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Abstract: As the world struggles with several compounded challenges caused by the COVID-19
pandemic in the health, economic, and social domains, timely access to disaggregated national and
sub-national data are important to understand the emergent situation but it is difficult to obtain.
The widespread usage of social networking sites, especially during mass convergence events, such
as health emergencies, provides instant access to citizen-generated data offering rich information
about public opinions, sentiments, and situational updates useful for authorities to gain insights.
We offer a large-scale social sensing dataset comprising two billion multilingual tweets posted from
218 countries by 87 million users in 67 languages. We used state-of-the-art machine learning models
to enrich the data with sentiment labels and named-entities. Additionally, a gender identification
approach is proposed to segregate user gender. Furthermore, a geolocalization approach is devised
to geotag tweets at country, state, county, and city granularities, enabling a myriad of data analysis
tasks to understand real-world issues at national and sub-national levels. We believe this multilingual
data with broader geographical and longer temporal coverage will be a cornerstone for researchers to
study impacts of the ongoing global health catastrophe and to manage adverse consequences related
to people’s health, livelihood, and social well-being.

Dataset: https://crisisnlp.qcri.org/tbcov

Dataset License: ODC-BY

Keywords: social sensing; COVID-19; sentiment analysis; trends analysis; geo-mapping; natural cities

1. Introduction

Social media use during emergencies, such as natural or human-induced disasters,
has become prevalent among the masses [1]. Twitter—a microblogging site—is increasingly
used by affected people and humanitarian organizations to share and seek information,
express opinions, and provide emotional support during disasters [2,3]. Prior studies show
that Twitter also provides timely access to health-related data about chronic diseases,
outbreaks, and epidemics [4–6]. Hence, the number of Twitter datasets pertaining to the
COVID-19 pandemic has been increasing constantly. The efficacy of these datasets for
various types of analyses can be measured across three fundamental dimensions: Language,
Space, and Time (LST). That is, datasets covering more languages, broader geographical
areas, and longer temporal boundaries are preferred for both longitudinal and cross-
sectional studies, especially during a global emergency, such as the COVID-19 pandemic.
Moreover, training robust machine learning (ML) and natural language processing (NLP)
models, as well as building predictive analytics tools require large-scale datasets for better
inference and generalization. However, existing datasets vary in their LST coverage. Many
of them are restricted to a single language, e.g., English [7,8] or Arabic [9,10], or confined
to specific geographies [11,12]. The data collection period also differs from one dataset to
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another. Among all, the dataset by Banda and colleagues stands out as one of the largest,
long-running collections with 383 million tweets [13], however, only a handful of English
keywords (only 10) were used for data collection—a common issue with existing datasets.

To bridge these gaps, we present TBCOV, a large-scale Twitter dataset comprising
Two Billion multilingual tweets related to the COVID-19 pandemic. Specifically, TBCOV
offers 2,014,792,896 tweets collected using more than 800 multilingual keywords over a
14-month period from 1 February 2020 till 31 March 2021. These tweets span 67 interna-
tional languages, posted by 87 million unique users across 218 countries worldwide. More
importantly, covering public chatter on various societal, health, and economic issues caused
by the pandemic, TBCOV captures different perspectives and opinions about governments’
policy decisions ranging from lock downs to aid allocation for individuals and businesses.
It also contains several important implications of the pandemic, such as food scarcity,
shortage of equipment and supplies, reports of anxiety and depression symptoms, among
others. In addition, its broad topical and LST coverage, TBCOV is also enriched with several
attributes derived from tweet text and meta-data using ML techniques. These attributes
include sentiment labels, geolocation information, named-entities, as well as user types
and gender.

Public sentiment: Distilling tweets to understand people’s opinions, emotions, and atti-
tudes towards an issue (e.g., low vaccination rate) or a policy decision has paramount
importance for various government entities [14]. Uncertainties in authorities’ perception of
public sentiment during health crises can otherwise result in poor risk communication [15].
Computational techniques such as sentiment analysis can help authorities to understand
aggregated public opinion during crises and devise appropriate strategies [16]. To this end,
we employ a multilingual transformer-based deep learning model [17] to tag each tweet in
TBCOV according to its sentiment polarity (i.e., positive, neutral, negative).

Geolocation information: Geotagging [18] is indispensable for geographic information systems
(GIS) for timely and effective monitoring of outbreaks, hot-spot prediction, disease spread
monitoring, and predictive risk mapping [19,20]. User-generated data on social media
platforms can fuel many of these applications [5,21]. However, low prevalence of geo-
referenced information on social media poses a challenge. To tackle this challenge, we
propose a geolocation tagging approach to map each tweet in TBCOV at country, state,
county, or city level.

Named-entities: Mentions of persons, organizations, and locations hold key information
in text documents and are crucial for various NLP tasks, such as question answering,
online reputation management, and automatic text summarization [22]. Named-entity
recognition (NER) is a widely used NLP technique to identify references to entities in
text documents [23]. Past studies propose several NER techniques ranging from rule- and
ML-based to hybrid methods [24,25]. To identify named-entities in our multilingual tweets,
we use language-specific NER models for the most prevalent five languages in TBCOV and
one multilingual NER model for all other languages.

User types and gender: Understanding gender disparities is important for addressing societal
challenges such as identifying knowledge gaps [26], digital divide [27], and health-related
issues [28,29]. Tweets in TBCOV are mainly sourced from three types of users, i.e., individu-
als, organizations, and bots. We first distinguish the user type by running an NER model on
the name field in a Twitter profile, and then, determine the gender information using an ML
classifier if the predicted user type is individuals.

To the best of our knowledge, TBCOV is the largest Twitter dataset related to COVID-
19 with broad LST coverage and rich information derived from multilingual tweets that can
be used for many NLP, data mining, and real-world applications. The dataset is accessible
at the CrisisNLP repository [30].
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2. Methods

This section first presents the data collection procedure and general statistics of the
dataset. Then, it elaborates on the computational techniques used to derive various at-
tributes such as sentiment and geo labels from tweets.

2.1. Data Collection and Description

Twitter offers different APIs for data collection. We use the Twitter Streaming API,
which allows for collecting tweets based on (i) a list of hashtags/keywords or (ii) geograph-
ical bounding boxes. Following the keyword-based streaming approach, we started our
data collection on 1 February 2020 using trending hashtags such as #covid19, #coronavirus,
#covid_19 and forming new keywords by pairing country names with different COVID-
related terms for all countries (e.g., United States coronavirus and Brazil COVID-19). We
then kept updating the keyword list based on the list of keywords used by Twitter for their
COVID-19 data stream (https://developer.twitter.com/en/docs/labs/covid19-stream/
filtering-rules (last accessed on 1 March 2021)). Additionally, we included other COVID-
related hashtags as they trended on Twitter as well as keywords related to newly emerging
situations such as a particular new symptom, vaccine development, food shortages, etc. In
total, more than 800 multilingual keywords and hashtags encompassing a large set of topics
including social distancing, shortages of masks, personal protective equipment (PPE), food,
medicine, and reports of COVID-19 symptoms and deaths were used. Table 1 lists some of
the terms while the full list of keywords can be found in Appendix A. Twitter offers filtered
streams for specific languages; however, we did not filter by any language, and hence, our
data is multilingual. Although the data collection was still running at the time of writing
this manuscript, all the statistics and analyses presented in this study are based on data
collected till 31 March 2021—i.e., 2,014,792,896 tweets. To the best of our knowledge, this is
the largest multilingual Twitter dataset covering a broad spectrum of topics and issues the
world has been facing amidst the COVID-19 pandemic.

Table 1. A sample of keywords/hashtags used for data collection.

Argentina Coronavirus, Armenia Coronavirus, Australia Coronavirus, Austria Coronavirus,
Azerbaijan Coronavirus, Bahamas Coronavirus, Bahrain Coronavirus, Bangladesh Coronavirus,
Barbados Coronavirus, Belarus Coronavirus, Belgium Coronavirus, Belize Coronavirus, Benin
Coronavirus, Bhutan Coronavirus, Bolivia Coronavirus, Bosnia Herzegovina Coronavirus,
Botswana Coronavirus, Brazil Coronavirus, Brunei Coronavirus, Bulgaria Coronavirus, Burkina
Coronavirus, Burundi Coronavirus, Cambodia Coronavirus, Cameroon Coronavirus, Canada
Coronavirus, COVID-19, Congo COVID-19, Congo COVID-19, Costa Rica COVID-19, Croatia
COVID-19, Cuba COVID-19, Cyprus COVID-19, Czech Republic COVID-19, Denmark COVID-19,
Djibouti COVID-19, Dominica COVID-19, Dominican Republic COVID-19, East Timor COVID-19,
Ecuador COVID-19, Egypt COVID-19, El Salvador COVID-19, Equatorial Guinea COVID-19,
Eritrea COVID-19, Estonia COVID-19, Ethiopia COVID-19, Fiji COVID-19, Finland COVID-19,
France COVID-19, Gabon COVID-19, Gambia COVID-19, Georgia COVID-19, Germany
COVID-19, Ghana COVID-19, #socialdistancing us, #socialdistancing usa, #socialdistancing
Alabama, #socialdistancing Alaska, #socialdistancing Arizona, #socialdistancing Arkansas,
#socialdistancing California, #socialdistancing Colorado, #socialdistancing Connecticut,
#socialdistancing Delaware, #socialdistancing Florida, #socialdistancing Georgia,
#socialdistancing Hawaii, #socialdistancing Idaho, #socialdistancing Illinois, #socialdistancing
Indiana, #socialdistancing Iowa, #socialdistancing Kansas, #socialdistancing Kentucky,
#socialdistancing Louisiana, #socialdistancing Maine, #socialdistancing Maryland,
#socialdistancing Massachusetts, #socialdistancing Michigan, económica, quédate en casa
Colombia, respiradores Colombia, tapabocas Colombia, UCI disponibles, recuperados covid19
Colombia, muertes Colombia, Nariño Coronavirus, Nariño Covid19, #coronavirus, #Corona,
#COVID19, #WuhanCoronavirus, #ncoV2019, #coronavirus, Italia, lombardia, #covid19italia,
#COVID19Pandemic, Covid, #CoronavirusAustralia, #pandemic, Covid-19 USA

Figure 1 depicts the volume of tweets ingested across the 61 weeks of the data collection
(1 February 2020 to 31 March 2021). The data do not show any gaps, which is an important

https://developer.twitter.com/en/docs/labs/covid19-stream/filtering-rules
https://developer.twitter.com/en/docs/labs/covid19-stream/filtering-rules
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factor for many types of analysis. The volume of tweets in the first three weeks is relatively
lower, e.g., ∼5 million daily tweets on average. However, a sudden surge can be noticed
starting from week four, which amounts to an overall average of 33 million tweets per
week. The maximum number of tweets recorded in a week is 65 million.
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Figure 1. Weekly distribution of 2,014,792,896 tweets from 1 February 2020 to 31 March 2021.

