate like YAFIM.

HFIM [30] is a hybrid version of Apriori that has been developed over Spark. It
uses the vertical layout rather than the horizontal layout to mitigate the iterative dataset
scanning of Apriori. The vertical layout takes less amount of storage and no need to
iterate over the dataset many times. A dataset in the horizontal layout is partitioned and
distributed over the cluster to generate the candidate itemsets in the workers rather than the
driver and make a dataset reduction to keep only the items that are frequent only. Datasets
are shared among cluster nodes using broadcasting variables. HFIM outperformed the
YAFIM algorithm because of the usage of the vertical layout.

DFIMA [31] is a parallel version of the Apriori algorithm that has been developed over
the Spark framework. It is a Matrix-based pruning technique that decreases the number of
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generated candidates’ itemsets. DFIMA outperformed the PFP [32] concerning speed and
scalability. Broadcasting variables has been used to enhance the efficiency of the algorithm.
DFIMA and PFP seem to run faster when min_sup is low.

R-Apriori [33] is a parallel version of the Apriori algorithm that has been implemented
over Spark which enhances the execution time of the YAFIM algorithm by adding a BF in
the second iteration. As a result, it reduces the runtime due to eliminating the time taken
by candidate generation at the second iteration. R-Apriori outperformed YAFIM in the
second iteration and performs the same as YAFIM in all other iterations.

YAFIM [34] is a parallel version of the Apriori algorithm that has been developed
on the Spark framework. Spark is specially designed for in-memory parallel computing
to support iterative and interactive data mining. All Apriori-based algorithms that have
been implemented over MapReduce, YAFIM achieved 18x speedup on average for various
benchmarks. YAFIM generates the candidate itemsets in a separate step through applying
a Cartesian product between (k-1 frequent itemset) and (k-1 frequent itemset), then iterates
over the dataset (transaction by transaction) to calculate the support of each candidate.

2.2. Vertical Layout-Based Algorithms

DFP [35] is a parallel version of Eclat that was introduced as a distributed approach to
increase the mining efficiency for association rules. The transmission cost will be increased
if the communication between clients (nodes) increased. The suggested DFP method
effectively avoided this difficulty by moving the mining result from the executing client
to the server. The experiment findings also revealed that the suggested technique had
much greater computational efficiency than DistEclat and BigFIM. The suggested technique
decreases computation efficiency by estimating the required memory and clients. By
calculating the maximum number of TIDs for each client, the DFP algorithm overcomes
memory constraints and repetitive scans, and the extra TIDs are handled by an extended
mechanism known as MP.

RDD-Eclat [36] is a parallel Eclat algorithm entitled RDD-Eclat and the implementation
of its five variations on the Spark RDD framework. EclatV1 is the first version, while the
others are EclatV2, EclatV3, EclatV4, and EclatV5. Each version is the consequence of a
new technique and heuristic being applied to the preceding variant. Each variant is the
consequence of a new technique and heuristic being applied to the preceding variant. After
EclatV1, the filtered transaction approach is used, and in EclatV4 and EclatV5, heuristics for
equivalence class partitioning are used. It has been shown that using the filtered transaction
approach to reduce the size of the original dataset enhances the performance. Furthermore,
the equivalence class partitioning techniques considerably reduced the execution time.

SVT [37] is a hybrid algorithm that has been implemented over the Spark framework.
Unlike the traditional vertical Layout, it follows the way of switching between the Eclat
(tidset) and dEclat (diffset) relying on the dataset density. If the dataset is sparse, it uses
Eclat. Otherwise, it uses dEclat. The experimental results proved that the SVT outperforms
the YAFIM in execution time performance.

PEclat [38] is a hybrid algorithm that has been implemented over the Hadoop MapRe-
duce framework. PEclat works on the vertical layout datasets to increase the speed of the
algorithm. Unlike the traditional algorithms that use just one vertical format either tidset
or diffset, it uses the two formats simultaneously on the item level rather than the dataset
level. It works without putting into consideration if the dataset is dense or even sparse.
PEclat follows the strategy of mixset in which it decides to continue with diffset or tidset
based on the tidset or diffset size. If the size of tidset is greater than or equal to the size of
diffset, then continue using tidset, and the opposite is right.

BigFIM [39], introduces two algorithms in the area of big data and frequent pattern
mining over Hadoop (Map Reduce). The first algorithm is the DistEclat (Distributed Eclat)
which is a new parallel version of Eclat that has been developed on Hadoop. The second
algorithm is the BigFIM, a scalable hybrid algorithm between Apriori and Eclat to mine
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big datasets. The experimental results proved that DistEclat is the fastest among all the
algorithms in dense datasets, however, it may fail because it requires lots of memory.

2.3. Tree-Based Algorithms

Map-Optimize-Reduce [40] is a parallel version of FP-Growth that has been imple-
mented over Hadoop MapReduce. It is based on the Map-Optimize-Reduce framework
which decreases the search time and enhances the performance of the MapReduce frame-
work. It builds a CAN tree that makes the FP-Growth algorithm performs better than using
FP-Tree and enhances the database efficiency through making some data preprocessing
and normalization.

DFPS [41] is a parallel version of FP-Growth that has been implemented over the
Spark framework. It works in the same way as MapReduce; it distributes the workload
and computation cost over the cluster. It allows each node to build the conditional FP-tree
and mine the tree to extract the frequent pattern. DFPS showed good performance in terms
of time and scalability against Apriori.

PFP [32] is a parallel version of FP-Growth [42] that has been developed over the
Hadoop MapReduce framework. PFP generates frequent itemset without candidate genera-
tion step through constructing an FP-Tree into the workers’ memory. It performs well when
the memory is big enough in data centers and may fail if the memory cannot fit the tree.

