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Abstract: Graph Neural Networks (GNNs) rely on the graph structure to define an aggregation
strategy where each node updates its representation by combining information from its neighbours.
A known limitation of GNNs is that, as the number of layers increases, information gets smoothed
and squashed and node embeddings become indistinguishable, negatively affecting performance.
Therefore, practical GNN models employ few layers and only leverage the graph structure in terms
of limited, small neighbourhoods around each node. Inevitably, practical GNNs do not capture
information depending on the global structure of the graph. While there have been several works
studying the limitations and expressivity of GNNs, the question of whether practical applications
on graph structured data require global structural knowledge or not remains unanswered. In this
work, we empirically address this question by giving access to global information to several GNN
models, and observing the impact it has on downstream performance. Our results show that global
information can in fact provide significant benefits for common graph-related tasks. We further
identify a novel regularization strategy that leads to an average accuracy improvement of more than
5% on all considered tasks.

Keywords: graph neural networks; graph representation learning; deep learning; representation
learning; graphs

1. Introduction

Graph Neural Networks (GNNs) [1] are deep learning models for graph structured
data, which achieve state-of-the-art results for many graph-related tasks. Most popular
GNNs fall into the message-passing framework [2] and are denoted as Message Passing
Neural Networks (MPNNs). (In this paper, we use the terms GNN and MPNN interchange-
ably.) MPNNs have become increasingly popular thanks to their simplicity, extensibility,
and empirical effectiveness. MPNNs adopt a message passing mechanism where, at each
layer, every node receives a message from its 1-hop neighbours. The incoming messages for
each node are aggregated in a permutation-invariant fashion and used to update the node’s
representation by the means of a learnable function (usually implemented with a neural
network). The final node representations (also referred to as node embeddings) are then
used to perform some graph-related downstream task, for example graph classification or
node classification. Empirically, the best results are obtained when the message passing
procedure is repeated a relatively small number of times (typical numbers are 2 to 5), as a
higher number of layers leads to over-smoothing [3] and over-squashing [4]. Thus, practical
GNNs are only leveraging the graph structure in the form of small neighbourhoods around
each node. A direct consequence of this limitation is that GNNs are not capable of accessing,
or extracting, information that depends on the whole structure of the graph (e.g., random
walk probabilities [5]).

In this work, we are interested in studying the consequences of the over-smoothing
and over-squashing issues. In more detail, we are interested in understanding whether
global information (i.e., information that depends on the whole structure of the graph,
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and that cannot be recovered by just focusing on local neighbourhoods) is important for
GNNs and their practical applications.

In fact, there is an ongoing debate in the GNN research community on whether it is
needed to have “deep” GNNs [6], or if most tasks of interest only require access to local
neighbourhoods. We tackle this question directly at its root, and address the overlooked
aspect of whether global structural information is useful for GNN models, by studying if
global structural information is important in practical scenarios. In more detail, we introduce
three different ways to provide GNN models with global structural information, and study
how they affect the performance of state-of-the-art MPNNs on common graph related tasks.
The three strategies to include global structural information we consider are: (i) providing
the model direct access to the adjacency matrix, (ii) providing the model direct access to
random walks with restart coefficients, and (iii) combining (ii) with a regularization term
which enforces the role of the information extracted by random walks with restart. These
methods are introduced to study the impact of global information, and are not meant to be
used as practical strategies to improve the performance of GNNs. On the latter aspect, we
show that the sole use of our regularization term provides significant gains in performance
while being easily and efficiently applicable to any GNN model. The use of random walks
with restart is also supported by a theoretical contribution which proves they can increase
the ability of GNNs in distinguishing non-isomorphic graphs.

Our Contribution

Previous studies on the capabilities and limitations of GNNs have focused on the
relation between GNNs and the Weisfeiler–Leman (WL) algorithm [7] to study the theoretical
expressiveness of these models (e.g., [8]), or on how to alleviate the over-smoothing and
over-squashing issues (e.g., [3,4,9]). There are, however, no empirical studies on the
practical impact of global information (i.e., information that depends on the whole structure
of the graph) in MPNNs.

We assess whether providing global information regarding the whole graph structure
has a significant impact on the performance of state-of-the-art MPNNs. In this regard, our
contributions are threefold.

• We propose and formalize three different types of global structural information “in-
jection”. We test how the injection of global structural information impacts the per-
formance of six GNN architectures (GCN [10], Graphsage [11], and GAT [12] for
node-level tasks; GCN with global readout, DiffPool [13] and k-GNN [8] for graph-
level tasks) on both transductive and inductive tasks. Results show that the injection
of global structural information significantly impacts current state-of-the-art models
on common graph-related tasks.

• As we discuss later in the paper, injecting global structural information can be im-
practical. We then identify a novel and practical regularization strategy, called RWR-
Reg, based on random walks with restart [14]. RWRReg maintains the permutation-
invariance of GNN models, and leads to an average 5% increase in accuracy on both
node classification and graph classification.

• We introduce a theoretical result proving that the information extracted by random
walks with restart can “speed up” the 1-Weisfeiler–Leman (1-WL) algorithm [7].
In more detail, we show that, by constructing an initial coloring based on random
walks with restart probabilities, the 1-WL algorithm always terminates in one iteration.
Given the known relationship between GNNs and the 1-WL algorithm, this result
shows that providing information obtained from random walks with restart to GNN
models can improve their practical ability of distinguishing non-isomorphic graphs.

2. Preliminaries

In this section, we introduce the notation we use throughout the paper, and pro-
vide a brief introduction to GNNs and random walks with restart (RWR; also known as
Personalized PageRank [14]).
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2.1. Notation

We use uppercase bold letters for matrices (M), and lowercase bold letters for vectors
(v). We use plain letters with subscript indices to refer to a specific element of a matrix
(Mi,j), or of a vector (vi). We refer to the vector containing the i-th row of a matrix with the
subscript “i, :” (Mi,:), while we refer to the i-th column with the subscript “:, i” (M :,i).

A graph G = (V , E), where V = {1, .., n} is the set of nodes and E ⊆ V × V is the
set of edges, is represented by a tuple (X, A). X is an n× d matrix, where the i-th row
contains the d-dimensional feature vector of the i-th node, and A is the n× n adjacency
matrix. For the sake of clarity, we restrict our presentation to undirected graphs, but similar
concepts can be applied to directed graphs.

2.2. Graph Neural Networks

In graph representation learning, the goal is to learn a vector representation (also
referred to as node embedding) for each node that can then be used to effectively perform
downstream tasks. The message-passing framework [2], to which most GNNs belong,
is based on the following procedure: each node receives messages from its neighbours,
aggregates them, and updates its representation based on the aggregated messages and its
previous representation. For a node v, with neighboursNv, we can represent the operations
at the `-th layer of message-passing as follows:

m(v,`) = AGGREGATE({H(`)
u ∀u ∈ Nv})

H(`+1)
v = UPDATE(H(`)

v , m(v,`))

where H(`) is a matrix where the i-th row contains the representation of node i at layer
`, AGGREGATE is a permutation invariant function (e.g., average or sum) that takes as
input the set of representations of the neighbours and aggregates them into a message
m, and UPDATE is usually a learnable function implemented with a neural network.
The initial representation (at layer 0) is defined as H(0) = X. As such, after k message-
passing iterations, the representation of a node v depends on its k-hop neighbourhood (i.e.,
all the nodes at a distance of at most k from v). The GNNs proposed in literature differ on
how they implement the AGGREGATE and UPDATE functions [1,10–12].

2.3. Random Walks with Restart

A RWR [14] for node i returns a vector r(i) of size n which satisfies the following
equation:

r(i) = (1− c)Wr(i) + ce(i)

where e(i) is a vector where the i-th element is 1 and all the others are 0, c is the restart
probability, and W is the transition matrix of the random walk. The restart probability c
defines the probability that the walk “jumps” back to the starting node (a common value
for c, used in many libraries, is 0.15). The RWR vector can be computed using the power
iteration method, and over the year a large number of methods have been developed
for its efficient and practical computation, or approximation, even for large scale graphs
(e.g., [15,16]). Elements of r(i) capture the relative relationships between nodes [16], and the
RWR vectors capture the global structure of the graph [17,18].

3. Random Walks with Restart and the Weisfeiler–Leman Algorithm

We provide analytical evidence that RWR can significantly empower MPNNs by
proving a connection with the 1-Weisfeiler–Leman (1-WL) algorithm [7].