The tweets in TBCOV dataset are posted by 87,771,834 unique users and among them
268,642 are verified users (https://help.twitter.com/en/managing-your-account/about-
twitter-verified-accounts (accessed on 20 November 2021)). In total, the dataset covers
67 international languages. Figure 2 shows the distribution of languages with at least 10K
tweets and the corresponding number of tweets in the log scale. The English language
dominates with around 1 billion tweets and the second and third largest languages are
Spanish and Portuguese, respectively. There are around 55 million tweets for which the
language is undetermined—this is an important set of tweets suitable for the language
detection task with code-mixing properties [31].
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Figure 2. Distribution of languages with more than 10K tweets. The y-axis indicates the number of
tweets in log scale.

The TBCOV dataset is a substantial extension of our previous COVID-19 data re-
lease named GeoCoV19 [32]. The TBCOV dataset is superior in many ways. First, the
TBCOV dataset contains 1.5 billion more tweets than the GeoCoV19 dataset that consists
of 524 million tweets. Second, the data collection period of GeoCoV19 was restricted to
only four months (February 2020 to May 2020), whereas the TBCOV coverage is 14 months
(February 2020 to March 2021). The third and the most critical extension represents several
derived attributes that TBCOV offers, including sentiment labels, named-entities, user types,
and gender information. None of these attributes were available in the GeoCoV19 data.
Furthermore, the geotagging method used in GeoCoV19 has been substantially improved
in TBCOV, which yields better inference results.

2.2. Named-Entity Recognition

Named entities represent key elements in a text, including names of persons, organi-
zations, locations, brands, and dates, among others [22]. Past studies demonstrate diverse
applications of named entities on social media, such as finding adverse drug reactions [33]
and identifying temporal variations of locations, actors, and concepts from tweets about the
Zika outbreak [34]. Moreover, such entities, especially in unstructured social media mes-
sages, elicit critical information about an event or a situation along different dimensions—
who, where, when, what—i.e., people or organizations involved in a situation, their locations,
date or time of the event, their tasks, etc. Named-entity recognition (NER), i.e., the task of
identifying and extracting named entities, serves as the basis of many NLP tasks, such as
question answering, semantic annotation, information extraction, and text summarization.

https://help.twitter.com/en/managing-your-account/about-twitter-verified-accounts
https://help.twitter.com/en/managing-your-account/about-twitter-verified-accounts
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Several classical machine learning, and more recently deep learning, techniques have
been proposed to perform NER on standard web documents, as well as social media
data [35]. NER techniques and models can be either language-specific (i.e., trained for
a particular language) or multilingual (i.e., trained to operate on multiple languages).
Language-specific models usually outperform multilingual models. Hence, we use five
language-specific, deep learning-based NER models targeting the top five languages in
our dataset, i.e., English, Spanish, Portuguese, French, and Italian, and a multilingual deep
learning model to cover the remaining 62 languages. To this end, we used spaCy [36], which
offers state-of-the-art language-specific and multilingual NER models. The English NER
model can recognize eighteen different types of entities, including persons, organizations,
locations, language, product, time, money, etc. However, all other NER models can detect
only the three fundamental entity types, i.e., persons, organizations, and locations in addition
to a miscellaneous type representing other entities. We introduced an additional entity,
named COVID-ENTITY, to represent different COVID-19 related terms (N = 60), including
coronavirus, SARS-CoV, SARS-COVID-19, Corona, Covid19, etc. Text of all two billion
tweets was first preprocessed by removing URLs, usernames, emojis, and other special
characters, and then fed to one of the six NER models depending on the language attribute.
Four NVIDIA Tesla P100 GPUs were used to process all the data. Both inference and
validation results are presented in the next section.

2.3. Geographic Information

Geotagged social media messages with situational or actionable information have a
profound impact on decision-making processes during emergencies [37,38]. For example,
recurring tweets showing face mask violations in a shopping mall or a park, or on a
beach, can potentially inform authorities’ decisions regarding stricter measures. Moreover,
when governments’ official helplines are overwhelmed [39], social media reports, e.g.,
shortages of essential equipment in a remote hospital or patients stuck in traffic requiring
urgent oxygen supply [40], could be life-saving if processed and geotagged timely and
effectively. Furthermore, GIS systems, which heavily rely on geotagged information, are
critical for many real-world applications, such as mobility analysis, hot-spot prediction,
and disease spread monitoring. Despite these advantages, social media messages are often
not geotagged, thus are not suitable for automatic consumption and processing by GIS
systems. However, they may still contain toponyms or place names, such as street, road, or
city—information useful for geotagging.

This work geotags tweets using five meta-data attributes. Three of them, i.e., tweet
text, user location, and user profile description, are free-form text fields potentially containing
toponym mentions. The tweet text attribute, which represents the actual content of a tweet in
280 characters, can have multiple toponym mentions for various reasons. The user location
is an optional field that allows users to add location information, such as their country,
state, and city whereas the user profile description field usually carries users’ demographic
data [41]. The latter two user-related attributes are potential sources for user location
inference [42]. The remaining two attributes, i.e., geo-coordinates and place tags carry geo-
information in a structured form that is suitable for the direct consumption by the automatic
GIS systems. The geo-coordinates field contains latitude and longitude, which are directly
obtained from the users’ GPS-enabled devices. However, many users refrain from enabling
this feature, thus only 1–2% of tweets contain exact coordinates [43]. The place attribute
carries a bounding box representing a location tag that users optionally provide while
posting tweets. Although geo-coordinates and place attributes suit GIS consumption, for
the sake of standardization with text-based attributes, we convert them to country, state,
county, and city-level information using a process known as “reverse geocoding” which is
described next.

The pseudo-codes of the proposed geotagging procedures are presented in Algorithms 1–3.
Two common processes across three procedures are (i) geocoding and (ii) reverse geocoding.
The geocoding process is used to obtain geo-coordinates from a given place name (e.g., Cali-
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fornia) while the reverse geocoding process is used to retrieve the place name corresponding
to a given geo-coordinates. Multiple geographical databases exist and support these two
processes. We use the Nominatim database, which is a search engine of OpenStreetMap [44].
The official online Nominatim service restricts 60 calls/minute, and hence, is not suitable
for us to make billions of calls in a reasonable time period. Therefore, we set up a local
installation of the Nominatim database. Both Nominatim calls (i.e., geocoding and reverse
geocoding) return, among others, a dictionary object named “address” which comprises
several attributes, such as country, state, county, and city, depending on the granularity of
the location query.

The procedure to process toponyms from text fields (except user location) is highlighted
in Algorithm 1. The procedure assumes that all six NER models are already loaded (line 1).
After initializing the required arrays, preprocessing of the text (i.e., remove all URLs,
usernames, emoticons, etc.) is performed (line 3). The lang attribute, which represents the
language of a tweet, determines the NER model to be applied on the processed text for
entity extraction. Recall that five language-specific and one multilingual NER models are
used in this study. Since NER models return different types of entities, next we iterate over
all predicted entities (line 7) to retain the ones with the following types: LOC, FAC, or GPE
(line 8). The LOC entity type represents locations of type mountain ranges, bodies of water;
the FAC corresponds to buildings, airports, highways, bridges, etc., and GPE represents
countries, cities, and states. Finally, a geocoding call per entity is made and responses are
stored (line 9 and 10).

Algorithm 1: Pseudo-code for processing toponyms from text.

1 NER_models← getNERModels(lang) // load all six NER models into a
dictionary where the lang parameter indicates languages, i.e.,
en, fr, es, pt, it, and ml

2 Function geoLocalizeText(input_text, lang):
3 Initialize address_objects[ ] // initializing address objects array to

store Nominatim responses
4 Initialize entities[ ] // initializing entities array to store NER model

responses
5 processed_text← preprocessing(input_text) // remove URLs, emoticons,

usernames, special characters
6 entities← NER_models[lang].getEntities(processed_text)
7 for idx, entity in entities do
8 if entity = LOC or FAC or GPE then
9 address← geocoding(entity) // nominatim server call

10 address_objects[idx]← address
11 end
12 end
13 return address_objects

Algorithm 2 outlines the procedure for processing the place attribute. The place_type
attribute inside the place object helps determine if a reverse or a simple geocoding call is
required (lines 2 and 5). Places of type POI (Point-of-Interest) contain exact latitude and
longitude coordinates, and thus, suitable to perform reverse geocoding calls (line 4). However,
non-POI places (i.e., city, neighborhood, admin or country) are represented with a bounding box
spanning a few hundred square feet (e.g., for buildings) to thousands of square kilometers
(e.g., for cities or countries). Moreover, large bounding boxes can potentially cover multiple
geographic areas, e.g., two neighboring countries, and, hence, can be ambiguous to resolve.
To tackle this issue, we use full_name attribute to make geocoding calls (lines 7 and 16) and
compare the country name of the obtained address with that of the original place object
(lines 9 and 18). In case countries do not match, as a last resort, a midpoint of the bounding
box is obtained (lines 11 and 20) to make reverse geocoding calls (lines 12 and 21).



Data 2022, 7, 8 7 of 27

Algorithm 2: Pseudo-code for geotagging place object.