Table 1 shows a comparative analysis of FIM algorithms. Apriori has a problem with
multiple database scanning, which is time-consuming. Eclat uses the vertical layout, which
is faster than the horizontal layout, however, it has a problem with the dense datasets. It
takes lots of time due to the tidset intersections. If the memory is not sufficient, Eclat may
fail. dEclat is a scalable version of Eclat using diffset. Although dEclat is memory-wise and
can mine data in less amount of time, it shows deficient performance with sparse datasets.
Researchers do not recommend starting with Eclat or dEclat and start with a memory-wise
(Breadth-First Search) algorithm like Apriori instead, then switch to Depth First Search.
Thus, this research aims to propose SHFIM hybrid spark-based algorithm that enhances
the execution time of extracting the frequent pattern from big datasets.

FIM (Frequent Itemset Mining) offers three approaches: horizontal, vertical, and tree
based. Horizontal like Apriori, vertical like Eclat, and tree-based, like PFP. Each algorithm
has advantages and disadvantages; for example, Apriori is the best in terms of memory,
but the worst in terms of execution time. Eclat, on the other hand, is the fastest in terms of
execution time, but it requires extensive processing due to the intersections. PFP examines
the dataset once to generate a tree data structure. Although PFP is effective in some
circumstances, it has several drawbacks. When at least a set of projected transactions does
not fit into the machine’s memory, it fails. When the projected transactions significantly
overlap, the communication overhead can be very high, because in that situation overlap
of data is sent to the network several time [2,39]. This variance and difference in algorithms
encourage researchers to develop a new type of algorithm that can utilize the advantages
of current algorithms known as Hybrid. Therefore, we designed our hybrid algorithm to
start as Apriori to take advantage of memory early on, then move data to a BF to avoid
memory and time overhead in producing candidates and layout transformation, and finally,
leverage diffset to take advantage of memory and time together. Diffset enhances execution
time and memory consumption because it shrinks itemsets into smaller sets that will be
mined in less time and consume less space [18]. Furthermore, we designed and developed
the algorithm using Spark best practices to reduce network traffic and shuffling between
worker nodes.
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Table 1. FIM algorithms comparative analysis.

FIM
Algorithm Advantages Disadvantages Framework Algorithm

BigFIM
[39]

• A scalable hybrid FIM algorithm can mine truly
big data.

• Cannot deal with lower frequencies
and sometimes out of memory
happens.

MapReduce Apriori/Eclat

Dist-Eclat
[39]

• The fastest algorithm among others regardless of
the candidate generation time.

• Accelerate the speed using a strategy of simple
load balancing.

• Cannot deal with a large amount of
data due to the memory and
processing needed.

MapReduce Eclat

YAFIM [34] • More scalable and rapid than MapReduce
• Shows bad performance in low

minimum supports.
• Requires multiple dataset scan.

Spark Apriori

R-Apriori
[33]

• Eliminate the time taken to generate the
candidates of the second iteration by adding
Bloom Filter.

• Outperform YAFIM in the second iteration.

• Generate many infrequent
candidates.

• Requires multiple dataset scan.
Spark Apriori

DFIMA [31]
• Vector data representation Matrix-based pruning

technique.
• Scalable for Big Data.

• Shows bad performance when the
minimum support is low. Spark Apriori

PECLAT
[38]

• Can deal with sparse and dense datasets.
• Saves memory and time through applying one of

the approaches (ECLAT, DECLAT) on itemset
level not on dataset level.

• Workload balancing through itemset ordering.

• The computation cost of the mixset
can be time-consuming.

• The communication cost between
nodes is high.

MapReduce Eclat/dEclat

HFIM [30]

• Utilizes the vertical layout and horizontal layout.
• Uses the broadcast variables.
• Workload balancing.
• Less memory complexity.
• Avoid iterative dataset scans.

Spark Apriori

DFPS [41] • No communication loads.
• The skewness of Workload.

• Cannot deal with low minimum
supports and sometimes it fails. Spark FP-Growth

Adaptive-
Miner

[29]

• Switch between a different approach based before
each iteration to improve the execution time.

• Consume some time to identify
which approach should apply.

• Requires multiple dataset scan.
Spark Apriori

SVT [37]
• Reduces the cost of communication across nodes

in the cluster.
• Distributes workload among the clusters’ nodes.

• Computation cost and memory
usage are high.

• Needs more memory in low
minimum supports.

Spark Eclat/dEclat

EAFIM [28]

• On-the-fly candidate generation.
• Dataset reduction after each iteration.
• Shows good performance in higher minimum

supports.

• Requires multiple dataset scan.
• Shows bad performance in lower

minimum supports.
Spark Apriori

RDD-Eclat
[36]

• Shows better performance in sparse datasets.
• Increases ECLAT performance by applying

partitioning and some heuristics.

• Shows bad performance in dense
datasets.

• May fail if the memory is not
sufficient.

Spark Eclat

Map-
Optimize-

Reduce
[40]

• Increases dataset performance by applying data
preprocessing.

• CAN tree reduces the scanning time of the
dataset.

• Balancing the workload across the cluster’s nodes.
• EPC based optimizer is used to enhance the

MapReduce framework

• The communication cost between
nodes is high.

• Needs more memory in low
minimum supports.

MapReduce FP-Growth
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3. Preliminaries

The problem of the frequent pattern mining is to find correlations between elements
in a database. The problem is summarized as follows: Find all patterns P that appears in at
least a fraction of the transactions in a database D containing transactions T1 . . . TN. The
list of notations used in this paper is shown in Table 2.