The 1-WL algorithm is a well known method for testing the isomorphism of two
graphs. The 1-WL algorithm uses an iterative coloring, or relabeling, scheme, in which
all nodes are initially assigned the same label (e.g., the value 1). It then iteratively refines
the color of each node by aggregating the multiset of colors in its neighborhood with the
use of a hash function. At every iteration, the feature representation of a graph is the
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histogram of resulting node colors. If, at a certain iteration of this process, two graphs have
a different feature representation, then the two graphs are not isomorphic. (For a more
detailed description of the 1-WL algorithm, we refer the reader to [7,19].)

It is known that not all non-isomorphic graphs are distinguishable by the 1-WL
algorithm, and that n iterations are enough to distinguish two graphs of n vertices which
are distinguishable by the 1-WL algorithm. There is a tight connection between 1-WL
and MPNNs [10,20]. In particular, graphs that can be distinguished in k iterations by the
1-WL algorithm can be distinguished by certain GNNs in k message passing iterations [8].
This implies that, when using a GNN that can theoretically achieve the distinguishing
power of the 1-WL algorithm, if such GNN is deployed with k′ layers, it will not be able to
distinguish graphs that are distinguishable by the 1-WL algorithm with k′′ > k′ iterations.

Here, we prove that graphs that are distinguishable by 1-WL in k iterations have
different feature representations extracted by RWR of length k, and hence if we use the
RWR feature representations as initial coloring for the 1-WL algorithm, then the algorithm
will always finish in one iteration. Given a graph G = (V, E), we define its k-step RWR
representation as the set of vectors rv = [rv,u1 , . . . , rv,un ], v ∈ V, where each entry rv,u is the
probability that a RWR of length k starting in v ends in u ∈ V.

Proposition 1. Let G1 = (V1, E1) and G2 = (V2, E2) be two non-isomorphic graphs for which
the 1-WL algorithm terminates with the correct answer after k iterations and starting from the
labelling of all 1’s. Then, the k-step RWR representations of G1 and G2 are different.

The proof can be found in Appendix A. Since k iterations of the 1-WL algorithm are
performed by MPNNs of depth k, but, in practice, MPNNs are limited to small depths; this
result shows that RWR can empower MPNNs with relevant information that is discarded
in practice.

We further provide an empirical analysis of RWR and their capability of encapsulating
global information in Appendix F.

4. Injecting Global Information in MPNNs

To test if MPNNs are missing on important information that is encoded in the structure
of a graph, we inject global structural information into existing MPNN models, and test how
the performance of these models changes in several graph-related tasks. Intuitively, based on
a model’s performance when injected with different types of global structural information, we
can understand if this additional knowledge can improve performance on the considered
tasks. In the rest of this section, we present the types of global structural information
injection that we consider, and the models chosen for our experimental evaluation.

4.1. Types of Global Structural Information Injection

We consider three different types of global structural information injection described
below. The injection strategies presented in this section are not designed for practical
use, as the scope of these strategies is to help us understand the importance of global
structural information. At this point, our objective is to study the impact of global structural
information that is not accessible to GNN models. We discuss scalability and practical
aspects in Section 6.

Adjacency Matrix. We provide GNNs with direct access to the adjacency matrix
by concatenating each node’s adjacency matrix row to its feature vector. This explicitly
empowers the GNN model with the connectivity of each node, and allows for higher level
structural reasoning when considering a neighbourhood (the model will have access to the
connectivity of the whole neighbourhood when aggregating messages from neighbouring
nodes). In more detail, the row of the adjacency matrix for a specific node pinpoints the
position of the node in the graph (i.e., it acts as a kind of positional encoding), and during
the message passing procedure, when a node aggregates information from its neighbours,
it allows the network to get a more precise positioning of the node in the graph.
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Random Walk with Restart (RWR) Matrix. We perform RWR [14] from each node v,
thus obtaining a n-dimensional vector that gives a score of how much v is “related” to every
other node in the graph. For every node, we concatenate its vector of RWR coefficients to its
feature vector. The choice of RWR is motivated by their capability to capture the relevance
between two nodes [16] and the global structure of a graph [17,18], and by the possibility
to modulate the exploration of long-range dependencies by changing the restart probability.
Intuitively, if a RWR starting at node v is very likely to visit a node u (e.g., there are multiple
paths that connect the two), then there will be a high score in the RWR vector for v at
position u. This gives the GNN model higher level information about the global structure
of the graph, and, again, it allows for high level reasoning on neighbourhood connectivity.

RWR Matrix + RWR Regularization. Together with the addition of the RWR score
vector to the feature vector of each node, we also introduce a regularization term based on
RWR that pushes nodes with mutually high RWR scores to have embeddings that are close
to each other (independently of how far they are in the graph). Let S be the n× n matrix
with the RWR scores. We define the RWRReg (Random Walk with Restart Regularization)
loss as follows:

LRWRReg = ∑
i,j∈V

Si,j||H i,: − H j,:||2

where H is a matrix of size n × d containing d-dimensional node embeddings that are
in between message-passing layers (see Appendix B for the exact point in which H is
considered for each model). With this approach, the loss function used to train the model
becomes: L = Loriginal + λLRWRReg, where Loriginal is the original loss function for each
model, and λ is a balancing term. In Appendix E, we show how to compute the RWRReg
term efficiently using GPUs. We expect this type of information injection to have the highest
impact on performance of the models on downstream tasks.

4.2. Choice of Models

In order to test the effect of the different types of global structural information
injection and to obtain results that are indicative of the whole class of MPNNs mod-
els, we conceptually identify four different categories of MPNNs from which we select
representative models.

Simple Aggregation Models

Such models utilize a “simple” aggregation strategy, where each node receives mes-
sages (e.g., feature vectors) from its neighbours, aggregates them by assigning the same
“importance” to each neighbour (e.g., by averaging their messages), and uses the aggregated
messages to update its embedding vector. As a representative, we choose GCN [10], one of
the fundamental and widely used GNNs models. We also consider GraphSage [11], as it rep-
resents a different computation strategy where a set of neighborhood aggregation functions
are learned, and a sampling approach is used for defining fixed size neighbourhoods.

Attention Models

Several models have used an attention mechanism in a GNN scenario [12,21–23]. These
methods differ from the previous category as they use an attention mechanism to assign a
different “weight”, or “importance”, to each neighbour. As a representative, we focus on
GAT [12], the first to present an attention mechanism over nodes for the aggregation phase,
and one of the best performing models on several datasets. Furthermore, it can be used in
an inductive scenario.

Pooling Techniques

Pooling on graphs is a very challenging task, since it has to take into account the
underlying graph structure. At a high level, pooling methods provide a coarsened version
of the input graph by combining groups of nodes into clusters. Among the methods that
have been proposed for differentiable pooling on graphs [13,24–27], we choose DiffPool [13]
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for its strong empirical results. Furthermore, it can learn to dynamically adjust the number
of clusters (the number is a hyperparameter, but the network can learn to use fewer clusters
if necessary).

Beyond WL

Morris et al. [8] prove that message-passing GNNs cannot be more powerful than
the 1-WL algorithm, and propose k-GNNs, which rely on a subgraph message-passing mech-
anism and are proven to be as powerful as the k-WL algorithm. Another approach that
goes beyond the WL algorithm was proposed by Murphy et al. [28]. Both models are
computationally intractable in their initial theoretical formulation, so approximations are
needed. As a representative, we choose k-GNNs, to test if subgraph message-passing is
affected by additional global structural information.

5. Evaluation of the Injection of Global Structural Information

We now present our framework for evaluating the effects of the injection of global
structural information into GNNs and the results of our experiments. Code for our method
can be found at: https://github.com/DavideBuffelli/RWRReg, 9 January 2022. We con-
sider one transductive task (node classification) and two inductive tasks (graph classification,
and triangle counting). We use each architecture for the task that better suits its design:
GCN, GraphSage, and GAT for node classification, and DiffPool and k-GNN for graph
classification. We add an adapted version of GCN for graph classification, as a common
strategy for this task is to deploy a node-level GNN, and then apply a readout function to
combine node embeddings into a global graph embedding vector.

With regard to datasets, for node classification, we considered the three most used
benchmarking datasets in literature: Cora, Citeseer, and Pubmed [29]. Analogously,
for graph classification, we chose three frequently used datasets: ENZYMES, PROTEINS,
and D&D [30]. Dataset statistics can be found in Appendix C.