1 Function geoLocalizePlace(place_object):
2 if place_object[“place_type”] = POI then
3 coordinates← place_object[“place”][“coordinates”]
4 address← reverseGeocoding(coordinates) // Nominatim server call
5 else if

place_object[“place_type”] = city OR neighborhood OR admin OR country
then

6 if place_object[“ f ull_name”] is not None then
7 address← geocoding(“ f ull_name”) // Nominatim server call
8 granularity_level = getLowestGranularity(place_object[“place_type”])
9 if address[“country_name”]! =

place_object[“country_name”] AND granularity_level ! = “Country”
then

10 bounding_box ← place_object[“place”][“coordinates”]
11 longitude, latitude← getMidpoint(bounding_box) // Get the

midpoint (latitude and longitude) of the bounding box
12 address← reverseGeocoding(longitude, latitude) // Nominatim

server call
13 end
14 end
15 else if place_object[“name”] is not None then
16 address← geocoding(“name”) // Nominatim server call
17 granularity_level = getLowestGranularity(place_object[“place_type”])
18 if address[“country_name”]! =

place_object[“country_name′′] AND granularity_level ! = “Country”
then

19 bounding_box ← place_object[“place”][“coordinates”]
20 longitude, latitude← getMidpoint(bounding_box) // Get the

midpoint (latitude and longitude) of the bounding box
21 address← reverseGeocoding(longitude, latitude) // Nominatim

server call
22 end
23 end
24 return address

Algorithm 3 outlines the pseudo-code of the overall geotagging process. It starts with
loading a batch of tweets (line 1) and iterating over them (line 2). Tweets with coordinates
are used to make a reverse geocoding call (lines 3–5). For place tweets, the geoLocalizePlace
procedure is called, which is defined in Algorithm 2. Additionally, for the two text-based
attributes (i.e., text, user profile description), the geoLocalizeText procedure is called, which is
defined in Algorithm 1. However, the user location attribute is pre-processed and geo-coded
without applying any NER model (lines 13–15). The evaluation results of the proposed
geotagging approach are presented in the next section.
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Algorithm 3: Pseudo-code for the overall processing of all attributes.

1 tweets[ ]← load_tweets_batch()
2 for tweet in tweets do
3 if tweet[“coordinates”] is not None then
4 longitude, latitude← tweet[“coordinates”][“coordinates”]
5 adrsGeo ← reverseGeocoding(longitude, latitude) // nominatim server

call
6 end
7 if tweet[“place”] is not None then
8 adrsPlace← geoLocalizePlace(tweet[“place”])
9 end

10 if tweet[“text”] is not None then
11 adrsText← geoLocalizeText(tweet[“ f ull_text”])
12 end
13 if tweet[“user”][“location”] is not None then
14 processed_UserLoc← preprocessing(tweet[“user”][“location”]) // remove

URLs, emoticons, usernames, special characters
15 adrsUserLoc← geocoding(processed_UserLoc) // nominatim server

call
16 end
17 if tweet[“user_pro f ile_description”] is not None then
18 adrsUserPro f ile← geoLocalizeText(tweet[“user_pro f ile_description”])
19 end
20 return adrsGeo, adrsPlace, adrsText, adrsUserLoc, adrsUserPro f ile
21 end

2.4. Sentiment Classification

Understanding public opinion and sentiment is important for governments and au-
thorities to maintain social stability during health emergencies and disasters [45,46]. Prior
studies highlighted social networks as a potential medium for analyzing public sentiment
and attitude towards a topic [47]. Opinionated messages on social media can vary from
reactions on a policy decision [48] or expressions of sentiment about a situation[49] to
sharing opinions during sociopolitical events, such as the Arab Spring [50]. Sentiment
analysis, which is a computational method to determine text polarity, is a growing field
of research in the text mining and NLP communities [51]. There is a vast literature on
the algorithms and techniques proposed for sentiment analysis—detailed surveys can be
found in [52–54]. Moreover, numerous studies employ sentiment analysis techniques to
comprehend public sentiment during events ranging from elections and sports, to health
emergencies [49,55]. We are interested in understanding the public sentiment perceived
from multilingual and multi-topic COVID-19 tweets from worldwide.

Our Twitter data are multilingual and cover dozens of real-world problems and incidents,
such as lockdowns, travel bans, and food shortages, among others. Thus, sentiment analysis
models that focus on specific topics or domains and support specific languages do not suit
our purpose. For this reason, we ideally need a language model which is not tied to one single
sentiment analysis task, rather trained on general-purpose multilingual representations.

The NLP community offers a myriad of multilingual architectures ranging from LSTMs
to more famous transformer-based models [54]. Most recently, a transformer-based model
called XLM-T has been proposed as a multilingual variant of the XLM-R model [56] by
fine-tuning it on millions of Twitter general-purpose data in eight languages [17]. Although
the original XLM-R model is trained on 100 languages using more than two terabytes of
filtered CommonCrawl data, its Twitter variant XLM-T achieves better performance on a
large multilingual benchmark for sentiment analysis [17]. Hence, we used the XLM-T model
to obtain sentiment labels and confidence scores for all two billion tweets in our dataset.
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2.5. User Type and Gender Classification

Twitter has 186 million daily active users, with 70.4% male and 29.7% female users [57].
Twitter users represent, among others, businesses, government agencies, NGOs, bots, and,
most importantly, the general public [58,59]. Information about user types is helpful for
many application areas, including customer segmentation and engagement [60], making
recommendations [61], users profiling for content filtering [62], and more. Moreover, users
demographic information, such as gender, is important for addressing societal challenges,
such as identifying knowledge gaps [26], health inequities [28], digital divide [27], and
other health-related issues [29]. The tweets in TBCOV are from 87.7 million unique users
worldwide, which is 47% of the daily active users on Twitter. Our aim is to determine
accounts which belong to the general public, hereinafter personal accounts, and their gender.
However, Twitter neither provides account types nor their gender information. To this end,
we observed that user-provided names in personal accounts can potentially be used to not
only distinguish them from other types such as organizational accounts, their morphological
pattern are indicative of gender as well [63,64]. For example, the username “Capital Press”
is a media account whereas the username “Laura Sanchez” is a personal account that likely
belongs to a female.

First, we determine user type (i.e., personal, organizations, etc.) by applying the English
NER model (described previously) on user-provided names. Usernames are preprocessed
(i.e., remove URLs, numerals, emojis, tabs spaces, newlines) prior to feeding the model,
which assigns one of the 18 entity types to a username, including person.

Next, we seek to further disaggregate the identified personal accounts by their gender.
Prior studies demonstrate that morphological features of a person’s given name (also
known as a first name or forename) provide gender cues, such as voiced phonemes are
associated with male names and unvoiced phonemes are associated with female names [64].
Hence, the first names of the identified personal accounts are employed for training a
supervised machine learning classifier. Several publicly available name-gender resources
were used [65–67] as our training datasets. Names in these datasets are written using the
English alphabets. We combined the datasets and removed duplicates. This process yielded
121,335 unique names with a distribution of female and male as 73,314 (60%) and 48,021
(40%), respectively.

Prior to training the classifier, data were split into train and test sets with a 80:20 ratio,
respectively, and phonetic features from first names are extracted by moving a variable-sized
window over them in two directions (i.e., left-to-right and the opposite). The window of
length one moves from its starting point (i.e., either the first or the last character of a name).
Subsequent moves increase window size by one until a threshold value is reached. The
threshold limits the number of features required in one direction, which we empirically
learned by experimenting several values ranging from 1 to 7 (i.e., 7 is the average length
of names in our dataset). Fewer than four features (in one direction) negatively impact
classifiers’ performance, whereas, larger values yield diminishing effect. Thus, a threshold
of four is set, i.e., representing the first four and last four features of a name. For example,
given a name “Michael”, the feature extraction method extracts eight features, four from
the start (i.e., ‘m’, ‘mi’, ‘mic’, ‘mich’) and four from the last (i.e., ‘l’, ‘el’, ‘ael’, ‘hael’). The
extracted features are then encoded with their corresponding positions in names, e.g., the
‘mic’ feature in the earlier example caries its position, i.e., first-three-letters. The extracted
positional features are then used to train several well-known machine learning classifiers,
including Naive Bayes [68], Decision Trees [69], and Random Forests [70]. We present
validation results in the next section.

3. Results

This section presents validation details and performances of the employed computa-
tional methods. Moreover, results obtained by applying the computational methods to all
two billion tweets to infer latent attributes such as sentiment, entities, geo, and gender, are
presented in this section.
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3.1. Named-Entities Results

The named-entities extraction process used five language-specific and one multilingual
NER models. Table 2 shows the performance of these six NER models as reported on the
spaCy website [36] (We note that these performance scores may be updated by spaCy
when/if they release newer trained models and pipelines). The entities recognition and
extraction process resulted 4.7 billion entities from all tweets. Table 3 shows the number of
entities extracted of type person, organization, location, and misc (i.e., miscellaneous) for the
top four languages. The selected languages represent 38% of person, 68% of organization, and
76% of location out of all the extracted entities. The remaining entities represent a long-tail
distribution. The high proportion of the location-based entities in tweets is interesting and
potentially useful for several tasks, such as virus hot-spot prediction and mobility analysis.
However, such applications require an efficient extraction and geolocalization of the location
toponyms from tweets, which we obtain using the proposed geotagging method.

Table 2. Performance of the NER models as reported on the spaCy website [36].

Model Precision Recall F1-Score

English 0.85 0.85 0.85
Spanish 0.90 0.90 0.90
Portuguese 0.90 0.90 0.90
French 0.84 0.84 0.84
Italian 0.86 0.85 0.86
Multilingual 0.84 0.83 0.84

Table 3. Named-entities extraction results for the top four languages. ‘U’ denotes “unique occurrences”
and ‘A’ denotes “all occurrences” of entities.

Language Person Organization Location Miscellaneous

English (U) 14,796,271 18,887,285 2,930,148 10,798,850
English (A) 409,794,668 611,669,779 483,680,780 1,690,122,455
Spanish (U) 3,777,463 2,230,017 3,265,204 14,968,547
Spanish (A) 98,561,105 69,581,078 169,903,131 301,512,355
Portuguese (U) 1,439,192 932,504 1,006,396 2,845,321
Portuguese (A) 27,577,759 15,896,880 40,090,891 52,440,351
French (U) 1,374,884 804,336 719,896 3,894,968
French (A) 23,595,420 17,256,551 34,064,424 63,010,283

Total (U) 55,721,884 33,324,173 10,336,415 40,767,983
Total (A) 803,832,752 814,205,050 805,175,906 2,320,195,791

3.2. Geotagging Results

To evaluate the proposed geotagging method, we first obtain ground-truth data for
different attributes. Geotagged tweets with GPS coordinates, i.e., latitude and longitude, were
used as ground truth for the evaluation of the place field. Specifically, tweets with (i) geo-
coordinates and (ii) place fields are sampled and their location granularities, such as country,
state, county, and city were obtained from Nominatim using its reverse geocoding API.
Finally, we compute the precision metric, i.e., the ratio of correctly predicted locations (true
positives) to the total predicted outcomes (i.e., sum of true positives and false positives) at
each granularity. Table 4 shows the evaluation results along with the number of sampled
tweets (in parenthesis). All location granularity scores except county are promising.