Table 2. List of notations.

Notation Description

P a Pattern in D
D a dataset of transactions
T a transaction in D
n Number of items in D
i an item
R a set of records in D
m Number of records in D
r a record in D
I an itemset in D
k Number of items in I and it is also the iteration number
σ Support

min_sup Minimum support
t Tidset of an itemset
d Diffset of an itemset
fk K Frequent itemsets
N The number of itemsets in k frequent itemsets
C K Candidate itemset
O Big O notation
kn The maximum number of iterations

3.1. Definition (Pattern)

A pattern is described as a collection of objects, events, or items that occur frequently
in a database. Formally, a pattern P in a database D is defined as a subset of elements
P ⊆ {i1 . . . in}∈ D that represent valuable data properties [43].

3.2. Definition (Frequency of a Pattern)

The frequency of a pattern P is defined as the number or the percent of data records
that contain the subset of items indicated by P. In other words, a set of items I = {i1 . . . in},
in a database D consisting of R = {r1 . . . rm} ∈ D data records, with each record containing
a set of items ∀r∈ R: r ⊆ I, the frequency of P is defined as |{∀r ∈ R:P ⊆ r, r ⊆ I ∈ D}|. The
FIM process is extremely difficult due to the vast number of candidate patterns (itemsets)
that must be processed [43].

Given an n-item dataset, the number of patterns (or itemsets) of size k is(
n
k

)
= n!

k!(n−k)! for any k ≤ n. As a result, with such a dataset, the total number of

possible patterns is 2n - 1, and the complexity of locating patterns of interest is in expo-
nential order. When the frequency of each pattern is determined, the complexity increases
to O ((2n − 1) ×m × n) for a dataset of m records and n items. To provide some light on
the complexity, a dataset of only 33 items (which is a small number of items) yields more
than 8.5 × 109 possible patterns, which is more than the world population in 2018. (Almost
7.7 billion people) [43].

3.3. Definition (Itemset)

Assume that I is a set of items. An itemset is a collection of items from I. A k-itemset is
an itemset created from k items. An itemset S is considered a subset of an itemset I if all of
the items in S are also in I, denoted as S ⊆ I [18].
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3.4. Definition (Frequent Itemset)

Consider D is a dataset of transactions, each transaction T contains a set of items.
I is an itemset and a subset of transaction T. I is frequent if its support (the number of
transactions contains I) defined as, σ (I) = |{T|I ⊆T∧T∈D}| is greater than or equal to
minimum support (min_sup) given by the user, denoted as FI = {I|σ(I) ≥min_sup} [14].

As a running example, consider the given dataset D in Table 3. D contains 4 trans-
actions {T1 . . . T4}; each transaction contains a set of items. Our goal is to discover the
frequent itemsets whose support is greater than or equal to min_sup. Let min_sup = 3, so
that the first frequent itemsets = {A}, {C}, {D}, {F}, second frequent itemsets = {A, C}, {A, D},
and third frequent itemsets = {A, C, D}.

Table 3. Dataset D items.

TID Items

1 A, B, C, D, F
2 A, C, D, F
3 B, C, D, F
4 A, C, D

3.5. Definition (Tidset)

Consider D to be a dataset containing a set of items i. The tidset of an itemset I is the
set of transactions identifiers that have the item, represented by tidset(I) = {t.tid | t ∈ D,
I ⊆ t}. Thus, σ(I) = |tidset(I)|, denoted as Equation (1). Additionally, k-itemset’s tidset is
formed by intersecting the tidsets of two (k − 1)-itemsets that share the first k − 2 items,
represented by Equation (2) [16].

σ(ABC) = |t(ABC)| (1)

t(ABC) = t(AB) ∩ t(AC) (2)

3.6. Definition (Diffset)

Consider t(A) is the tidset of A. The set of transaction ids that are present in t(A) but
not in t(AB) is known as the diffset d(AB), d(AB) = t(A) − t(AB) = t(A) − t(B), denoted as
Equation (3). Let t(AB) and t(AC) are present in the dataset, AB and AC are sharing the same
prefix A. The target is to compute the σ (ABC). By definition, σ (ABC) = σ (AB) − |d(ABC)|,
denoted as Equation (4). As a result, only d(ABC) is required to determine σ (ABC). It has been
demonstrated that d(ABC) = d(AC) − d(AB) = t(AB) − t(AC), denoted as Equation (5) [18] so
that the diffset and support of a produced itemset can be obtained from the tidsets or diffsets
and supports of its produced itemsets.

d(ABC) = t(AB) − t(AC) (3)

σ(ABC) = σ(AB) − |d(ABC)| (4)

d(ABC) = d(AC) − d(AB) (5)

Figure 1 presents a comparison of tidset and diffset, as well as how diffset works in vertical
data representation. We can utilize diffset from the very beginning, as shown in the figure, or from
any other level. Assume we start at tidset level 2 where k = 2 to compute the 2-itemset (an itemset
contains two elements), we determine that d(AC) = t(A)− t(C) = {1,3,4,5}− {1,2,3,4,5,6} = {} by
Equation (3), and σ (AC) = σ (A)− |d(AC)| = 4− 0 = 4 by Equation (4). AC tidset is achieved by
t(AC) = t(A) ∩ t(C) = {1,3,4,5} ∩ {1,2,3,4,5,6} = {1,3,4,5} by Equation (2), and σ(AC) = |t(AC)| = 4
by Equation (1). As a result, d(AC) has an empty set, whereas t(AC) has a set of four tids, however,
they have the same support. In Figure 1, 1-itemset diffset has 7 entries, whereas tidset has 22.
Diffset has 12 entries for a 2-itemset, whereas tidset has 34 elements. As a result, diffset is at
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least two or three times lower in size than tidset, making it more memory efficient and faster
to compute.
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4. SHFIM Proposed Framework

In this section, we introduce SHFIM hybrid algorithm to implement a frequent pattern
mining framework for analyzing big data in a parallel and distributed way over Spark. The
main goal of SHFIM is to improve the execution time performance and reduce the search
space to extract the frequent Itemset from big data. SHFIM algorithm is a Scala-based
algorithm implemented over Spark cluster with Spark best practices to reduce the execution
time required to extract the frequent itemsets.