For all the considered models, we take the hyperparameters from the implementations
released by the authors. The only parameter tuned using the validation set is the balancing
term λ when RWRReg is applied. We found that the RWRReg loss tends to be larger than
the Cross Entropy loss for prediction, and the best values for λ lie in the range [10−9, 10−6].
For all the RWR-based techniques, we used a restart probability of 0.15 (we use 0.15 as
it is a common default value used in many papers and software libraries). The effects
of different restart probabilities are explored in Section 6.) Detailed information on our
implementations can be found in Appendix B.

5.1. Node Classification

For each dataset, we follow the approach that has been widely adopted in literature:
we take 20 labeled nodes per class as training set, 500 nodes as validation set, and 1000 nodes
for testing. Most authors have used the train/validation/test split defined by [31]. Since
we want to test the general effect of the injection of global structural information, we differ
from this approach and we do not rely on a single split. We perform 100 runs, where at each
run we randomly sample 20 nodes per class for training, 500 random nodes for validation,
and 1000 random nodes for testing. We then report mean and standard deviation for the
accuracy on the test set over these 100 runs.

Results are summarized in Table 1, where we observe that the simple addition of RWR
features to the feature vector of each node is sufficient to give a performance gain (up to
2%). The RWRReg term then significantly increments the gain (up to 7.5%). These results
show that, perhaps surprisingly, even for the task of node classification global structural
information is important.

https://github.com/DavideBuffelli/RWRReg
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Table 1. Node classification accuracy results of different models with added Adjacency matrix
features (AD), RWR features (RWR), and RWR features + RWR Regularization (RWR + RWRReg).

Model Structural Dataset
Information Cora Pubmed Citeseer

none 0.799± 0.029 0.776± 0.022 0.663± 0.095
AD 0.806± 0.035 0.779± 0.070 0.653± 0.104

GCN RWR 0.817± 0.025 0.782± 0.042 0.665± 0.098
RWR + RWRReg 0.842 ± 0.026 0.811 ± 0.037 0.690 ± 0.102

none 0.806± 0.017 0.807± 0.016 0.681± 0.021
AD 0.803± 0.014 0.803± 0.013 0.688± 0.020

GraphSage RWR 0.816± 0.014 0.807± 0.015 0.693± 0.019
RWR + RWRReg 0.837 ± 0.015 0.820 ± 0.010 0.728 ± 0.020

none 0.815± 0.021 0.804± 0.011 0.664± 0.008
AD 0.823± 0.019 0.796± 0.014 0.672± 0.017

GAT RWR 0.833± 0.020 0.811± 0.009 0.686± 0.009
RWR + RWRReg 0.848 ± 0.019 0.828 ± 0.010 0.701 ± 0.011

5.2. Graph Classification

Following the approach from [8,13], we use 10-fold cross validation, and report mean
and standard deviation of the accuracy on graph classification. Results are summarized
in Table 2. The performance gains given by the injection of global structural information
are even more apparent than for the node classification task. Intuitively, this is explained
by the fact that the global structure of the nodes in a graph is important for distinguishing
different graphs. Most notably, the addition of the adjacency features is sufficient to give a
large performance boost (up to 11%).

Table 2. Graph classification accuracy results of different models with added Adjacency matrix
features (AD), RWR features (RWR), and RWR features + RWR Regularization (RWR + RWRReg).

Model Structural Dataset
Information ENZYMES D&D PROTEINS

none 0.570± 0.052 0.755± 0.028 0.740± 0.035
AD 0.591± 0.076 0.779± 0.022 0.775± 0.042

GCN RWR 0.584± 0.055 0.775± 0.023 0.784± 0.034
RWR + RWRReg 0.616 ± 0.065 0.790 ± 0.023 0.795 ± 0.032

none 0.661± 0.031 0.793± 0.022 0.813± 0.017
AD 0.711± 0.027 0.837± 0.020 0.821± 0.039

DiffPool RWR 0.687± 0.025 0.824± 0.028 0.783± 0.043
RWR + RWRReg 0.721 ± 0.039 0.840 ± 0.024 0.834 ± 0.038

none 0.515± 0.111 0.756± 0.021 0.763± 0.043
AD 0.572± 0.063 0.778± 0.020 0.751± 0.034

k-GNN RWR 0.573 ± 0.077 0.794 ± 0.022 0.781± 0.028
RWR + RWRReg 0.571± 0.080 0.786± 0.021 0.785 ± 0.026

Surprisingly, models like DiffPool and k-GNN show an important difference in accu-
racy (up to 10%) when there is injection of structural information, meaning that even the
most advanced methods suffer from the inability to exploit global structural information.

5.3. Counting Triangles

The TRIANGLES dataset [32] is composed of randomly generated graphs, where the
task is to count the number of triangles contained in each graph. This is a hard task for
GNNs and, as in [32], we use node degrees as node features to impose some structural
information in the network. The TRIANGLES dataset has a test set with 10,000 graphs,
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of which half are similar in size to the ones in the training and validation sets (4–25 nodes),
and half are bigger (up to 100 nodes). This permits an evaluation of a model’s capability
generalization to graphs of unseen sizes.

For this regression task, we use a three layer GCN, and we minimize the Mean Squared
Error (MSE) loss (more details can be found in Appendix B). Table 3 presents MSE results
on the test dataset as a whole and on the two splits separately. We see that the addition
of RWR features and of RWRReg provides significant benefits (up to 19% improvements),
especially when the model has to generalize to graphs of unseen sizes, while the addition
of adjacency features leads to overfitting (we provide more details in Appendix D).

Table 3. Mean Squared Error of GCN with different types of global structural information injection
on the TRIANGLES dataset.

Model TRIANGLES Test Set
Global Small Large

GCN 2.290 1.311 3.608
GCN-AD 4.746 1.162 5.971
GCN-RWR 2.044 1.101 2.988
GCN-RWR + RWRReg 2.029 1.166 2.893

6. Practical Aspects

From the results shown in Section 5, it would be tempting to propose the addition of
adjacency matrix information or RWR information into node feature vectors as a strategy
to improve the performance of GNN models. However, the benefits introduced by such a
strategy come at a high cost: adding n features increases the input size of n× n elements
(which is prohibitive for large graphs). Furthermore, all the considered models have a
weight matrix at each layer that depends on the feature dimension, which means we are
also increasing the number of parameters at the first layer by n× d(1) (where d(1) is the
dimension of the feature vector for each node after the first GNN layer). In this section, we
propose a practical way to take advantage of the injection of global structural information
without increasing the number of parameters, and controlling the memory consumption
during training.

6.1. RWRReg

From Section 5, the use of RWR coefficients as additional features coupled with the ad-
ditional RWRReg term is the strategy that provides the highest performance improvement
on all tasks. As discussed at the beginning of this section, the addition of RWR coefficients
can be problematic, and hence we study the impact of using only the RWRReg term. We
consider the same settings and tasks presented in Section 5, and results are shown in Table 4.
The results show that the sole addition of the RWRReg term increases the performance of
the considered models by more than 5%. At the same time, RWRReg (i) does not increase
the input size or the number of parameters, (ii) does not require additional operations at
inference time, (iii) does not require additional supervision (it is in fact a self-supervised
objective), (iv) maintains the permutation invariance of MPNN models, and (v) there
is a vast literature on efficient methods for computing RWR, even for web-scale graphs
(e.g., [15,33,34]). Hence, the only downside of RWRReg is the storage of the RWR matrix
during training on very large graphs.
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Table 4. Results for the addition of only the RWRReg term to existing models on node classification
(accuracy), graph classification (accuracy), and triangle counting (MSE—lower is better).