Table 4. Geotagging method evaluation for the place attribute (in terms of precision). Numbers in
parenthesis represent the sample size.

Country State County City

Place 0.988 (7990) 0.967 (7871) 0.771 (7394) 0.967 (4903)
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The evaluation of the user location geotagging method is performed on a manually
annotated (The authors of this paper performed the manual annotation). We used a random
sample of 500 user locations, which satisfies the minimum sample size of 385 for populations
greater than one million with a confidence level of 95% and a confidence interval of 5%
according to Cochran’s formula [71], a commonly used metric in statistics. Specifically,
each user location string was examined to determine its corresponding country, state,
county, and city. Google search, Wikipedia, and other sources were allowed to search and
disambiguate when multiple candidates emerged. Location strings, such as “Planet earth”,
were annotated as “NA” and used in the evaluation procedure (i.e., the system’s output for
an “NA” case is considered True Positive if blank and False Positive otherwise). Table 5 shows
the evaluation results in terms of precision, recall, and F1-score. Overall, the F1-scores for
all location granularities are high. However, fine-grained location resolution poses more
challenges for the method (e.g., the recall at the city level is 0.656 compared to the recall of
1.0 at the country level).

Table 5. Geotagging method evaluation for the user location attribute.

Metric Country State County City

Precision 0.868 0.839 0.648 0.802
Recall 1.000 0.968 0.922 0.656
F1-score 0.929 0.899 0.761 0.722

Lastly, to evaluate text-based attributes (i.e., tweet text and user profile description),
1000 tweets in English were randomly sampled and crowdsourced on Appen, which is a
paid crowdsourcing platform. Specifically, given a tweet text, annotators were asked to (i)
tag toponyms (i.e., location names such as USA, Paris) and (ii) specify the location type (i.e.,
country, state, county, and city) of the identified toponyms. Three evaluation metrics, i.e.,
precision, recall, and F1-score were computed using the annotated location tokens. Table 6
presents geotagging evaluation results for the two text-based attributes (i.e., tweet text and
user profile description). Geotagging at country and state levels yields promising F1-scores
(i.e., 0.803 and 0.703, respectively). However, the results for county and city are weak.

Table 6. Geotagging method evaluation for tweet text and user profile description attributes.

Metric Country State County City

Precision 0.888 0.781 0.056 0.430
Recall 0.732 0.640 0.462 0.184
F1-score 0.803 0.703 0.100 0.258

Next, the geotagging approach is applied on all the tweets in TBCOV, which identified
515,802,081 mentions of valid toponyms from tweet text and 180,508,901 from user profile
description. More importantly, out of all 1,284,668,011 users’ self-declared locations in the
user location field, 1,132,595,646 (88%) were successfully geotagged. Moreover, the process
yielded 2,799,378 and 51,061,938 locations for geo-coordinates and place fields, respectively.
Table 7 shows important geotagging results, including total occurrences, geotagging yield,
and resultant resolved locations granularity at country, state, county, and city level. To deter-
mine the country, state, county, and city of a tweet, we mainly rely on three attributes. The
first two attributes are users’ self-reported location in the user location or user profile descrip-
tion fields. GPS coordinates are used (if available) in case a tweet is not resolved through
user location and user profile description fields. Altogether more than 1.8 billion locations
corresponding to 218 unique countries, 2518 states, 26,605 counties, and 24,424 cities world-
wide were resolved based on OpenStreetMap’s Nominatim database. The dataset contains
175 countries and 609 cities around the world with at least 100K tweets. Figure 3 depicts the
monthly distribution of top-10 countries and cities throughout the data collection period.
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Table 7. Geotagging results for all five attributes with unique occurrences, geotagging yield, and
resolved countries, states, counties, and cities.

Attribute Occurrences Geotagged
(Yield) Countries States Counties Cities

Coordinates 2,799,378 2,799,378
(100%) 211 1912 9037 8079

Place 51,411,442 51,061,938
(99%) 215 1906 13,343 9932

User location 1,284,668,011 1,132,595,646
(88%) 218 2511 24,806 20,648

User prof. desc. 1,642,116,879 180,508,901
(11%) 218 2485 18,588 14,600

Tweet text 2,014,792,896 515,802,081
(26%) 218 2513 24,235 20,549
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(a) Monthly proportion of tweets from top-10 countries
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(b) Monthly proportion of tweets from top-10 cities

Figure 3. Country and city distributions across months sorted by overall tweet proportions.

To allow meaningful comparisons of geotagged tweets across different countries, we
normalize tweets from each country by its population and calculate posts per 100,000 persons.
For this purpose, geotagged tweets resolved through user location, user profile description,
and geo coordinates attributes were used. Figure 4 shows the normalized counts of geotagged
tweets for each country on a world map.

3.3. Sentiment Analysis Results

As mentioned in the methods section, we used the multilingual XLM-T model [17]
to obtain sentiment labels and confidence scores for all two billion tweets in our dataset.
Of all tweets, 1,054,008,922 (52.31%) labeled as negative, 680,300,793 (33.77%) as neutral,
and 280,483,181 (13.92%) as positive. Figure 5 presents weekly aggregation of sentiment
labels for all tweets in all languages. As anticipated, the negative sentiment dominates
throughout (i.e., all 14 months) the data collection period. A significant surge of negative
sentiment is apparent in the beginning of March, peaking in April (first week), and then
averaging down during the later months. Several hills and valleys appear, but no week
after April 2020 reaches as high as negative tweets surged in April. The neutral sentiment
worldwide stays always lower than the negative, but follows a similar pattern as in the
case of the negative sentiment. Not surprisingly though, the positive sentiment remains the
lowest sentiment expressed in tweets with steady average except a few weeks in April 2020.



Data 2022, 7, 8 13 of 27

Figure 4. Geotagged tweets worldwide normalized by country’s population (per 100,000 persons).
Tweets geotagged using user location, user profile description, and GPS-coordinates are included.
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Figure 5. Weekly distribution representing public sentiment based on worldwide tweets in
all languages.

Figure 6 shows countries’ aggregated sentiment on a world map. The sentiment scores
for countries represent normalized weighted averages based on the total number of tweets
from a country and model’s confidence scores for positive, negative, and neutral tweets.
Equation (1) shows the computation of weighted average sentiment score for a country:

Sc =
∑tc

i∈{pos,neut} Θc
i −∑tc

i∈{neg} Θc
i

Nc
(1)

where tc
i represents the sentiment label of tweet i form country c while Θc

i indicates the
model’s confidence score for tc

i , and Nc corresponds to the total number of tweets from the
country. The normalized score (Sc) ranges from −1 to 1, where −1 represents high-negative
and 1 high-positive, with zero being neutral. The model confidence score (Θc

i ) represents
the model’s trust level for assigning a sentiment class to a tweet and it ranges between 0
and 1. It is important to note that Sc particularly aims to proportion negative sentiment
tweets against other positive or neutral sentiment tweets since neutral sentiment can be
considered as a weak form of positive sentiment from a practitioner perspective especially
during emergencies. Therefore, Equation (1) does not completely exclude neutral sentiment
tweets by assigning zero weight to them. The numbers on top of each country are z-scores
computed using the representative sentiment tweets normalized by the total tweets from
all countries. Overall, the map shows overwhelming negative sentiment across all except a
few countries. Surprisingly, Saudi Arabia and other Gulf countries, including Qatar, UAE,
and Kuwait, show a strong positive sentiment. Rest of the world, including the US, Canada,
and Australia, show moderate to strong negative sentiment.
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Figure 6. Worldwide sentiment based on normalized classifier scores of the representative sentiment
in each country. Numbers on countries are z-scores computed using the representative sentiment
tweets normalized by total tweets from all countries.

Figure 7 shows the weekly sentiment trends for the top-six countries (by total tweets
in our data). Consistent to the worldwide sentiment trends, the negative sentiment of all
six countries dominates throughout. Although a few countries (US, UK, and India) reach a
couple million negative tweets for a few weeks, the other countries stay lower around half
a million in the remaining weeks.

In Figure 8, we provide additional information about the distribution, skewness
through quartiles, and median for positive and negative sentiments for the top-six countries.
We notice that in most cases the highest variation in both positive and negative sentiment
is observed in March 2020, corresponding to the earlier stages of the pandemic where
the coronavirus was spreading rapidly around the globe. Most countries seem to have
less dispersion in April 2020 with quite high maximum range of any type of sentiment.
Then, we observe another high variation trend in both positive and negative sentiment
but at a lower overall volume across all countries in September 2020, which corresponds
to a time frame in which India was experiencing the peak of its first wave and Spain was
experiencing the peak of its second wave. These interesting patterns can reveal many more
hidden insights, which could help authorities gain situational awareness leading to timely
planning and actions.

Figure 9 shows the distributions of sentiment scores across the US counties. Similar
to the worldwide sentiment map, the sentiment scores for counties are normalized by the
total number of tweets from each county using the weighted average for positive, negative,
and neutral tweets. Overall, the negative sentiment dominates across different states and
counties. Although most counties show strong to moderate negative sentiment, a strong
positive sentiment can be observed for the Sioux County in Nebraska, Ziebach County in
South Dakota, Highland County in West Virginia, and Golden Valley County in Montana.
California is mostly on the negative side whereas New York appears near neutral or on the
negative side. Texas seems to represent all ends of the spectrum—covering moderate-to-
strong negative as well as some positive sentiment. Florida and Washington are all negative.
Overall, the western region is mostly negative, the Midwest is fairly divided but strong in
whatever sentiment it exhibits, the Northeast region shows less negative intensity (more
towards neutral), and the Southern region shows some counties with positive sentiment,
but the majority is either negative or neutral.
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Figure 7. Weekly distribution of sentiment labels for the top-six countries.
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Figure 8. Monthly distributions of positive and negative sentiment tweets for the top-six countries.
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Figure 9. Sentiment across US counties. Tweets geotagged using user location, user profile description,
and GPS-coordinates are included after normalizing by the total number of tweets from each county.