Unlike Eclat and dEclat algorithms, SHFIM can handle thousands and even millions
of variable-length transactions without leaking or spilling memory. The SHFIM framework
is presented in Figure 2 and is divided into three stages: (1) singletons extraction phase, (2)
second frequent itemset extraction phase in vertical arrangement, and (3) K frequent itemset
extraction phase. The next subsections go through each of these three phases in depth.
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4.1. Singletons Extraction Phase

The goal of this phase is to extract the first frequent itemset. It is a single iteration that
uses a single map function and a single reduce function to extract the first frequent itemset.
This phase’s inputs are the dataset in horizontal format and the user-defined min_sup.
Each line in the dataset represents a transaction, which has a set of items separated by
spaces, the first of which is the transaction id. For example, transaction #10 should look
like {10,22,24,35,39,71,91}, where 10 is the tid (Transaction id) and the rest are the items.

The SHFIM algorithm pseudo-code is shown in Algorithm 1, in which SHFIM begins
reading the dataset and assigns each partition of data to a worker node in the Spark cluster.
To flatten the itemsets, each worker node uses a flatMap function on its data. When the
getFirstFrequentItemset method is used, it returns an RDD containing the first frequent
itemsets in a (key, value) pair, where the key is an itemset and value is its support. In other
words, (A, 5) is a 1-itemset pair containing an itemset (A) with support of five.

Algorithm 1. Discover frequent pattern using SHFIM

Input:D: Dataset of transactions, min_sup: minimum support threshold.
Output: frequent itemsets: list of frequent itemsets.
dataRDD←Read data from HDFS
singletons←getFirstFrequentItemset (dataRDD, min_sup)
If singletons = ∅ then

system_exit ()
end if
singletonsList← broadcast (singletons)
secondFrequentTidItemsetRDD← findPairsBloomFilter (dataRDD, singletonsList, min_sup)
hasCoverage← false
k←2
kFrequentItemsetRDD← secondFrequentTidItemsetRDD
While hasCoverage = false do

candidateItemsets← generatekCandidates(kFrequentItemsetRDD)
If candidateItemsets = ∅ then

hasCoverage← true
else

k← k +1
candidateItemsetsBC← broadcast (candidateItemsets)
assignCandidateToItemsetRDD← assignCandidateToItemset (candidateItemsetsBC, kFrequentItemsetRDD)
If k = 3 then

kFrequentItemsetRDD← getDiffsetFromTid (assignedCandidatesToItemsetRDD, min_sup)
else

kFrequentItemsetRDD← getDiffsetFromDiff (assignedCandidatesToItemsetRDD, min_sup)
end if

end if
end while

Figure 3 shows the visual workflow of this phase in SHFIM, which reads the data in
horizontal layout format from HDFS and loads it into Spark RDD, where a map function is
applied to construct a key-value pair. Following that, it uses a reduce function to aggregate
the values based on their keys. At the end of this phase, SHFIM filters out itemsets/keys
whose support is less than min_sup, and the first frequent itemset is retrieved and stored
in the BF.
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Figure 4 shows an example of how the SHFIM algorithm works in the first phase and
how data is processed in parallel. SHFIM begins by reading transactional data from HDFS
(Hadoop Distributed File System) in horizontal format and loading it into a Spark RDD.
Each mapper accepts a collection of transactions (e.g., Mapper-1 takes transactions T1 and
T2). To separate each transaction into discrete items, mappers use a flatMap function on
each record in the RDD. The map function is used to create corresponding (key, value)
pairs, where the key is an itemset and value is 1. As running example of a dataset D in
Table 3, T1 = {A, B, C, D, F} is mapped into (A,1), (B,1), (C,1), (D,1), and (F1). Subsequently,
the reducers use the reduceByKey method to aggregate the data based on the key and filter
away irrelevant itemsets, leaving only those with support greater than or equal to min sup.
If min sup = 3, SHFIM stores in a BF only (A, C, D, F) because their support is more than or
equal to 3. Finally, the BF is shared among the cluster’s machines so that it can be accessed
locally by each worker node.
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4.2. 2nd Frequent Itemsets in a Vertical Layout Phase

This phase aims to extract the second frequent itemset in a vertical layout. The input
of this phase is the first frequent itemset (Singletons). Mappers take each transaction and
prune it according to the singletons stored in the BF, producing all feasible candidates
together with their tid in pairs. This step eliminates the process of candidate generation,
which is time-consuming in most FIM algorithms.