Model Regularization Dataset

Node Classification
Cora Pubmed Citeseer

GCN none 0.799± 0.029 0.776± 0.022 0.663± 0.095
RWRReg 0.861 ± 0.025 0.799 ± 0.034 0.686 ± 0.096

GraphSage none 0.806± 0.017 0.807± 0.016 0.681± 0.021
RWRReg 0.841 ± 0.016 0.818 ± 0.017 0.721 ± 0.021

GAT none 0.815± 0.021 0.804± 0.011 0.664± 0.008
RWRReg 0.824 ± 0.022 0.811 ± 0.013 0.702 ± 0.013

Graph Classification
ENZYMES D&D PROTEINS

GCN none 0.570± 0.052 0.755± 0.028 0.740± 0.035
RWRReg 0.621 ± 0.041 0.786 ± 0.024 0.785 ± 0.036

DiffPool none 0.661± 0.031 0.793± 0.022 0.813± 0.017
RWRReg 0.733 ± 0.032 0.822 ± 0.025 0.820 ± 0.038

k-GNN none 0.515± 0.111 0.756± 0.021 0.763± 0.043
RWRReg 0.582 ± 0.075 0.787 ± 0.022 0.780 ± 0.028

Triangles Test Set
Global Small Large

GCN none 2.290 1.311 3.608
RWRReg 2.187 1.282 3.014

6.2. Sparsification of the RWR Matrix

To tackle the issue of storing in memory large RWR matrices, we explore how the
sparsification of the RWR matrix affects the regularization of the model. In particular, we
apply a top-K strategy: for each node, we only keep the K highest RWR weights. This
approach can further take advantage of existing efficient methods to directly compute only
the top-K RWR weights (e.g., [33–36]). As an example, TopPPR [33] provides guarantees
on the precision of the returned scores, and requires only 15 seconds to retrieve the top-500
scores on a billion edge graph.

Figure 1 shows how different values of K impact performance on node classification
(which usually is the task with the largest graphs). We can see that the addition of the
RWRReg term is always beneficial. Furthermore, by taking the top- n

2 , we can reduce the
number of entries in the RWR matrix of n2

2 elements, while still obtaining an average 3.2%
increment on the accuracy of the model. This strategy then allows the selection of the value
of K that best suits the available memory, while still obtaining a high performing model
(better than GCN without global structural information injection).
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Figure 1. Performance of GCN on node classification for different values of K when trained with
RWRReg with Top-K sparsification of the RWR matrix on the following datasets: (a) Cora, (b) Pubmed,
(c) Citeseer.
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6.3. Impact of RWR Restart Probability

The use of RWR requires to set the restart probability parameter. We show how perfor-
mance changes with different restart probabilities. Intuitively, higher restart probabilities
might put more much focus on close nodes, as the random walker with frequent return
to the starting node. On the other side, lower probabilities allow for more long-range
exploration, but may get “trapped” into densely connected subgraphs. Intuitively, we
would expect lower probabilities to provide more information that is not already available
to practical GNNs, and hence lead to higher performance. Figure 2 summarises how the
accuracy on node classification (side (a)) and graph classification (side (b)) changes with
different restart probabilities. (We did not go below 5% for Cora, and 10% for D&D for
stability reasons in the computation of the RWR coefficients.) In accordance with our
intuition, higher restart probabilities focus on close nodes (and less on distant nodes),
and produce lower accuracies. Furthermore, we notice how injecting RWR information is
never detrimental to the performance of the model without any injection.

5 10 15 20 30 50 90
Random Walk Restart Probability (%)

0.79

0.80

0.81

0.82

0.83

0.84

0.85

0.86

0.87

0.88

Ac
cu
ra
cy
 o
n 
Te
st
 S
et

GCN
GCN-AD
GCN-RWR
GCN-RWRReg
GCN-RWR+RWRReg

(a)

10 15 20 30 50 90
Random Walk Restart Probability (%)

0.75

0.76

0.77

0.78

0.79

0.80

0.81

0.82

Ac
cu
ra
cy
 o
n 
Te
st
 S
et

GCN
GCN-AD
GCN-RWR
GCN-RWRReg
GCN-RWR+RWRReg

(b)

Figure 2. Accuracy on Cora (a), and on D&D (b), of GCN without and with the injection of structural
information, and for different restart probabilities of RWR.

7. Related Work

The field of GNNs has become extremely vast; for a thorough review, we refer the
reader to a recent survey on the subject [1]. To the best of our knowledge, there are no
studies that test if global information regarding the whole graph can significantly impact
MPNNs on real-world tasks. However, there are some works that are conceptually related
to our approach.

Several works have taken advantage of RWR in the context of MPNNs. Klicpera et al. [37]
use RWR to create a new (weighted) adjacency matrix where message passing is performed.
Li et al. [3] use random walks in a co-training scenario to add new nodes for the MPNNs’
training set. Ying et al. [38] and Zhang et al. [39] use random walks to define aggregation
neighbourhoods that are not confined to a fixed distance. Abu-El-Haija et al. [40,41] use
powers of the adjacency matrix, which can be considered as random walk statistics, to define
neighbourhoods of different scales. Zhuang and Ma [42] use random walks to define the
positive pointwise mutual information (PPMI) matrix and then use it in place of the adjacency
matrix in the MPNN formulation. Klicpera et al. [43] use a diffusion strategy based on RWR
instead of aggregating information from neighbours. This last work has recently been extended
by [44] to scale to large graphs using RWRs to sample neighbourhoods. We remark how the
aforementioned works focus on creating novel MPNN models, while we are interested in
studying the impact of global structural information (which MPNNs do not have access to).

Gao et al. [45] and Ref. [46] uses regularization techniques to enforce that the em-
beddings of neighbouring nodes should be close to each other. The first uses Conditional
Random Fields, while the second uses a regularization term based on the graph Lapla-
cian. Both approaches only focus on 1-hop neighbours and do not take global information
into account.
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With regard to the study of the capabilities and weaknesses of GNNs, Refs. [3,47] study
the over-smoothing problem that appears in Deep-GCN architectures, while Refs. [8,20] char-
acterize the relation to the Weisfeiler–Leman algorithm. Other works have expressed the simi-
larity with distributed computing [48,49], and the alignment with particular algorithmic struc-
tures [50]. These important contributions have advanced our understanding of the capabilities
of GNNs, but they do not analyze or quantify the impact of global structural information.

Our RWRReg term relies on the computation of the RWR coefficients for every node
(for computing the loss function). When dealing with large graphs, there is a vast literature
on fast approximations of RWR scores [15,16,33,34,51,52].

Recent work [53] has shown that anonymous random walks (i.e., random walks where
the global identities of nodes are not known) of fixed length starting at node u are sufficient
to reconstruct the local neighborhood within a fixed distance of a node u [53]. Subsequently,
anonymous random walks have been introduced in the context of learning graph repre-
sentations [54]. Such results are complementary to ours, since they assume access to the
distribution of entire walks of a given length, while our RWR representation only stores
information on the probability of ending in a given node. In addition, such works do not
provide a connection between RWR and 1-WL.

8. Conclusions

Whether global structural information (i.e., information that depends on the structure of
the whole graph) is needed in GNNs for common tasks on graph-structured data is an open
question. In this work, we tackle this question directly at its root. In particular, we identify
three strategies to inject global structural information into MPNN models, and we quantify
their impact on popular downstream tasks. Our experiments show that the additional
information significantly boosts the performance of all considered state-of-the-art models,
highlighting and quantifying the importance that global structural information can have on
common MPNN applications. We further discuss a novel practical regularization technique
based on RWR, which leads to an average improvement of 5% on all models, and is
supported by a novel connection between RWR and the 1-Weisfeiler–Leman algorithm.
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Appendix A. Proof of Proposition 1

Given a graph G = (V, E), we define its k-step RWR representation as the set of vectors
rv = [rv,u1 , . . . , rv,un ], v ∈ V, where each entry rv,u describes the probability that an RWR of
length k starting in v ends in u.

Proposition A1. Let G1 = (V1, E1) and G2 = (V2, E2) be two non-isomorphic graphs for which
the 1-WL algorithm terminates with the correct answer after k iterations and starting from the
labelling of all 1’s. Then, the k-step RWR representations of G1 and G2 are different.

https://linqs.soe.ucsc.edu/data
https://chrsmrrs.github.io/datasets/
https://chrsmrrs.github.io/datasets/
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Proof. Consider the WL algorithm with initial labeling given by all 1’s. It’s easy to see
that (i) after k iterations the label of a node v corresponds to the information regarding the
degree distribution of the neighborhood of distance ≤ k from v and (ii) in iteration i ≤ k,
the degrees of nodes at distance i from v are included in the label of v. In fact, after the
first iteration, two nodes have the same colour if they have the same degree, as the colour
of each node is given by the multiset of the colours of its neighbours (and we start with
initial labeling given by all 1’s). After the second colour refinement iteration, two nodes
have the same colour if they had the same colour after the first iteration (i.e., have the
same degree), and the multisets containing the colours (degrees) of their neighbours are the
same. In general, after the k-th iteration, two nodes have the same colour if they had the
same colour in iteration k− 1, and the multiset containing the degrees of the neighbours at
distance k is the same for the two nodes. Hence, two nodes that have different colours after
a certain iteration will have different colours in all the successive iterations. Furthermore,
the colour after the k-th iteration depends on the colour at the previous iteration (which
“encodes” the distribution of degree of neighbours up to distance k− 1 included), and the
multiset of the degrees of neighbours at distance k.