Figure 10 presents the distributions of sentiment labels for the top-five languages
excluding English. Interestingly, the Arabic language shows the domination of the positive
sentiment throughout the 14 months except February 2020 and a few weeks in the middle.
Additionally, for the Indonesian language, the neutral sentiment is on par with negative
sentiment, if not higher, throughout the entire data collection period. For the other three
languages, the negative sentiment surpasses the other two sentiment classes. Although
all languages show peaks in and around April and May 2020, the surge of the negative
sentiment in February and March 2021 in the case of Portuguese is noticeable and requires
further investigation.
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Figure 10. Weekly distribution of sentiment labels of tweets in top-five languages excluding English
(i.e., Spanish, Portuguese, French, Indonesian, and Arabic).
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3.4. User Type Identification and Gender Classification Results

Since our main focus is on the tweets posted by the general public, here we evaluate the
person entity predictions. A random sample consisting of 400 model predictions of the person
entity is selected for the evaluation. The sampled accounts were manually checked by the
authors of this paper and marked as either person or non-person. The manual investigation
revealed 377 user accounts with correct and 23 with incorrect model predictions. This yields
a precision of 0.94 for the Person category, which is quite promising. We obtained entity
types of all 87.7 million usernames using the same model. There are 46,504,838 (52.98%)
person, 11,909,855 (13.57%) organization, and 29,357,141 (33.45%) miscellaneous user types.
More importantly, nearly half (48%) of the tweets in the dataset are posted by personal
accounts whereas 11% by organizational accounts and 40% by other user types.

To evaluate the gender classification model, 20% (i.e., 24,267) of the 121,335 annotated
names were randomly sampled and held out during the training phase. This held-out set
was used to test the model and compute several evaluation metrics. Table 8 shows the
evaluation results of the Random Forest model as it yields better performance. The F1-score
of the female class is very reasonable (0.878) compared to the male class (0.807). This is
probably due to the high prevalence of the female class in the training set.

Table 8. Gender classification results (model = Random Forest).

Metric Female Male Macro Avg. Weighted Avg.

Precision 0.872 0.816 0.844 0.850
Recall 0.885 0.797 0.841 0.851
F1-score 0.878 0.807 0.843 0.850

The gender classification process identified 19,598,252 (42.14%) female and 26,906,586
(57.86%) male users. The proportion of male users is higher than the female users so as the
number of tweets posted by the male users (15%). Specifically, of all 963,681,513 tweets from
personal accounts, 558,259,178 (57.93%) are from male and 405,422,335 (42.07%) from female
users. We further determine female to male ratios for each country. To choose countries for
computing female to male ratios, we estimated the required sample size for each country.
We set our confidence interval at 95% and margin of error to ≤1%. Countries with users
(any gender) less than the required sample size are dropped (N = 78). Figure 11 shows the
percentage of female users for countries meeting the representativeness criteria.

Figure 11. Percentage of female users for countries meeting representative sampling criteria (con-
fidence interval = 95%; margin of error ≤ 1%). Gray color indicates the countries excluded due to
under representation (N = 85).
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4. Analysis and Applications

To highlight potential applications of this dataset, in this section we perform three
types of data analysis. The first analysis aims to determine the topical coverage of the data
surrounding several real-world issues the public faced during the pandemic. The second
analysis determines global digital divide using the types of devices used for tweeting. The
third analysis investigates the evolution of natural cities in the US during the pandemic.
Finally, we present a list of potential applications of the dataset.

4.1. Trend Analysis

The impact of the COVID-19 pandemic on people’s livelihoods, health, families, busi-
nesses, and employment is devastating. To determine whether TBCOV covers information
about such unprecedented challenges, next we perform trend analysis of six important
issues. The first two issues are directly related to people’s health, i.e., (i) tweets about anxi-
ety and depression, and (ii) self-declared COVID-19 symptoms. Next two issues represent
severe consequences of COVID-19 that millions of families worldwide directly faced, i.e.,
(iii) deaths of family members and relatives, and (iv) food shortages. The last two issues
are about people’s social life and preventive measures, i.e., (v) face mask usage in public
areas as well as shortages, and (vi) willingness to take or already taken vaccine.

For each issue, a set of related terms are curated manually to form logical expressions
by consulting external formal documentations when available. For instance, in the case of
the “COVID19 symptoms” issue, we divide it into five sub-groups representing different
COVID-19 symptoms listed on the CDC website [72], which can also be seen below in
Table 9. Several related terms were added to each sub-group to increase the recall. For
example, for COVID deaths of parents, the “parents” group contains two sets of terms:
(i) “father OR mother OR dad OR mom”, and (ii) “deceased OR succumbed OR perished
OR lost battle OR killed OR my * passed OR my * died’ (Asterisk (*) allows one term from
set (i) to appear in between.). The logical operator ‘AND’ between these two sets forms the
final expression used to retrieve weekly tweets. The full list of terms will be released with
the dataset.

Table 9. Term groups of four topics for trend analysis.

Main Topics Sub-Topics

COVID-19 symptoms Fever, cough, shortness of breath, headache, loss of taste
and smell

COVID deaths mentions Parents, siblings, grandparents, relatives, and close
connections

Food shortages Food availability, food access, food adequacy, and food
acceptability

Anxiety and depression Anger, sleepless, fearful, upset, restless, and anxious

Mask usage and importance Mask violation, masks are important, wear masks,
masks save lives

Willingness to take vaccine Reactions, harmfulness, got vaccine, covid jab taken

Figure 12 depicts weekly distributions (in log scale) of the retrieved tweets. Figure 12a
shows sub-groups of the COVID-19 symptoms category. The two most reported symptoms
in tweets are fever and cough followed by the shortness of breath and headache. Interestingly,
reports of loss of taste and smell are almost zero until the end of February 2020, which
then suddenly spike from March 8th onward. Figure 12b shows trends of different groups
for the anxiety and depression topic. The feelings of sadness and hopelessness seem to
dominate throughout the year followed by anger, outburst, and frustration. Surprisingly,
the expressions with suicidal thoughts are captured in the data, as well. These particular
trends need an in-depth investigation to better understand motives behind such extreme
thoughts for authorities to intervene and offer counselling.
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Figure 12. Weekly trends of important issues related to personal and social lives of users linked
to COVID-19.

The weekly trends representing two important and direct consequences of COVID-19
on the general public are shown in Figure 12c,d, i.e., tweets mentioning death of parents,
siblings, relatives, or close connections; and food insecurity in terms of its availability,
accessibility, adequacy, and acceptability. A large number of tweets reporting deaths is
observed with majority about parents. Grandparents and the category representing uncle
and aunt are significant as well. Overall, elderly death reports are significantly higher than
younger population.

Similarly, TBCOV shows coverage of the food insecurity topics (i.e., Figure 12d. Food
availability dominates over food accessibility and adequacy in most weeks. However, food
acceptability, other than a few spikes in February and May 2020, remains less of a concern
for the public, thus not discussed on Twitter. Food shortage was one of the critical issues
faced by many countries around the world. These Twitter data might help detect hot-spots
with severe food shortages ultimately helping authorities focus on most vulnerable areas.

Figure 12e,f shows trends for mask usage and shortage, as well as vaccination. The
“Importance of mask” category, which includes mask usage, importance of mask, etc., leads
the discussion throughout. The mask shortage category spikes in the early months of 2020
and then averages out. Mask violations seem to surge in May and November 2020 and
for the rest it stays steady. Mask shortage tweets worth further analysis to find out areas
with severe shortages. The discussion on vaccines is comparatively lower than all other
topics. However, the category on willingness to take or already taken vaccine is hopeful
and spiked for the most months, in particular, late 2020 and early 2021.

4.2. Global Digital Divide

Measuring the global digital divide reveals global disparities between developed and
developing countries. Often access to computing and other information communication
technologies, such as the Internet, are used to determine technologies access, gaps, and
inequalities. TBCOV’s worldwide coverage over a long period during a severe global
pandemic makes it suitable to perform such an analysis. To this end, next we sought to
determine the global digital divide by relying on users access to different types of devices
used for tweeting. Out of all more than two billion tweets, we extracted 1003 unique
application types (provided by Twitter) supporting the tweet posting feature. Dozens of
applications support tweeting feature, including both web- and mobile-based apps. We
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manually analyzed all the applications to determine the operating system they are built for
(e.g., iOS, Android). Next, based on the operating system information, we categorized each
application into one of the three device types, i.e., (i) Apple device—representing all iOS
devices such as iPhone, iPad, etc.; (ii) Android—representing all types of Android-based
devices; and(iii) Web—representing all the web-based applications for tweeting. Finally, an
aggregation is performed on device types for each county and the most frequent device
is selected.

Figure 13 shows the most frequently used device type in each country. The map shows
a device type for 217 countries worldwide. Of all, the Android is the most used device type
with N = 103 (48%), Apple with N = 97 (45%), and Web is the least used with N = 17 (7%).
As Apple devices are more expensive than Android, we expect to see Apple’s domination
in rich countries. This assumption stands true except a couple of countries, including Niger
and Senegal, among others.

Figure 13. Global digital divide estimated through the type of device used for tweeting. Representa-
tive device type penetration (percentage) is shown on top of each country.

4.3. Evolution of Natural Cities in the US

Jiang and Miao [73] define “natural cities” as human settlements or human activities
in general on Earth’s surface that are naturally or objectively defined and delineated from
massive geographic information based on head/tail division rule, a non-recursive form
of head/tail breaks [74]. To that end, a massive collection of geo-referenced tweets (as
available in TBCOV) can be used to delineate natural cities using tweet densities as a
proxy to population densities, and eventually, lead to more meaningful delineation of city
centers and borders rather than arbitrarily defined administrative units [75]. Furthermore,
longitudinal analysis of the geo-referenced tweets can help track the evolution of natural
cities in terms of changes in the spatial distribution and density of the COVID-19-related
chatter across time, and provide new insights into the underlying structure and dynamics
of the natural cities occurred during the COVID-19 pandemic. For this purpose, we ana-
lyzed the 1,674,265 tweets with accurate geo-coordinates collected across the mainland US
and investigated evolution of the natural cities during different phases of the pandemic
following the methodology introduced by Jiang and Miao [73].