The workflow of this phase is illustrated visually in Figure 5, where the BF reads every
item in each transaction from the horizontal layout dataset. Afterward, BF prunes items
(that are not present in BF) and then produces key-value (key is the itemset and value is the
TID) pairs candidates from items that are remained after pruning. Next, reducers aggregate
the values based on their keys to convert the data into a vertical layout such as (Itemset,
{list of tids}). At the end of this phase, SHFIM filters out the itemsets whose support is
less than min_sup, and then the second frequent itemset is extracted. Line 7 in Algorithm
1 has a function called findPairsBloomFilter, which accepts three parameters (data RDD,
singletons, min_sup) and returns the second frequent itemset in vertical layout tid format.
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Figure 6 illustrates how SHFIM extracts the second frequent itemsets in a vertical
format. A Spark RDD is used to load the transactional dataset from HDFS. Mappers
take each transaction and prune it so that only the items listed in the BF are retained,
and produce all feasible (key, value) pairs from the trimmed transaction, where the key
represents the newly generated itemset and the value represents its tid (Transaction id).
Subsequently, Reducers use the reduceByKey transformation to combine all pairs based
on their key to build a new RDD containing a collection of (key, value) pairs where the
key is the itemset and value is its tidset and filter out itemsets whose support is less than
min_sup.
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As a running example, Mapper-1 takes T1: (A, B, C, D, F) and T2: (A, C, D, F), then it
prunes item B because it does not exist in the BF (A C D, F). Mapper-1 yields all pairs for T1
and T2 as (key, value) pair, where the key is itemset and value is tid, such as (AC, T1), (AD,
T1), (AF, T1), (CD, T1), (CF, T1), (DF, T1), (AC, T2), (AD, T2), (AF, T2), (CD, T2), (CF, T2),
(DF, T2). Reducers combine all the generated pairs based on their key and generate a new
RDD of (key, value) pairs that contains (AC, {T1, T2, T4}), (AD, {T1, T2, T4}), and so on, and
filter out itemsets whose support less than min_sup. Finally, the second frequent itemsets
in vertical format are stored in Spark RDD and ready for the next phase.

4.3. K Frequent Itemset Extraction Phase

The goal of this phase is to use diffset to extract the K frequent itemsets, where K ≥ 3.
The input of this phase is the (k − 1) frequent itemset in the form of key value pair RDD,
where the key is the itemset and value is the tidset.

Figure 7 presents the workflow of this phase which begins with producing the candi-
date k-itemsets from (k − 1) frequent itemsets and broadcasts the generated candidate list
among cluster nodes. Next, mappers traverse each itemset in (k − 1) frequent itemset to
map with their corresponding candidate k-itemset. As a result, a key value pair RDD is
generated, where key is the candidate k-itemset and value is its mapped (k − 1) itemset.
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Afterward, reducers integrate the values in the paired RDD based on their key to produce
another key-value pair, but the key, in this case, is the candidate k-itemset and the value
represents a list of all corresponding (k − 1) frequent itemsets. Finally, the diffset is com-
puted for each candidate k-itemset based on Equations (3) and (5) in the preliminaries
section. At the end of this phase, SHFIM filters out the itemsets/keys whose support is
less than min_sup, and the k-frequent itemset is extracted. Because the FIM is an iterative
approach, SHFIM repeats the third phase for each k > 3 to extract the remaining frequent
itemsets, and this process lasts until no more frequent itemsets can be obtained.

Data 2022, 7, x FOR PEER REVIEW 16 of 23 
 

 

 
Figure 7. SHFIM phase three workflow. 

Figure 8 shows an example for the third phase and how SHFIM extracts the frequent 
k-itemsets. Mapper-1 takes AD, AC, and DF as vertical itemsets and then applies a filter 
on the candidate RDD to keep only candidates whose itemsets are already in the second 
frequent itemset, such as ABC, which is a candidate 3-itemset that is derived from AB and 
AC, both of which are present in the frequent 2-itemset. After applying the filter function, 
mapper-1 generates a (key, value) pair RDD in which key is the candidate list and value 
is an itemset such as ({ACD, ACF}, AC) is derived from AC, whereas ({ACD, ADF}, AD) 
is derived from AD. On contrary, DF has an empty list of candidates and will be ignored 
because there are no other 2-itemsets that share the same parent or start with (D). Conse-
quently, a flatMap function is applied on the RDD to split the candidates into separated 
key-value pairs. As a running example, ({ACD, ACF}, AC) is transformed using flatMap 
into two pairs (ACD, AC), (ACF, AC). Reducer-1 combines (ACD, AC) and (ACD, AD) to 
generate (ACD, Map (AC ≥ {T1, T2, T4}, AD ≥ {T1, T2, T4})). Next, mapper-1 calculates the 
diffset of each candidate itemset. Therefore, ACD is a candidate itemset has both AC and 
AD, d(ACD) = t(AC) − t(AD) = {T1, T2, T4} − {T1, T2, T4} = {}, using Equation (4), whereas 
σ(ACD) = s(AC) − |d (ACD)| = 3 − 0 = 3, using Equation (5). Finally, repeat the third phase 
in each subsequent k > 3 until no frequent itemsets are existed. 

 
Figure 8. Spark MapReduce architecture for Phase III. 

5. Performance Evaluation 

This section evaluates the performance of the SHFIM algorithm by comparing its ex-
ecution time performance against Eclat and dEclat, where Eclat is a Spark-based vertical 
layout FIM algorithm depending on intersections between itemset tidset. On the other 
hand, dEclat is a Spark-based vertical layout FIM algorithm depending on calculating dif-
ferences between itemsets. Moreover, we implemented Eclat and dEclat on the same en-
vironment of the SHFIM algorithm to make sure that the comparison between them all is 
done on the same cluster using same specifications. 

Figure 7. SHFIM phase three workflow.