Given two non-isomorphic graphs G1 and G2, if the WL algorithm terminates with
the correct answer starting from the all 1’s labelling in k iterations, it means that there is no
matching between vertices in V1 and vertices in V2 such that matched vertices have the same
degree distribution for neighborhoods at distance exactly k. Equivalently, any matching
M that minimizes the number of matched vertices with different degree distribution has
at least one such pair. Now consider one such matching M, and let v ∈ V1 and w ∈ V2 be
vertices matched in M with different degree distributions for neighborhoods at distance
exactly k. Since v and w have different degree distributions at distance k, the number of
choices for paths of length k starting from v and w must be different (since the number of
choices for the k-th edge on the path is different). Therefore, there must be at least a node
u ∈ V1 and a node z ∈ V2 that are matched by M but for which the number of paths of
length k from v to u is different from the number of paths of length k from w to z. Since rv,u
is proportional to the number of paths of length k from v to u, we have that rv,u 6= rw,z that
is rv 6= rw. Thus, the k-step RWR representation of G1 and G2 are different.

Appendix B. Model Implementation Details

We present here a detailed description of the implementations of the models we use in
our experimental section. Whenever possible, we started from the official implementation
of the authors of each model. Table A1 contains links to the implementations we used as a
starting point for the code for our experiments.

Table A1. Starting model implementations.

Model Implementation Access Date

GCN (for node classification) github.com/tkipf/pygcn 2 February 2021
GCN (for graph classification) github.com/bknyaz/graph_nn 2 February 2021GCN (for triangle counting)
GraphSage github.com/williamleif/graphsage-simple 10 February 2021
GAT github.com/Diego999/pyGAT 13 February 2021
DiffPool github.com/RexYing/diffpool 15 February 2021
k-GNN github.com/chrsmrrs/k-gnn 15 February 2021

Training Details

With regard to the training procedure, we have that all models are trained with early
stopping on the validation set (stopping the training if the validation loss does not decrease
for a certain amount of epochs), and unless explicitly specified, we use Cross Entropy as
loss function for all the classification tasks.

https://github.com/tkipf/pygcn
https://github.com/bknyaz/graph_nn
https://github.com/williamleif/graphsage-simple/
https://github.com/Diego999/pyGAT
https://github.com/RexYing/diffpool
https://github.com/chrsmrrs/k-gnn
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For the task of graph classification, we zero-pad the feature vectors of each node
to make them all the same length when we inject structural information into the node
feature vectors.

For the task of triangle counting, we follow [32] and use the one-hot representation of
node degrees as node feature vectors to impose some structural information in the network.

Computing Infrastructure

The experiments were run on a GPU cluster with 7 Nvidia 1080Ti, and on a CPU
cluster (when the memory consumption was too big to fit in the GPUs) equipped with
8 cpus 12-Core Intel Xeon Gold 5118 @2.30 GHz, with 1.5 Tb of RAM.

In the rest of this section, we go through each model used in our experiments, spec-
ifying architecture, hyperparameters, and the position of the node embeddings used
for RWRReg.

Appendix B.1. GCN (Node Classification)

We use a two layer architecture. The first layer outputs a 16-dimensional embedding
vector for each node, and passes it through a ReLu activation, before applying dropout [55],
with probability 0.5. The second layer outputs a c-dimensional embedding vector for
each node, where c is the number of output classes and these vectors are passed through
Softmax to get the output probabilities for each class. An additional L2-loss is added with
a balancing term of 0.0005. The model is trained using the Adam optimizer [56] with a
learning rate of 0.01.

We apply the RWRReg on the 16-dimensional node embeddings after the first layer.

Appendix B.2. GCN (Graph Classification)

We first have two GCN layers, each one generating a 128-dimensional embedding
vector for each node. Then, we apply max-pooling on the features of the nodes and
pass the pooled 128-dimensional vector to a two-layer feed-forward neural network with
256 neurons at the first layer and c at the last one, where c is the number of output classes.
A ReLu activation is applied in between the two feed-forward layers, and Softmax is applied
after the last layer. Dropout [55] is applied in between the last GCN layer and the feed-
forward layer, and in between the feedforward layers (after ReLu), in both cases with
probability of 0.1. The model is trained using the Adam optimizer [56] with a learning rate
of 0.0005.

We apply the RWRReg on the 128-dimensional node embeddings after the last
GCN layer.

Appendix B.3. GCN (Counting Triangles)

We first have three GCN layers, each one generating a 64-dimensional embedding
vector for each node. Then, we apply max-pooling on the features of the nodes and pass
the pooled 64-dimensional vector to a one-layer feed-forward neural network with one
neuron. Dropout [55] is applied in between the last GCN layer and the feed-forward layer
with probability of 0.1. The model is trained by minimizing the mean squared error (MSE)
and is optimized using the Adam optimizer [56] with a learning rate of 0.005.

We apply the RWRReg on the 64-dimensional node embeddings after the last GCN layer.

Appendix B.4. GraphSage

We use a two layer architecture. For Cora, we sample five nodes per-neighbourhood
at the first layer and 5 at the second, while, on the other datasets, we sample 10 nodes
per-neighbourhood at the first layer and 25 at the second. Both layers are composed of
mean-aggregators (i.e., we take the mean of the feature vectors of the nodes in the sampled
neighbourhood) that output a 128-dimensional embedding vector per node. After the
second layer, these embeddings are multiplied by a learnable matrix with size 128× c,
where c is the number of output classes, giving thus a c-dimensional vector per-node. These
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vectors are passed through Softmax to get the output probabilities for each class. The model
is optimized using Stochastic Gradient Descent with a learning rate of 0.7.

We apply the RWRReg on the 128-dimensional node embeddings after the second
aggregation layer.

Appendix B.5. GAT

We use a two layer architecture. The first layer uses an 8-headed attention mechanism
that outputs an 8-dimensional embedding vector per-node. LeakyReLu is set with slope
α = 0.2. Dropout [55] (with probability of 0.6) is applied after both layers. The second layer
outputs a c-dimensional vector for each node, where c is the number of classes, and before
passing each vector through Softmax to obtain the output predictions, the vectors are passed
through an Elu activation [57]. An additional L2-loss is added with a balancing term of
0.0005. The model is optimized using Adam [56] with a learning rate of 0.005.

We apply the RWRReg on the 8-dimensional node embeddings after the first attention
layer. A particular note needs to be made for the training of GATs: we found that naively
implementing the RWRReg term on the node embeddings in between two layers brings
to an exploding loss as the RWRReg term grows exponentially at each epoch. We believe
this happens because the attention mechanism in GATs allows the network to infer that
certain close nodes, even 1-hop neighbours, might not be important to a specific node and
so they should not be embedded close to each other. This clearly goes in contrast with the
RWRReg loss, since 1-hop neighbours always have a high score. We solved this issue by
using the attention weights to scale the RWR coefficients at each epoch (we make sure that
gradients are not calculated for this operation as we only use them for scaling). This way,
the RWRReg penalizations are in accordance with the attention mechanism, and are still
encoding long-range dependencies.

Appendix B.6. DiffPool

We use a 1-pooling architecture. The initial node feature matrix is passed through two
(one to obtain the assignment matrix and one for node embeddings) 3-layer GCN, where
each layer outputs a 20-dimensional vector per-node. Pooling is then applied, where the
number of clusters is set as 10% of the number of nodes in the graph, and then another
3-layer GCN is applied to the pooled node features. Batch normalization [58] is added in
between every GCN layer. The final graph embedding is passed through a 2-layer MLP
with a final Softmax activation. An additional L2-loss is added with a balancing term of 10−7,
together with two pooling-specific losses. The first enforces the intuition that nodes that are
close to each other should be pooled together and is defined as: LLP = ‖A(l), S(l)ᵀS(l)‖F,
where ‖ · ‖F is the Frobenius norm, and S(l) is the assignment matrix at layer l. The second
one encourages the cluster assignment to be close to a one-hot vector, and is defined as:
LE = 1

n ∑n
i=1 H(Si,:), where H is the entropy function. However, in the implementation

available online, the authors do not make use of these additional losses. We follow the latter
implementation. The model is optimized using Adam [56] with a learning rate of 0.001.