Figure 14 shows the results of mapping natural cities at four different time intervals.
We see that New York and its surrounding region appears to be the most prominent natural
city across the first three time intervals which can be explained by the daunting levels of
COVID-19 cases and deaths reported in this region. In addition, other major metropolitan
areas such as San Francisco, Los Angeles, Seattle, Dallas, Houston, Chicago, Atlanta, and
Miami, among others, persist across all time intervals while showing relatively smaller
regional and population variations. Surprisingly, in the first and last time intervals, we
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observe higher numbers of natural cities and a sparse network with more prominent
populations as opposed to the second and third time intervals which have denser network
structures but fewer natural cities.

(a) Feb’20–May’20 with 464,745 location points (b) Jun’20–Aug’20 with 987,496 location points

(c) Sep’20–Nov’20 with 183,755 location points (d) Dec’20–Mar’21 with 38,269 location points

Figure 14. The evolution of natural cities in the mainland US during the pandemic. Note that the
red patches correspond to the natural cities while the gray lines indicate the triangulated irregular
network of geo-referenced tweets.

4.4. Potential Applications

We believe TBCOV can enable a broad range of applications. Research communities
and scholars can use it for monitoring and surveillance, understanding public issues, effects
of social isolation, identification of shortages of food, equipment, and others. In the below,
we discuss some potential applications of our data;

• Disease forecasting and surveillance lead to the early detection and prevention of an
outbreak. Moreover, early warning systems alert authorities and healthcare providers
to prepare and respond to outbreaks in a timely fashion. TBCOV’s broad topical
coverage, particularly about self-reported symptoms and deaths, can be a strong
indicator for the early warning systems;

• Identification of fake information is essential to tackle negative influences on societies,
especially during health emergencies. Tweets’ temporal information, re-sharing and
retweeting patterns, and the use of specific tone in the textual content can potentially
lead to the identification of rumors and fake information. More than two billion
tweets in the TBCOV dataset is a goldmine for detecting conspiracies, rumors, and
misinformation circulated on social media (e.g., drinking bleach can cure COVID-19).
More importantly, the data can be used to develop robust models for fake news and
rumor detection;

• Understanding communities’ knowledge gaps during emergency situations, such as the
COVID-19 pandemic is crucial for authorities to deal with the surge of uncertainties.
TBCOV’s comprehensive geographic, as well as temporal coverage can be analyzed to
understand public questions and queries;

• Identification of shortages of important items such as Personal Protective Equipment
(PPE), oxygen, and face mask becomes the top priority for governments during health
emergencies. Building models to identify pertinent social media reports could help
authorities plan and prevent devastating consequences of shortages;
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• Understanding public sentiment and reactions against governments policies, such as
lockdowns, closure of businesses, as well as slow response or vaccination rate can be
performed using social media data, such as TBCOV;

• Rapid needs assessment informs humanitarian organizations’ and governments’ re-
sponse operations and determines relief priorities for an affected population during
emergencies, such as the COVID-19 pandemic. Our trends analysis results highlighted
the effectiveness of TBCOV for mining priority needs of population in terms of food,
cash, medicines, and more;

• Identification of self-reported symptoms, such as fever, cough, loss of taste, etc., through
social media data could indicate a likely future hot-spot when reports spike in
a geographical area. TBCOV tweets geotagged with fine-grained locations, such
as counties and cities, can be useful to build models for symptom detection and
hot-spot prediction;

• Finding correlations is an important measure of relationship between two variables. We
remark that the TBCOV dataset can be used to perform various types of correlation
analysis to detect patterns and generate hypotheses. These analyses include, but
are not limited to, finding correlations between COVID-19 cases and self-reported
symptoms on Twitter; or between COVID-19 cases and death reports. Correlations
between COVID-19 cases and negative sentiment in a geographical location or the
surge of messages showing anxiety and unemployment rate; or correlation between
daily negative tweets and the rate of food insufficiency in an area can open new
avenues for interesting analyses.

The aforementioned topics mainly cover real-world applications of the TBCOV dataset.
However, we believe that the dataset is useful for several computing problems, such as
unsupervised learning to identify clusters of related messages, transfer learning between
topical domains and language domains, geographic information systems, automatic recog-
nition and disambiguation of location mentions, named-entity extraction, topic evolution,
and concept-drift detection, among others.

5. Conclusions

This work presented a large-scale Twitter dataset comprising more than two billion
COVID-19 related tweets, which were collected over a continuous period of 14 months.
The tweets were posted by 87 million unique users from 218 countries in 67 different
languages. More importantly, several state-of-the-art machine learning methods were
employed to annotate tweets with a number of important latent attributes such as sentiment
polarity, named-entities, geolocation, user type, and gender. We postulate that this large-
scale, multilingual, geotagged social sensing data can empower multidisciplinary research
communities to perform longitudinal studies, evaluate how societies are collectively coping
with this unprecedented global crisis, as well as to develop computational methods to
address real-world challenges.
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Appendix A. Keywords

Table A1. Full list of keywords and hashtags used for data collection.
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Wisconsin, #2019ncov, ayuda gobierno, Corona virus AK	ðPñ»,加油武, Djibouti Coronavirus, 武肺炎, #CoronavirusFR, Social distance, Saudi Arabia Coronavirus, #IStayHome, Guinea Coronavirus, Australia COVID-19, #mask4all, Slovenia 
Coronavirus, Brunei COVID-19, Nicaragua COVID-19, Sudan COVID-19, Korea South Coronavirus, #covid19Canada, 
Eritrea COVID-19, #coronavirusIndonesia, Bologna, Kosovo COVID-19, #covid-19, Coronavirus Switzerland, Coronavirus 
Geneva, covid recovered, Kyrgyzstan COVID-19, #CoronavirusEnColombia, #Wuhan, #caronavirusindia, Corona
Brookhaven NY, novelcoronavirus, #corona, Turkey COVID-19, Mauritania Coronavirus, #2019nCov, Bulgaria COVID-19, 
Oman COVID-19, Bulgaria Coronavirus, #coronaviruspuertorico, #coronavirus, #socialdistancing California,
#coronavirusnewyork, coronavirus weapon, Cuba COVID-19, Suffolk covid, #coronaflu, #COVIDpain, #Covid,

#socialdistancing Rhode Island, AK	ðPñ»_ � A«A��@#, #covid19vizag #vizagcovid19, #covid19Indonesia, Outdoor,
Switzerland COVID-19, Slovenia COVID-19, #socialdistancing Minnesota, 2019nCoV, Kosovo Coronavirus, covidiot,
#marchapelocorona, dry beans shortage, 武漢肺炎, #socialdistancing Mississippi, Bahrain COVID-19, Serbia COVID-19, 
mascherina #Covid, United States COVID-19, food supply chain, #covid, #covid19italia, CoronaVirus Iran, Emergency
food supply, Togo Coronavirus, Latvia COVID-19, muscle pain, brot, Ecuador Coronavirus, Covid19, Laos COVID-19, 
diarrhoea, #ncoV2019, Swaziland COVID-19, #COVID, Colombia Coronavirus, Online ordering, Suffolk Pandemic, 
People, UAE Coronavirus, Iraq COVID-19, Palau COVID-19, Korea South COVID-19, Coronavírus brasil, #coronavirususa, 
East Timor Coronavirus, #Corona virus, #COVID-19, Bolivia Coronavirus, COVID -19., Corona Southold NY, #
コロナ,Benin Coronavirus, #COVID–19, test kits, Qatar COVID-19, Congo COVID-19, Comoros COVID-19, 
Coronavirus-Pandemie, #ForcaCoronaVirus, #socialdistancing New Mexico, #武加油, Mask, Tajikistan Coronavirus, 
maske, #coronaviruskerala, #Covid-19 United States, Myanmar, #myfitnesspal, Piacenza, #covid haiti, Libya COVID-19, 
supplies shortage, #新型コロナウイルス, Firenze,코로나바이러스, Philippines Coronavirus, Grenada COVID-19, Israel 
Coronavirus, #covid-19 brasil, Cuba Coronavirus, Turkmenistan Coronavirus, #MASKS, #PánicoPorCoranovirus,
Germany Coronavirus, #Ncov, Dominican Republic Coronavirus, Norway COVID-19, South Hampton NY, Syria 
COVID-19, #CoronaVirusSeattle, UK Coronavirus, flour shortage, Tunisia Coronavirus, Nicaragua Coronavirus, suffolk
sick, Samoa COVID-19, Italia, #iorestoacasa, #coronavirusdelhi, Papua New Guinea Coronavirus, #ohiocoronavirus, 
COVID19NIGERIA, #武疫情, #coronafest, #Covid19Switzerland, Bhutan Coronavirus, Somalia COVID-19, #Sinophobia, 
#Covid_19india, #Corvid19virus, Luxembourg COVID-19, #socialdistancing Missouri, Malaysia COVID-19,
#socialdistancing Illinois, Chad Coronavirus, #2019_ncov, #socialdistancing Georgia, Cutremur, Mongolia Coronavirus, 
Sudan Coronavirus, covid-19 healthcare, N95, #coronaviruschile, Madagascar Coronavirus, Syria Coronavirus, Solomon