SHFIM uses the function generatesKCandidates in Algorithm 1 line 12 to generate
candidate k-itemsets. The candidate generation rule states that every two (k − 1)-itemsets
must share the same prefix and be different in the last. In other words, let ABC be a
3-itemset candidate derived from the 2-itemsets AB, AC, which share the same prefix (A)
but differ in the last element B and C. In Algorithm 1 line 18, SHFIM calls the function
assignCandidateToItemset, which returns a (key, value) pair RDD. This function uses a
flatMap to assign or map every candidate k-itemset to each frequent (k− 1)-itemset. SHFIM
invokes a function getDiffsetFromTID where K = 3 and getDiffsetFromDiff where K > 3
on lines 19–23. Finally, a filter function is invoked to filter out itemsets whose support is
greater than or equal to the min_sup.

Figure 8 shows an example for the third phase and how SHFIM extracts the frequent
k-itemsets. Mapper-1 takes AD, AC, and DF as vertical itemsets and then applies a filter
on the candidate RDD to keep only candidates whose itemsets are already in the second
frequent itemset, such as ABC, which is a candidate 3-itemset that is derived from AB
and AC, both of which are present in the frequent 2-itemset. After applying the filter
function, mapper-1 generates a (key, value) pair RDD in which key is the candidate list
and value is an itemset such as ({ACD, ACF}, AC) is derived from AC, whereas ({ACD,
ADF}, AD) is derived from AD. On contrary, DF has an empty list of candidates and will
be ignored because there are no other 2-itemsets that share the same parent or start with
(D). Consequently, a flatMap function is applied on the RDD to split the candidates into
separated key-value pairs. As a running example, ({ACD, ACF}, AC) is transformed using
flatMap into two pairs (ACD, AC), (ACF, AC). Reducer-1 combines (ACD, AC) and (ACD,
AD) to generate (ACD, Map (AC ≥ {T1, T2, T4}, AD ≥ {T1, T2, T4})). Next, mapper-1
calculates the diffset of each candidate itemset. Therefore, ACD is a candidate itemset has
both AC and AD, d(ACD) = t(AC) − t(AD) = {T1, T2, T4} − {T1, T2, T4} = {}, using Equation
(4), whereas σ(ACD) = s(AC) − |d (ACD)| = 3 − 0 = 3, using Equation (5). Finally, repeat
the third phase in each subsequent k > 3 until no frequent itemsets are existed.
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5. Performance Evaluation

This section evaluates the performance of the SHFIM algorithm by comparing its
execution time performance against Eclat and dEclat, where Eclat is a Spark-based vertical
layout FIM algorithm depending on intersections between itemset tidset. On the other
hand, dEclat is a Spark-based vertical layout FIM algorithm depending on calculating
differences between itemsets. Moreover, we implemented Eclat and dEclat on the same
environment of the SHFIM algorithm to make sure that the comparison between them all
is done on the same cluster using same specifications.

To analyze the SHFIM algorithm, we set up a cluster of 2 nodes. They have Intel(R)
Core (TM) i3-4500U CPU @ 1.80GHz, 2401 MHz, 2 Core(s), 4 Logical Processor(s). All nodes
have 6 GB RAM, and a 500GB hard disk. The worker nodes are installed on Ubuntu 16.04,
Hadoop 2.6.0, Spark 2.2.0, and Scala 2.11.8.

5.1. Dataset

In this section, we present the characteristics of datasets that have been used in the
evaluation. The proposed solution (SHFIM) has been tested using four datasets [44] which
are the most common datasets and the benchmark in all frequent pattern mining algorithms
in big data.

Table 4 shows the characteristics of the datasets used in performance evaluation. The
first dataset is a sparse T1014D100k dataset generated using IBM’s generators, whereas,
the second dataset is a Retail dataset which is a sparse dataset containing transactions
that happened from the half of Dec 1999 to the end of Nov 2000 for a UK-based online
non-store system. While the third is a chess dataset, which is a dense dataset containing
the chess king vs. king and rook end positions. Finally, the fourth dataset is the dense
mushroom dataset for 23 gilled mushroom species. The dataset selection criteria we use are
to apply the algorithm to both sparse and dense datasets to evaluate algorithm efficiency
and analyze the influence of each dataset on our algorithm.

Table 4. Properties of the datasets used in performance evaluation.

Dataset No. of Transactions No. Of Different Items Density Type

Mushroom:
(http://fimi.uantwerpen.be/data/mushroom.dat)

(accessed on 1 January 2022)
8124 119 Dense Real-life

Chess: (http://fimi.uantwerpen.be/data/chess.dat)
(accessed on 1 January 2022) 3196 75 Dense synthetic

T1014D100k:
(http://fimi.uantwerpen.be/data/T10I4D100K.dat)

(accessed on 1 January 2022)
100,000 870 Sparse Real-life

Retail: (http://fimi.uantwerpen.be/data/retail.dat)
(accessed on 1 January 2022) 87,988 16,470 Sparse Real-life

http://fimi.uantwerpen.be/data/mushroom.dat
http://fimi.uantwerpen.be/data/chess.dat
http://fimi.uantwerpen.be/data/T10I4D100K.dat
http://fimi.uantwerpen.be/data/retail.dat
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5.2. Experiment and Result

In this section, we will show the experimental results of SHFIM algorithm against
Eclat and dEclat in terms of execution time.