We apply the RWRReg on the 20-dimensional node embeddings after the first 3-layer
GCN (before pooling). We tried applying it also after pooling on the coarsened graph,
but the fact that this graph could change during training yields to poor results.

Appendix B.7. k-GNN

We use the hierarchical 1-2-3-GNN architecture (which is the one showing the highest
empirical results). First, a 1-GNN is applied to obtain node embeddings, then these
embeddings are used as initial values for the 2 GNN (1-2-GNN). The embeddings of the
2-GNN are then used as initial values for the 3-GNN (1-2-3-GNN). The 1-GNN applies
three graph convolutions, while 2-GNN and the 3-GNN apply two graph convolutions.
Each convolution outputs a 64-dimensional vector and is followed by an Elu activation [57].
For each k, node features are then globally averaged and the final vectors are concatenated
and passed through a three layer MLP. The first layer outputs a 64-dimensional vector,
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while the second outputs a 3two-dimensional vector, and the third outputs a c-dimensional
vector, where c is the number of output classes. To obtain the final output probabilities for
each class, log(Softmax) is applied, and the negative log likelihood is used as loss function.
After the first and the second MLP layers an Elu activation [57] is applied, furthermore,
after the first MLP layer dropout [55] is applied with probability 0.5. The model is optimized
using Adam [56] with a learning rate of 0.01, and a decaying learning rate schedule based
on validation results (with minimum value of 10−5).

We apply the RWRReg on the 64-dimensional node embeddings after the 1-GNN.
We were not able to apply it also after the 2-GNN and the 3-GNN, as it would cause
out-of-memory issues with our computing resources.

Appendix C. Datasets

We briefly present here some additional details about the datasets used for our
experimental section. Table A2 summarizes the datasets for node classification, while
Table A3 presents information about the datasets for graph classification and triangle
counting. The node classification datasets are available at https://linqs.soe.ucsc.edu/data
(access date: 12 February 2021), while the graph classification and the triangle counting at
https://chrsmrrs.github.io/datasets/ (access date: 12 February 2021).

Table A2. Node classification dataset statistics.

Dataset Nodes Edges Classes Features Label Rate

Cora 2708 5429 7 1433 0.052
Pubmed 19,717 44,338 3 500 0.003
Citeseer 3327 4732 6 3703 0.036

Table A3. Graph classification and triangle counting dataset statistics.

Dataset Graphs Classes Avg. # Nodes Avg. # Edges

ENZYMES 600 6 32.63 62.14
D&D 1178 2 284.32 715.66
PROTEINS 1113 2 39.1 72.82

TRIANGLES 45,000 10 20.85 32.74

Appendix D. Adjacency Matrix Features Lead to Bad Generalization on the Triangle
Counting Task

We present additional details about the overfitting behaviour of GCN on the triangle
counting task when injected with adjacency matrix information. In Figure A1, we plot the
evolution of the MSE on the training and test set over the training epochs. GCN-AD reaches
the lowest error on the training set, while the highest on the test set, thus confirming its
overfitting behaviour. We can observe that, after 6 epochs, GCN-AD is already the model
presenting the lowest training loss, and it remains so until the end. Furthermore, we can
notice how the test loss presents a growing trend, which is in contrast to the other models.

https://linqs.soe.ucsc.edu/data
https://chrsmrrs.github.io/datasets/
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Figure A1. Training and test losses of GCN with different structural information injection on the
triangle counting task.

Appendix E. Fast Implementation of the Random Walk with Restart Regularization

Let H be the matrix containing the node embeddings, and S be the matrix with the
RWR statistics. We are interested in the following quantity

LRWRReg = ∑
i,j

Si,j||H i,: − H j,:||2

To calculate it in a fast way (specially when using GPUs), we use the following
procedure. Let us first define the following matrices:

Ŝ = n× n symmetric matrix with Ŝi,j =

{
Si,j + Sj,i for i 6= j
Si,j for i = j

D = n× n diagonal matrix with Di,i = ∑
j

Ŝi,j

∆ = D− Ŝ

We then have

LRWRReg = ∑
i,j

Si,j||H i,: − H j,:||2 = ∑
i

Hᵀ
:,i∆H :,i = Tr(Hᵀ∆H)

where Tr(·) is the trace of the matrix. Note that Hᵀ
:,i is the i-th column of H, transposed, so

its size is 1× n.

Appendix F. Empirical Analysis of the Random Walk with Restart Matrix

We now analyse the RWR matrix to justify the use of RWR for the encoding of global
structural information. We consider the three node classification datasets (see Section 5 of
the paper), as this is the task with the largest input graphs, and hence where this kind of
information seems more relevant.

We first consider the distribution of the RWR (we consider RWR, with a restart proba-
bility of 0.15, as done for the experimental evaluation of our proposed technique) weights
at different distances from a given node. In particular, for each node, we take the sum
of the weights assigned to the 1-hop neighbours, the 2-hop neighbours, and so on. We
then take the average, over all nodes, of the sum of the RWR weights at each hop. We
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discard nodes that belong to connected components with diameter ≤ 4, and we only plot
the values for the distances that have an average sum of weights higher than 0.001. Plots
are shown in Figure A2. We notice that the RWR matrix contains information that goes
beyond the immediate neighbourhood of a node. In fact, we see that approximately 90% of
the weights are contained within the 6-hop neighbourhood, with a significant portion that
is not contained in the 2-hop neighbourhood usually accessed by MPNN models.
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Figure A2. Average distribution of the RWR weights at different distances for the following node
classification datasets: (a) Cora, (b) Pubmed, (c) Citeseer. Distance zero indicates the weight that a
node assigns to itself.

Next, we analyse if RWR captures some non-trivial relationships between nodes.
In particular, we investigate if there are nodes that are far from the starting node, but re-
ceive a higher weight than some closer nodes. To quantify this property, we use the
Kendall Tau-b (We use the Tau-b version because the elements in the sequences we an-
alyze are not all distinct) measure [59]. In more detail, for each node v, we consider
the sequence rw(v) where the i-th element is the weight that the RWR from node v
has assigned to node i: rw(v)[i] = Sv,i. We then define the sequence drw(v) such that
drw(v)[j] = dist(v, fsort_weights(j, rw(v))), where dist(x, y) is the shortest path distance be-
tween node x and node y, and fsort_weights(j, rw(v)) is the node with the j-th highest RWR
weight in rw(v). Intuitively, if the RWR matrix is not capable of capturing a non-trivial
relationship, we would have that drw(v) is a sorted list (with repetitions). By comparing
drw(v) with its sorted version with the Kendall Tau-b rank, we obtain a value between 1
and −1, where 1 means that the two sequences are identical, and −1 means that one is the
reverse of the other. Table A4 presents the results, averaged over all nodes, on the node
classification datasets. These results show that, while there is a strong relation between the
information provided by RWR and the distance between nodes, there is information in the
RWR that is not captured by shortest path distances.

Table A4. Average and standard deviation, over all nodes, of Kendall Tau-b values measuring the
non-trivial relationships between nodes captured by the RWR weights.