Islands Coronavirus,Q¢�̄_ AK	ðPñ»#, Spain COVID-19, Tonga Coronavirus, #DoingMyPartCO, Suffolk unemployment, quédate en casa Colombia, Liechtenstein COVID-19, Nauru COVID-19, #NeuerCoronavirus, #caronavirusoutbreak,
#socialdistancing Arkansas, Ethiopia Coronavirus, Guatemala Coronavirus, Pakistan COVID-19, Dominica COVID-19, 
CORONA, Treatment, #CoronaLockdown, Coronavirus usa, walk, #SARSCoV2, Suffolk loss, corvid-19, Portugal 
Coronavirus, #coronacure, Chile COVID-19, COVID19 USA, Sweden COVID-19, France Coronavirus, #FoodbankTable A1. Full list of keywords and hashtags used for data collection

v� hAn , #koronA , koronA , koronA vAyrs , #koEvX - 19 , #koEvX -19 , #koronA vAyrs , #koronAvAyrs , Japan Coronavirus, Turkey Coronavirus, #coronavid19, #
新冠肺炎, #socialdistancing Connecticut, Belgium Coronavirus, withings.com kg, #earth, Haiti COVID-19, #COVID19, wuhan virus, #socialdistancing Washington,
Hungary Coronavirus, Togo COVID-19, Covid19DE, Botswana COVID-19, #Coronavirustexas, #coronavirusnobrasil, #COVIDPakistan, Mexico COVID-19,
coronavirus china, #chinavirus, Corona Ausbruch, Poland COVID-19, #pandemic, coronavirus outbreak, mehl, korona, #coronavirusoutbreak, Kuwait Coronavirus,
#COVD, Namibia Coronavirus, #socialdistancing Indiana, #coronavirusuk, Saudi Arabia COVID-19, #NouveauCoronavirus, Vatican City Coronavirus, Cape Verde
Coronavirus, Niger Coronavirus, #socialdistancing Alabama, United Arab Emirates Coronavirus, Finland COVID-19, Roma, pandemic, CoronaVirus Japan, corona
vairus, #covid19uk, #China, Bangladesh COVID-19, #Lockdown, United Arab Emirates COVID-19, Austria Coronavirus, Uganda COVID-19, New Zealand
Coronavirus, local food, Covid19 US, Lockdown Switzerland, coronavirus bio-weapon, #Koronavirus, #CoronaSchlager, food scarcity, Tanzania COVID-19,
coronavirusupdate, #facemask, #LockdownNow, meat shortage, #socialdistancing Kansas, #socialdistancing Montana, #socialdistancing Wyoming, coronga virus,
Bosnia Herzegovina Coronavirus, Suffolk Hardship, queue, recesión económica, Cameroon Coronavirus, #Coronavírus, Bahamas Coronavirus, Sierra Leone
Coronavirus, Lithuania COVID-19, Algeria Coronavirus, CoronaSymptoms, #socialdistancing, Afghanistan Coronavirus, Corona, Oman Coronavirus, San Marino

COVID-19, Sierra Leone COVID-19, 	àXP

B@_ A 	KðPñ»#, Suffolk hopeless, Kazakhstan COVID-19, Denmark Coronavirus, Kiribati Coronavirus, #veyekow, Jordan

COVID-19, mask, #oustduterte, Morocco Coronavirus, virus, #chinacoronavirus, statistics, #YoMeQuedoEnCasa, Ukraine COVID-19, Torino, Chile Coronavirus,
#coronavirusrd, #coronavirusupdates, Hungary COVID-19, Suffolk Corona Depressed, #vizagcovid19 #covid19vizag #indiavizagcovid19 #covid19vskp, #caronavirus,
Rwanda COVID-19, Uzbekistan Coronavirus, #caronavirususa, Loss of Smell, A 	KðPñ»_ h. C«#, Pakistan Coronavirus, #vizag, Slovakia COVID-19, Netherlands

COVID-19, #coronaapocolypse, #新冠病毒, Burma COVID-19, Benin COVID-19, #coronaviruscalifornia, #socialdistancing Delaware, Napoli, Vanuatu COVID-19,
abdominal pain, mass testing, #CoronavirusOutbreak, Belize COVID-19, breathing issues, corona virus, Guatemala COVID-19, #wuhanvirus, security, Suffolk
lockdown, virus corona, #coronaviruses, Outdoor Masks, Cuarentena Colombia, #COVID19, #COVID_19uk, Thailand COVID-19, Mali COVID-19, covid-19 doctors,
Norway Coronavirus, Coronavirus Vaccine, Finland Coronavirus, #FlattenTheCurve, Latvia Coronavirus, #coronavirusbrasil, eggs shortage, #socialdistancing
Colorado, Paraguay Coronavirus, #coronavirusmumbai, Jordan Coronavirus, #socialdistancing North Carolina, #Pandemic, Ivory Coast Coronavirus, curfew news,
Mauritius COVID-19, #masks4all, #Swiss, #socialdistancing Maryland, South Sudan Coronavirus, #Outbreak, #socialdistancing us, Uganda Coronavirus, #codvid19,
#covid-19 #covid19, Djibouti COVID-19, #coronaviruscolombia, China Coronavirus, Philippines COVID-19, coronaviridae, Argentina Coronavirus, #CoronaUpdate,
#Piacenza, coronavirus transmission, Corona Riverhead NY, Covid-19 Suffolk NY, respiradores Colombia, A 	KðPñ» �ðQ�
 	̄ , #fakenewscovid19, Panama COVID-19, China

COVID-19, Corona East Hampton NY, Indonesia COVID-19, Denmark COVID-19, #socialdistancing Iowa, A 	KðPñ»#, Covid19Deutschland, #coronavirusmexico,

Austria COVID-19, Armenia Coronavirus, Kenya Coronavirus, #코로나, Coronavirus, #Coronavirus, France COVID-19, #socialdistancing Kentucky,
Yj. �J�ÖÏ @_ A 	KðPñ»_ �ðQ�
 	̄#, Cameroon COVID-19, Guinea COVID-19,新冠病毒, Kyrgyzstan Coronavirus, #coronavirusargentina, Economic recession Switzerland,

Tonga COVID-19, #shelterinplace, #socialdistancing Hawaii, Bergamo, #caronavirusoutbreak #Quarantined, Mauritius Coronavirus, Zambia COVID-19, bread
shortage, Montenegro Coronavirus, Cyprus Coronavirus, CORONA VIRUS, covid-19 usa, #safety, COVID-19-Pandemie, #CoronaVirusitaly, Saudi Arabia coronavirus
update, CSA, #2019nCoV, Peru COVID-19, #supermercato #quarantena, Serbia Coronavirus, Sweden Coronavirus, sore throat, Italy COVID-19, #socialdistancing
Tennessee, #coronaviruspandemic, Barbados Coronavirus, #coronaVirus, CoronaVirusInNigeria, Somalia Coronavirus, #kamitidaktakutviruscorona, #socialdistancing
Wisconsin, #2019ncov, ayuda gobierno, Corona virus A 	KðPñ»,加油武汉, Djibouti Coronavirus,武汉肺炎, #CoronavirusFR, Social distance, Saudi Arabia Coronavirus,

#IStayHome, Guinea Coronavirus, Australia COVID-19, #mask4all, Slovenia Coronavirus, Brunei COVID-19, Nicaragua COVID-19, Sudan COVID-19, Korea South
Coronavirus, #covid19Canada, Eritrea COVID-19, #coronavirusIndonesia, Bologna, Kosovo COVID-19, #covid-19, Coronavirus Switzerland, Coronavirus Geneva,
covid recovered, Kyrgyzstan COVID-19, #CoronavirusEnColombia, #Wuhan, #caronavirusindia, Corona Brookhaven NY, novelcoronavirus, #corona, Turkey
COVID-19, Mauritania Coronavirus, #2019nCov, Bulgaria COVID-19, Oman COVID-19, Bulgaria Coronavirus, #coronaviruspuertorico, #coronavirus,
#socialdistancing California, #coronavirusnewyork, coronavirus weapon, Cuba COVID-19, Suffolk covid, #coronaflu, #COVIDpain, #Covid, #socialdistancing Rhode
Island, A 	KðPñ»_ �HA«A ��@#, #covid19vizag #vizagcovid19, #covid19Indonesia, Outdoor, Switzerland COVID-19, Slovenia COVID-19, #socialdistancing Minnesota,

2019nCoV, Kosovo Coronavirus, covidiot, #marchapelocorona, dry beans shortage,武漢肺炎, #socialdistancing Mississippi, Bahrain COVID-19, Serbia COVID-19,
mascherina #Covid, United States COVID-19, food supply chain, #covid, #covid19italia, CoronaVirus Iran, Emergency food supply, Togo Coronavirus, Latvia
COVID-19, muscle pain, brot, Ecuador Coronavirus, Covid19, Laos COVID-19, diarrhoea, #ncoV2019, Swaziland COVID-19, #COVID, Colombia Coronavirus, Online
ordering, Suffolk Pandemic, People, UAE Coronavirus, Iraq COVID-19, Palau COVID-19, Korea South COVID-19, Coronavírus brasil, #coronavirususa, East Timor
Coronavirus, #Corona virus, #COVID-19, Bolivia Coronavirus, COVID -19., Corona Southold NY, #コロナ,Benin Coronavirus, #COVID–19, test kits, Qatar COVID-19,
Congo COVID-19, Comoros COVID-19, Coronavirus-Pandemie, #ForcaCoronaVirus, #socialdistancing New Mexico, #武汉加油, Mask, Tajikistan Coronavirus, maske,
#coronaviruskerala, #Covid-19 United States, Myanmar, #myfitnesspal, Piacenza, #covid haiti, Libya COVID-19, supplies shortage, #新型コロナウイルス, Firenze,
코로나바이러스, Philippines Coronavirus, Grenada COVID-19, Israel Coronavirus, #covid-19 brasil, Cuba Coronavirus, Turkmenistan Coronavirus, #MASKS,
#PánicoPorCoranovirus, Germany Coronavirus, #Ncov, Dominican Republic Coronavirus, Norway COVID-19, South Hampton NY, Syria COVID-19,
#CoronaVirusSeattle, UK Coronavirus, flour shortage, Tunisia Coronavirus, Nicaragua Coronavirus, suffolk sick, Samoa COVID-19, Italia, #iorestoacasa,
#coronavirusdelhi, Papua New Guinea Coronavirus, #ohiocoronavirus, COVID19NIGERIA, #武汉疫情, #coronafest, #Covid19Switzerland, Bhutan Coronavirus,
Somalia COVID-19, #Sinophobia, #Covid_19india, #Corvid19virus, Luxembourg COVID-19, #socialdistancing Missouri, Malaysia COVID-19, #socialdistancing
Illinois, Chad Coronavirus, #2019_ncov, #socialdistancing Georgia, Cutremur, Mongolia Coronavirus, Sudan Coronavirus, covid-19 healthcare, N95,
#coronaviruschile, Madagascar Coronavirus, Syria Coronavirus, Solomon Islands Coronavirus,Q¢�̄_ A 	KðPñ»#, Spain COVID-19, Tonga Coronavirus,

#DoingMyPartCO, Suffolk unemployment, quédate en casa Colombia, Liechtenstein COVID-19, Nauru COVID-19, #NeuerCoronavirus, #caronavirusoutbreak,
#socialdistancing Arkansas, Ethiopia Coronavirus, Guatemala Coronavirus, Pakistan COVID-19, Dominica COVID-19, CORONA, Treatment, #CoronaLockdown,
Coronavirus usa, walk, #SARSCoV2, Suffolk loss, corvid-19, Portugal Coronavirus, #coronacure, Chile COVID-19, COVID19 USA, Sweden COVID-19, France
Coronavirus, #Foodbank, #kowona, Botswana Coronavirus, extension, Lithuania Coronavirus, Albania Coronavirus, Burkina Coronavirus, #WuhanCoronavirus,
Ecuador COVID-19, Tajikistan COVID-19, Lebanon Coronavirus, Cambodia Coronavirus, #ncov19, CoronaVirus Korean, Seychelles Coronavirus, Honduras
Coronavirus, Nariño Covid19, #socialdistancing Virginia, safety
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Table A2. Full list of keywords and hashtags used for data collection (cont’d).