Figure 9a compares SHFIM, dEclat, and Eclat in different min_sup starting from 7%
and ending at 0.6%. At min_sup (7–2%), FIM algorithms generate the frequent itemset in
a single iteration. Similarly, Eclat and dEclat do the same operation (convert the dataset
from horizontal to a vertical layout, then compute the support), and they nearly reach the
same execution time. Unlike Eclat and dEclat, SHFIM only computes each itemset support,
then filters out itemsets with support less than min_sup and generates singletons without
transforming the dataset into a vertical layout. From min_sup (1%), the iterations start to
increase and require Eclat and dEclat to generate the second candidate itemsets by applying
intersections (Eclat) or differences (dEclat) between itemsets to extract the second frequent
itemset. SHFIM, on the other hand, eliminates the time required to produce the candidate
itemsets for the second frequent itemset using the BF. As a result, it saves a lot of memory
because it avoids loading the memory with second itemset candidates.
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5.2.1. T1014D100k Dataset

In Figure 9b, a comparison between SHFIM, Eclat, and dEclat on iteration level at
min_sup (0.6%). It is worth noting that for any min_sup, each algorithm should complete
several iterations. SHFIM outperforms Eclat and dEclat in all iterations at min_sup (0.6%),
particularly at the second iteration. Eclat and dEclat finish in about 287 s, and 821 s,
respectively, whereas SHFIM takes only 19 s.

5.2.2. Retail Dataset

Figure 10a shows a comparison between the vertical layout algorithms for different
min_sup (30–0.2%). We noticed that dEclat and Eclat have recorded the same results at
higher supports (30% to 3%) since it is one iteration, and they accomplish the same task
“extract the first frequent itemset in vertical layout”. On contrary, SHFIM executes almost
twice faster than dEclat and Eclat in higher supports (30% to 3%) that have only one
iteration because SHFIM uses only a flatMap in the first iteration, which requires timeless
than Eclat and dEclat time required to transform into the vertical layout. Notably, Eclat
outperforms dEclat in most iterations due to the sparsity of the Retail dataset and Eclat
ability to compete in the sparse datasets.

A comparison between SHFIM, Eclat, and dEclat on iteration level at min_sup (1%) is
shown in Figure 10b. SHFIM outperforms Eclat and dEclat in terms of execution time in
all iterations except the last iteration. At the last iteration, Eclat outperforms SHFIM and
dEclat due to the sparsity of the Retail dataset. On the other hand, dEclat spent a long time
in the second and third iterations. As a result, Eclat and dEclat consume about 26 and 318 s,
respectively, whereas SHFIM takes only 12 s.
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5.2.3. Mushroom Dataset

Figure 11a compares FIM vertical layout algorithms with SHFIM for various min_sup
(90–30%). Due to the density of the dataset, Eclat has the slowest execution time in all
min_sup. At min_sup (90%), SHFIM executes in 4 s, while dEclat and Eclat execute in
5 s, 6 s, respectively. At min_sup (90–60%), the three algorithms almost show the same
performance. However, at min_sup (50–30%), Eclat starts to suffer and takes much time to
execute, while SHFIM and dEclat are still competing.
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In Figure 11b, a comparison between SHFIM, Eclat, and dEclat on iteration level
at min_sup (30%). In all iterations, SHFIM outperformed dEclat and Eclat in terms of
execution time, except for the 4th iteration. At the 4th iteration, SHFIM took longer than
dEclat. Because of the density of the Mushroom dataset, the driver must create candidates
in a long time. Finally, SHFIM has a total runtime of 164 s, while Eclat and dEclat have total
runtimes of 303 and 194 s, respectively.

5.2.4. Chess Dataset

Figure 12a shows a comparison between SHFIM, Eclat, and dEclat for different
min_sup (90%-85%). SHFIM executes faster than Eclat and slower than dEclat in dif-
ferent min_sup. At min_sup (90%), SHFIM has recorded 41 s while Eclat and dEclat have
recorded 98 and 31 s, respectively. Notably, due to the high dataset density of chess dataset,
Eclat has recorded the slowest performance.

In Figure 12b, a comparison between SHFIM, Eclat, and dEclat on iteration level at
min_sup (85%). SHFIM outperformed Eclat in all iterations, whereas took nearly as long
as dEclat in all iterations except the third and fourth, because of the time required by the
driver to produce candidates and save the results to HDFS causes SHFIM to take longer
than usual. SHFIM takes only 61 s to complete, but Eclat and dEclat take roughly 375 and
55 s, respectively.
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6. Discussion

Table 5 shows the average time (in seconds) of the FIM algorithm on the four datasets.
The results conclude that the SHFIM algorithm has recorded 7, 5, and 39 s in T1014D100k,
Retail, and Mushroom datasets respectively, which is the best performance among the
others. While in chess dataset, SHFIM has recorded 51 s, which is an intermediate per-
formance between Eclat and dEclat. We discovered that the SHFIM is better suited to
datasets containing thousands of variable-length transactions because, at high and low min
sup, the SHFIM can adapt to datasets containing thousands, if not millions, of variable-
length transactions without a memory leak or spilling due to the enhancements made.
Furthermore, the SHFIM performs admirably in dense and sparse datasets with low and
high min_sup, and it is a scalable approach that can mine large amounts of data. SHFIM
demonstrated considerably higher execution time performance with datasets containing a
high proportion of variable-length transactions, which is the big data nature.

Table 5. Average time (in seconds) of the FIM algorithm on the four datasets.

Dataset/Algorithm Min_Sup SHFIM ECLAT DECLAT

Mushroom 90–30% 39 81 49
Chess 90–85% 51 236 43

T1014D100k 7–0.6% 7 121 260
Retail 30–0.9% 5 18 105

Table 6 summarizes the frequent itemsets for various min_sup in both dense and sparse
datasets. The summary includes the number of transactions associated with each dataset
sample. Min_sup is calculated by multiplying the number of transactions by the predefined
min_sup% to determine if an itemset is frequent or not. In addition, it contains the number
of frequent itemsets for each dataset based on min_sup. The tidset size per itemset is the
number of transactions’ ids in each itemset resulting from intersections between itemsets.
Finally, diffset size per itemset is the number of transactions’ ids that are located in each
itemset due to itemset differences. For example, mushroom is an 8124-transaction dense
dataset that contains 2735 frequent itemsets whose supports are larger than min_sup (2437).
Each frequent itemset must have a tidset count ranging from 2437 to 8124. On the other
hand, diffset size is at least two or three times less than tidset size since the difference
reduces data significantly. As a result, diffset is memory-conscious, compact, and quick
to process.
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Table 6. Datasets summary.