Dataset Average Kendall Tau-b

Cora 0.729± 0.082
Pubmed 0.631± 0.057
Citeseer 0.722± 0.171

As an example of the non-trivial relationships encoded by RWR, Figure A3 presents a
drw(v) sequence taken from a node in Cora. This sequence obtains a Kendall Tau-b value of
0.591. We can observe that, for distances greater than 1, we already have some non-trivial
relationships. In fact, we observe some nodes at distance 3 that receive a larger weight than
nodes at distance 2. There are many other interesting non-trivial relationships; for example,
we notice that some nodes at distance 7, and some at distance 11, obtain a higher weight
than some nodes at distance 5.
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drw(1000) = [1, 1, 1, 2, 2, 2, 2, 2, 3, 2, 3, 2, 2, 2, 2, 3, 2, 3, 2, 2, 3, 2, 2, 3, 2, 2, 2, 3, 2, 3, 3, 2, 2, 3, 3, 4, 3, 4,

3, 3, 3, 3, 3, 3, 4, 3, 3, 4, 3, 3, 4, 3, 3, 4, 3, 3, 3, 3, 4, 4, 3, 3, 3, 4, 3, 3, 3, 3, 4, 3, 4, 3, 3, 3, 4, 4, 3, 4, 4, 4, 4, 4,

4, 4, 3, 3, 3, 4, 4, 3, 3, 4, 3, 3, 4, 4, 3, 4, 3, 4, 3, 4, 4, 4, 4, 4, 5, 5, 3, 4, 4, 4, 4, 4, 4, 4, 4, 3, 4, 4, 5, 4, 4, 4, 6, 3,

4, 4, 5, 4, 4, 5, 4, 5, 4, 4, 4, 4, 4, 3, 4, 4, 4, 4, 4, 5, 5, 4, 4, 4, 4, 5, 4, 4, 4, 4, 4, 5, 5, 5, 4, 5, 4, 5, 5, 4, 4, 4, 5, 4,

4, 4, 4, 5, 5, 4, 4, 4, 5, 4, 4, 5, 4, 4, 5, 4, 4, 5, 5, 5, 5, 5, 4, 5, 5, 4, 5, 5, 4, 5, 4, 4, 5, 4, 5, 5, 5, 5, 5, 4, 5, 4, 5, 5,

4, 4, 5, 4, 5, 5, 4, 5, 5, 5, 4, 4, 5, 5, 5, 4, 5, 4, 5, 5, 5, 5, 4, 5, 5, 5, 6, 5, 5, 5, 4, 5, 5, 5, 4, 4, 5, 5, 5, 4, 5, 5, 5, 4,

4, 5, 5, 5, 5, 4, 5, 5, 5, 4, 5, 4, 5, 4, 5, 4, 5, 4, 5, 5, 6, 4, 4, 4, 5, 5, 5, 4, 5, 4, 5, 5, 5, 6, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,

5, 5, 5, 5, 5, 5, 5, 5, 6, 5, 4, 5, 5, 4, 6, 5, 4, 5, 5, 5, 4, 5, 5, 5, 6, 4, 4, 5, 5, 5, 4, 5, 5, 5, 5, 5, 5, 5, 4, 5, 6, 5, 5, 5,

6, 5, 4, 5, 5, 5, 4, 5, 4, 5, 4, 5, 4, 4, 5, 6, 6, 5, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 4, 5, 5, 6, 6, 5, 5, 4, 5, 5, 5, 5, 6, 5, 6, 5,

6, 5, 4, 5, 5, 5, 5, 5, 5, 6, 6, 5, 5, 5, 5, 6, 5, 5, 5, 5, 5, 6, 5, 5, 6, 6, 6, 6, 5, 5, 5, 5, 4, 6, 6, 5, 4, 4, 4, 4, 6, 5, 5, 5,

5, 5, 5, 5, 5, 6, 5, 5, 6, 5, 5, 5, 4, 6, 5, 5, 5, 5, 5, 6, 5, 5, 6, 6, 6, 5, 6, 6, 6, 5, 6, 5, 5, 5, 4, 5, 5, 6, 5, 5, 6, 4, 5, 5,

5, 6, 5, 6, 5, 4, 5, 6, 5, 4, 6, 5, 6, 5, 6, 4, 6, 5, 5, 5, 5, 6, 5, 6, 5, 5, 5, 6, 5, 6, 4, 6, 6, 5, 5, 6, 5, 5, 5, 5, 5, 5, 5, 5,

5, 5, 4, 6, 5, 5, 5, 6, 6, 6, 6, 6, 4, 6, 5, 6, 5, 5, 6, 5, 5, 6, 5, 6, 5, 5, 5, 5, 7, 5, 5, 5, 5, 5, 5, 4, 5, 6, 5, 5, 6, 4, 6, 5,

5, 5, 5, 5, 5, 6, 5, 6, 6, 5, 5, 6, 5, 5, 4, 6, 5, 5, 7, 5, 6, 6, 5, 5, 5, 6, 6, 5, 5, 5, 5, 5, 5, 5, 5, 5, 6, 5, 6, 5, 5, 5, 5, 5,

5, 6, 5, 6, 6, 5, 6, 5, 6, 5, 6, 6, 5, 5, 5, 7, 5, 6, 5, 6, 5, 6, 6, 6, 5, 5, 5, 5, 5, 6, 4, 5, 6, 6, 6, 5, 5, 6, 5, 6, 5, 5, 5, 6,

5, 5, 6, 6, 4, 6, 5, 6, 5, 5, 6, 5, 5, 6, 5, 5, 6, 5, 6, 6, 4, 6, 6, 7, 5, 5, 5, 6, 6, 5, 6, 5, 6, 6, 5, 4, 5, 4, 6, 6, 6, 5, 5, 5,

6, 7, 6, 5, 4, 6, 5, 6, 6, 5, 4, 6, 5, 5, 5, 7, 5, 6, 5, 5, 4, 6, 5, 5, 6, 4, 5, 6, 5, 6, 5, 6, 6, 5, 5, 6, 7, 6, 6, 6, 6, 5, 6, 5,

5, 5, 5, 7, 5, 5, 5, 6, 5, 5, 5, 6, 6, 6, 5, 5, 6, 7, 5, 5, 6, 4, 6, 5, 6, 6, 4, 6, 6, 6, 6, 5, 6, 5, 6, 6, 5, 5, 6, 6, 6, 6, 5, 6,

7, 5, 5, 7, 6, 6, 6, 6, 5, 7, 6, 4, 5, 5, 6, 6, 5, 5, 5, 6, 6, 5, 5, 6, 7, 5, 5, 6, 5, 7, 5, 5, 6, 6, 7, 6, 6, 7, 6, 6, 6, 6, 6, 5,

5, 4, 5, 6, 5, 6, 7, 6, 6, 6, 6, 6, 6, 6, 4, 7, 6, 4, 4, 5, 6, 6, 6, 4, 6, 7, 6, 7, 6, 6, 5, 5, 4, 6, 6, 6, 5, 5, 6, 7, 6, 5, 4, 6,

7, 6, 4, 6, 5, 7, 6, 7, 5, 7, 6, 6, 4, 4, 5, 6, 4, 6, 6, 7, 6, 6, 6, 7, 5, 6, 6, 4, 6, 6, 6, 6, 5, 6, 5, 5, 7, 6, 7, 5, 7, 6, 6, 6,

5, 7, 6, 7, 6, 5, 6, 7, 6, 6, 5, 7, 7, 4, 6, 6, 5, 6, 4, 6, 6, 6, 5, 6, 6, 6, 6, 7, 4, 6, 5, 4, 6, 5, 6, 7, 7, 6, 6, 6, 4, 6, 6, 6,

6, 4, 4, 6, 4, 5, 4, 6, 7, 6, 6, 6, 6, 5, 6, 6, 6, 6, 5, 6, 5, 4, 4, 6, 6, 4, 5, 6, 7, 6, 6, 6, 5, 6, 4, 4, 5, 5, 4, 5, 7, 7, 4, 7,

6, 6, 7, 7, 7, 7, 5, 5, 6, 4, 5, 5, 6, 6, 6, 5, 6, 4, 7, 6, 6, 7, 6, 6, 6, 6, 4, 5, 6, 6, 7, 7, 4, 6, 6, 6, 6, 4, 4, 4, 5, 7, 5, 5,

6, 5, 5, 6, 7, 4, 6, 7, 6, 4, 6, 5, 5, 6, 5, 6, 6, 6, 6, 6, 5, 6, 6, 6, 5, 8, 6, 7, 6, 7, 6, 6, 6, 6, 6, 6, 6, 6, 6, 4, 6, 6, 6, 6,

6, 5, 6, 4, 5, 6, 6, 7, 4, 6, 6, 6, 6, 6, 8, 5, 7, 7, 4, 4, 6, 6, 6, 7, 6, 6, 6, 6, 6, 5, 6, 7, 6, 6, 4, 7, 5, 4, 6, 6, 4, 4, 4, 4,

7, 6, 6, 6, 6, 6, 6, 6, 7, 5, 7, 6, 4, 6, 4, 5, 6, 6, 7, 4, 4, 4, 6, 4, 7, 6, 7, 6, 5, 6, 7, 7, 4, 6, 7, 5, 4, 6, 6, 5, 6, 5, 6, 7,