Dataset T1014D100k Retail Mushroom Chess

Sparsity Sparse Sparse Dense Dense

No. of Transactions 100,000 87,988 8124 3196

Min_sup (%) 0.6% 0.7% 0.4% 0.5% 30% 40% 85% 90%

Min_sup 600 700 352 440 2437 3250 2717 2876

No. of Frequent itemsets 772 603 831 580 2735 565 2669 622

Tidset size per
frequent itemset

600–
100,000

700–
100,000

352–
87,988

440–
87,988

2437–
8124

3250–
8124

2717–
3196

2876–
3196

Diffset size per
frequent itemset At least 2 or 3 times less than tidset size

7. Time Complexity

In this section, we are going to present the time complexity of the SHFIM. The complex-
ity of SHFIM can be influenced by factors such as min_sup threshold, the average number
of items per transaction, the number of transactions, and the total number of dataset items.
Suppose we have a Dataset D contains n number of transactions, k number of items, and
m as the number of items in the biggest transaction. In phase 1, we need to traverse each
item in every transaction to discover the first frequent itemset. This process takes in the
worst-case O(n ×m). In Phase 2, BF starts to access each transaction item and prune the
items that are not present in the BF and creates pairs from the items that are present after
pruning, which takes in the worst-case O(n ×m). Furthermore, BF keeps tracking of each
transaction ID for each pair created which costs O(1) then finally reduce the results to create
the vertical layout which costs O(1). The time complexity of phase 2 can be measured by
O(n ×m + 1 + 1) equal to O (n ×m). Assume Fk is the vertical frequent dataset from phase
2 that contains N number of itemsets. Let the number of candidates’ itemsets of iteration
k is Ck. Phase 3 in SHFIM is an iterative process; hence, we find the time complexity for
kth iteration/pass. Phase 3 begins with k = 3 till the end of iterations in which SHFIM

starts to generate Ck candidates from Fk−1, which takes O
(

N
k

)
time. Afterward, all the

candidates should be mapped with their originated itemsets which are present Fk-1 which
takes O(N) time. We further visit each candidate after mapping to calculate the difference
between each mapped itemsets which requires O(Ck), and it requires O(1) to calculate
the differences between its itemsets. We assume that the shared or broadcasted candidate

list data requires O(Ck) time. Therefore, phase 3 takes O(
(

N
k

)
× N × Ck × Ck) time

to be completed. Since phase 3 is an iterative process based on k, the complexity will be

O(
kn
∑

k=3

(
N
k

)
× N × Ck

2), where k ≥ 3. Finally, the total complexity of SHFIM proposed

algorithm is the summation of the complexity of phase 1, phase 2, and phase 3.

8. Conclusions

FIM is the most common technique used in discovering frequent patterns from trans-
actional datasets. Frequent patterns have a wide effect in many applications including
classifications, market basket analysis, mobile computing, web mining, etc. Apriori is
computing intensive algorithm; therefore, lots of resources (Memory and processing) are
required. Moreover, Apriori uses horizontal data representation and has some challenges
such as multiple dataset scans and candidate generating in each iteration, which makes
Apriori suffer from big data. Vertical data representation is smaller than horizontal repre-
sentation in size and carries information through tidsets about each itemset support. Eclat
uses vertical data representation (tidset) and achieved observed performance in sparse
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datasets, but in dense datasets, it suffers when intermediate results of tidsets become too
large for memory.

In this paper, we proposed SHFIM (Spark-based Hybrid Frequent Itemset Mining) a
novel algorithm that utilizes both the horizontal and vertical layouts to solve the drawbacks
in both Apriori and Eclat. SHFIM is a three phases algorithm, which works perfectly in
a distributed environment. Phases one and two use the horizontal layout to extract the
first and second frequent itemset. Phase three is an iterative process to extract k frequent
itemset in k iterations. This phase uses mainly diffset to enhance execution time and
memory consumption because it shrinks itemsets into smaller sets that will be mined in
less time and consume less space. The support of an itemset is calculated by exploiting
the vertical layout in every worker node. As the vertical layout size is smaller than the
horizontal layout, therefore it requires less memory and less execution time. We developed
SHFIM on Spark framework due to its ability to deal with the iterative problem better
than Hadoop MapReduce. Spark is 100 times quicker than Hadoop in data processing
and has lots of features such as in-memory processing, RDD data structure, broadcasting
variables, partitioning of data, and applied Spark best practices to reduce data shuffling
between nodes. These features make the Spark the best choice for us that help SHFIM
to deal with big data efficiently and increase its execution time performance. Extensive
experiments have been conducted between SHFIM, Eclat, and dEclat over Spark clusters
for dense and sparse datasets. The Experimental results proved that SHFIM can compete
well in both dense and sparse datasets and shows noticeably better performance in either
lower or higher min_sup in terms of execution time than others in datasets that have lots
of variable-length transactions which is the nature of big data. In the future work, we are
planning to enhance the SHFIM be more efficient. The results proved that the use of tidset,
diffset, and Bloom Filter accelerate the speed of FIM in big datasets. We plan to choose
between tidset and diffset on the itemset itself rather than the whole dataset instead of
applying the diffset and continue using diffset from the third iteration in the whole dataset.
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