4, 4, 4, 5, 6, 4, 7, 4, 4, 6, 6, 6, 6, 6, 7, 7, 6, 7, 5, 7, 6, 7, 6, 7, 6, 6, 4, 6, 6, 6, 6, 6, 6, 6, 8, 6, 5, 5, 7, 4, 5, 4, 6, 8,

8, 6, 7, 6, 7, 7, 4, 7, 6, 7, 7, 5, 7, 4, 6, 4, 6, 6, 6, 7, 7, 4, 7, 7, 7, 6, 6, 6, 6, 7, 6, 6, 6, 4, 6, 4, 7, 4, 6, 7, 6, 6, 5, 6,

4, 6, 4, 4, 4, 6, 7, 5, 4, 5, 6, 5, 4, 7, 4, 5, 7, 6, 6, 7, 6, 7, 6, 4, 4, 4, 7, 4, 4, 5, 7, 8, 4, 6, 5, 5, 6, 6, 4, 6, 6, 7, 6, 6,

7, 6, 7, 4, 7, 7, 5, 6, 6, 5, 4, 7, 6, 7, 7, 7, 6, 8, 7, 7, 6, 6, 5, 7, 6, 7, 7, 7, 8, 4, 7, 4, 7, 5, 7, 4, 6, 6, 5, 4, 4, 7, 4, 6,

4, 4, 4, 7, 7, 5, 5, 8, 6, 6, 5, 5, 6, 6, 6, 5, 6, 6, 7, 6, 6, 6, 5, 7, 7, 6, 5, 6, 7, 7, 4, 7, 6, 5, 4, 5, 6, 4, 6, 7, 8, 7, 7, 6,

6, 7, 6, 7, 7, 7, 5, 7, 7, 5, 6, 6, 6, 8, 6, 7, 6, 7, 8, 6, 6, 6, 5, 7, 6, 6, 7, 5, 6, 5, 6, 4, 5, 7, 4, 7, 6, 7, 6, 4, 7, 5, 7, 4,

7, 7, 7, 4, 7, 8, 6, 6, 5, 5, 6, 4, 7, 5, 6, 7, 6, 6, 6, 4, 7, 6, 6, 7, 7, 5, 7, 5, 7, 7, 6, 8, 6, 7, 6, 7, 5, 4, 6, 6, 6, 6, 7, 4,

6, 7, 6, 4, 9, 7, 6, 5, 6, 6, 4, 5, 6, 7, 5, 6, 6, 5, 6, 7, 6, 6, 8, 4, 8, 6, 9, 6, 6, 5, 6, 5, 6, 6, 6, 6, 6, 6, 7, 5, 6, 6, 7, 7,

5, 7, 8, 5, 6, 6, 7, 6, 4, 6, 6, 7, 7, 7, 7, 5, 7, 5, 4, 7, 5, 7, 7, 6, 6, 6, 7, 8, 7, 4, 10, 5, 7, 7, 6, 6, 8, 6, 6, 6, 7, 4, 7, 8,

5, 7, 7, 7, 7, 5, 5, 7, 5, 6, 6, 6, 5, 6, 5, 5, 5, 7, 5, 4, 5, 5, 6, 4, 6, 5, 6, 8, 4, 4, 6, 5, 5, 8, 7, 5, 7, 7, 7, 5, 8, 7, 6, 8,

5, 8, 7, 6, 7, 6, 7, 6, 8, 6, 8, 7, 7, 5, 6, 6, 6, 5, 7, 5, 5, 6, 5, 6, 7, 7, 7, 5, 7, 6, 7, 5, 6, 5, 6, 8, 7, 7, 6, 7, 5, 6, 6, 7,

6, 6, 7, 7, 7, 8, 5, 7, 8, 7, 5, 7, 6, 6, 7, 5, 5, 7, 7, 6, 6, 7, 5, 8, 6, 7, 8, 6, 8, 9, 7, 7, 5, 8, 8, 7, 7, 5, 5, 7, 5, 5, 9, 7,

6, 6, 7, 7, 6, 5, 8, 5, 10, 10, 7, 6, 8, 5, 6, 7, 6, 8, 5, 7, 6, 5, 7, 5, 5, 7, 7, 6, 5, 8, 6, 7, 5, 8, 8, 5, 5, 6, 7, 6, 6, 7, 5,

6, 8, 6, 7, 7, 5, 8, 9, 6, 7, 5, 7, 8, 6, 7, 5, 5, 7, 7, 5, 7, 7, 5, 7, 4, 6, 5, 7, 7, 7, 6, 7, 6, 7, 7, 7, 6, 8, 6, 5, 5, 6, 6, 6,

6, 8, 7, 7, 8, 5, 6, 8, 8, 8, 9, 5, 8, 8, 7, 8, 7, 5, 5, 6, 5, 7, 6, 8, 7, 8, 7, 9, 5, 7, 7, 5, 8, 5, 5, 7, 6, 6, 5, 9, 6, 7, 6, 6,

5, 7, 7, 6, 7, 8, 5, 7, 8, 7, 5, 7, 7, 8, 9, 7, 7, 5, 8, 7, 7, 8, 8, 5, 9, 5, 6, 6, 8, 7, 6, 10, 5, 8, 6, 8, 7, 7, 7, 6, 7, 6, 6, 5,

7, 6, 6, 5, 5, 7, 8, 8, 7, 5, 7, 7, 8, 6, 8, 8, 6, 7, 6, 6, 6, 6, 6, 8, 8, 8, 8, 6, 5, 11, 8, 7, 8, 8, 7, 8, 9, 7, 6, 6, 8, 8, 8, 9,

6, 7, 6, 5, 6, 5, 6, 8, 8, 6, 7, 7, 8, 8, 8, 7, 8, 8, 9, 6, 9, 8, 6, 7, 8, 7, 7, 5, 8, 7, 7, 7, 7, 10, 8, 7, 7, 9, 7, 8, 8, 8, 9, 8,

5, 7, 7, 7, 8, 8, 5, 7, 6, 7, 7, 7, 8, 6, 7, 7, 7, 5, 8, 7, 10, 8, 8, 8, 8, 8, 8, 8, 5, 7, 5, 11, 9, 6, 5, 6, 7, 8, 8, 8, 8, 7, 9,

8, 5, 8, 7, 7, 8, 8, 7, 6, 7, 8, 6, 6, 7, 7, 8, 6, 6, 5, 10, 6, 10, 8, 5, 9, 8, 5, 8, 6, 8, 8, 8, 6, 6, 8, 8, 9, 9, 7, 6, 7, 8, 8,

8, 9, 7, 10, 8, 5, 6, 8, 6, 8, 9, 9, 6, 6, 6, 7, 7, 5, 6, 5, 10, 8, 5, 9, 7, 9, 8, 9, 8, 8, 8, 7, 10, 10, 5, 6, 6, 8, 8, 8, 8, 5, 6,

8, 8, 8, 9, 5, 8, 8, 9, 8, 6, 8, 7, 11, 6, 8, 9, 11, 6, 8, 5, 8, 6, 12, 8, 5, 8, 7, 7, 6, 8, 9, 9, 6, 8, 6, 8, 9, 8, 7, 9, 8, 9, 9,

7, 11, 8, 9, 10, 10, 8, 10, 9, 8, 8, 9, 7, 5, 10, 9, 9, 8, 7, 8, 5, 6, 7, 8, 5, 6, 6, 10, 8, 8, 6, 9, 7, 11, 5, 8, 8, 7, 10, 8, 8,

8, 5, 9, 8, 6, 8, 8, 9, 8, 8, 8, 9, 8, 11, 8, 8, 11, 8, 6, 9, 9, 6, 8, 5, 8, 8, 8, 6, 8, 6, 7, 11, 6, 7, 7, 9, 6, 8, 8, 9, 6, 6, 9,

9, 11, 10, 9, 8, 9, 9, 10, 10, 10, 7, 9, 8, 8, 6, 7, 8, 9, 7, 6, 6, 8, 10, 9, 10, 6, 8, 9, 8, 10, 11, 9, 10, 10, 11, 6, 11, 11, 8,

9, 7, 7, 8, 8, 10, 8, 9, 10, 13, 9, 8, 9, 7, 9, 8, 11, 7, 9, 10, 9, 9, 12, 8, 8, 9, 9, 11, 9, 11, 9, 12, 10, 11, 11]
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Figure A3. drw(v) sequence for the 1000-th node in Cora.
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