Brazil COVID-19, Micronesia Coronavirus, Coronavirus crisis, #socialdistancing Nevada, Mongolia COVID-19, Malta Coronavirus, Estonia Coronavirus,
#Briefing_COVID19, Burundi Coronavirus, Canada COVID-19, Ghana Coronavirus, Iceland Coronavirus, #PhysicalDistancing, #emergency, Qå�Ó_ A 	KðPñ»#, Peru

Coronavirus, Mexico Coronavirus, photo, Equatorial Guinea Coronavirus, #CoronaVirusCA, Estonia COVID-19, coronavírus brasil, Gabon COVID-19, Canada
Coronavirus, #coronavirusperu, Bangladesh Coronavirus, Belarus Coronavirus, Suriname Coronavirus, Iran Coronavirus, #coronavirusinindia, #2019_nocv, Namibia
COVID-19, Corona, #PutusRantaiCovid19,武汉加油, image, Armenia COVID-19, Liberia COVID-19, Maldives COVID-19, Taiwan COVID-19, Nepal Coronavirus,
Bhutan COVID-19, Ethiopia COVID-19, Jamaica Coronavirus, #dontgoviral, A 	KðPñ»_ �ðQ�
 	̄ #, Coronavirus US, Andorra COVID-19, Poland Coronavirus, Liberia

Coronavirus, Tunisia COVID-19, Suffolk worry, #virus, Georgia Coronavirus, #武漢肺炎, nCov2019, �IK
ñºË@_ A 	KðPñ»#, Central African Rep Coronavirus, Dominica

Coronavirus, food shortage, Fiji COVID-19, Belarus COVID-19, Palau Coronavirus, #covid19france, government, Singapore COVID-19, #Corona, Papua New Guinea
COVID-19, #Coronavirusnyc, carona virus, #mascherina, 2 week food supply, Bahamas COVID-19, Libya Coronavirus, Ireland Coronavirus, shopping, Thailand
Coronavirus, Tuvalu Coronavirus, corona, #Coronavirusireland, Bahrain Coronavirus, coronavirus conspiracy, 2019-nCoV, Venezuela COVID-19, Burundi COVID-19,
#socialdistancing Pennsylvania, Sri Lanka COVID-19, coronavirus new york, lombardia, #코로나바이러스, #CDC, Guinea-Bissau COVID-19, coronavirus pandemic,
	àA 	JJ. Ë_ A 	KðPñ»#, COVID, El Salvador Coronavirus, coronavirus wuhan, #CoronaAlert, #Epidemic, Czech Republic COVID-19, #coronavirusmadrid, #covid19,

Colombia COVID-19, NeuerCoronavirus, #QuarantineAndChill, #Coronapanik, South Africa COVID-19, Romania Coronavirus, Afghanistan COVID-19,
corongavirus, covid-19, Grenada Coronavirus, Liechtenstein Coronavirus, test kit, Bosnia Herzegovina COVID-19, quarantena, Angola COVID-19, Greece COVID-19,
Lesotho Coronavirus, covid19, corona virus news, groceries, muertes Colombia, #coronavirusu, #socialdistancing West Virginia, #DuringMy14DayQuarantine, park,
activities, Lesotho COVID-19, Gambia COVID-19, Yemen Coronavirus, cutremur, covid, #socialdistancing Arizona, Uruguay COVID-19, mascarilla, #socialdistancing
South Dakota, Micronesia COVID-19, Brescia, East Timor COVID-19, Masks4all, #MyPandemicSurvivalPlan, Croatia COVID-19, Turkmenistan COVID-19, Covid-19
US, Vanuatu Coronavirus, #socialdistancing North Dakota, Moldova COVID-19, Samoa Coronavirus, magnitude, nCoV, Nigeria COVID-19, recuperados covid19
Colombia, supermercato, #coronavirusbrazil, Monaco COVID-19, Mozambique Coronavirus, Mozambique COVID-19, #socialdistancing New Jersey, Measures,
Malaysia Coronavirus, potatoes shortage, Niger COVID-19, Greece Coronavirus, Croatia Coronavirus, San Marino Coronavirus, Corona Suffolk NY, Haiti
Coronavirus, #coronapocalypse, Ukraine Coronavirus, food supply, Guyana COVID-19, Senegal Coronavirus, Costa Rica COVID-19, CoV, Australia Coronavirus,
#covid_19, #Coronaferien, #FarmersMarket, Nauru Coronavirus, Lebanon COVID-19, Vietnam Coronavirus, ecq, Spain Coronavirus, Cambodia COVID-19,
#socialdistancing Louisiana, United Kingdom Coronavirus, Vietnam COVID-19, Kenya COVID-19, Macedonia Coronavirus, optimista, #coronavirustelangana,
Zambia Coronavirus, withings.com st, #NovelCorona, Cape Verde COVID-19, Suffolk corona, #corona haiti, Macedonia COVID-19, Honduras COVID-19,
#Covid_19Colombia, Burkina COVID-19, #PresidentCuomo, Ireland COVID-19, #firenze, #africacoronacure, #wuhan, #COVID19NIGERIA, Covid19_DE, #疫情,
Covid-19 nurses, #Coronavirusmexico, Equatorial Guinea COVID-19, #CoronavirusSwitzerland, Swaziland Coronavirus, St Lucia Coronavirus, Egypt COVID-19,
Paraguay COVID-19, Belgium COVID-19, #coronapandemic, Guyana Coronavirus, ncov-19, Nariño Coronavirus, Central African Rep COVID-19, masque,
#coronavirusespana, #fakenewscorona, #covid2019pt, Iceland COVID-19, Andorra Coronavirus, Luxembourg Coronavirus, Nouveau coronavirus, Rwanda
Coronavirus, Madagascar COVID-19, Masks, Saudi Arabia Covid-19 Update, #yellowalert #chinavirus, ncov, #socialdistancing Texas, emergency, Kiribati COVID-19,
Korea North Coronavirus, cough, covid 19, #Sars-cov-2, #socialdistancing Idaho, #coronavirusuruguay, #武汉肺炎, picture, #socialdistancing Michigan, Covid19
Switzerland, Iraq Coronavirus, #socialdistancing Florida, Eritrea Coronavirus, breathing difficulties, Venezuela Coronavirus, #coronavirusafrica, Smithtown NY,
#coronavirus, Fiji Coronavirus, Covid-19 brasil, rice shortage, Slovakia Coronavirus, UK COVID-19, 	à@QK
 @_ A 	KðPñ»#, #Wuhancoronavirus, #Anakapalli #covid19,

Azerbaijan COVID-19, seism, Germany COVID-19, #Wuhanlockdown, Chad COVID-19, Italy Coronavirus, Nigeria Coronavirus, Russian Federation Coronavirus,
Portugal COVID-19, St Lucia COVID-19, #socialdistancing Vermont, #coronaviruscure, #CoronavirusPandemic, 	áK
QjJ. Ë @_ A 	KðPñ»#, CoV2019 WHO 2019CoV

coronovirus PHAC Canada Toronto, South Africa Coronavirus,疫情, fatigue, Uruguay Coronavirus, Zimbabwe Coronavirus, Dominican Republic COVID-19,
earthquake, Azerbaijan Coronavirus, Georgia COVID-19, India Coronavirus, Montenegro COVID-19, #CoronaVirusInNigeria, #covid19espana, India COVID-19, mala
gestión, #socialdistancing Oregon, #StayHomeSaveLives, Long Island Corona, bohnen, lock down, outside, Malawi COVID-19, #Coronavirus, #socialdistancing South
Carolina, #covid-19uk, Mauritania COVID-19, #N95, corona recovered, Costa Rica Coronavirus, novel coronavirus, testkit. #StayAtHome, Albania COVID-19,
Marshall Islands COVID-19, coronavirus, fever, #coronavirustruth, Egypt Coronavirus, #socialdistancing Utah, Malta COVID-19, YK
Ym.Ì'@_ A 	KðPñ»#, Virus Corona,

#COVID19Pandemic, #WuhanVirus, #coronaoutbreak, Comoros Coronavirus, #Chile, Cyprus COVID-19, Russian Federation COVID-19, Jamaica COVID-19,
#coronavirusUP, Sri Lanka Coronavirus, Kuwait COVID-19, Netherlands Coronavirus, safe, CoronaTreatment, #coronavirusoutbreak, Belize Coronavirus, COVID-19,
#socialdistancing Oklahoma, covid19 recovered, #CoronaVirusDE, Moldova Coronavirus, CoronavirusFR, nCov, #socialdistancing Massachusetts, Korea North
COVID-19,코로나, #COVID19PT, #shortage, Switzerland Coronavirus, Tuvalu COVID-19, outdoor, #covd19, Coronavirus Colombia, withings.com lb, #加油武汉,
#staysafe, New Zealand COVID-19, UCI disponibles, disaster, El Salvador COVID-19, Seychelles COVID-19,コロナ, Malawi Coronavirus, Vatican City COVID-19,
Angola Coronavirus, Kazakhstan Coronavirus, #infocoronavirus, #nCoV, Czech Republic Coronavirus, #covid_19uk, #socialdistancing New York,新型冠病毒, #
新型冠病毒, #Distancing, Marshall Islands Coronavirus, #CoronaVirusCanada, Argentina COVID-19, Mali Coronavirus, coronavirus news, #Covid19,新冠肺炎,
#Kungflu, #codvid_19, masks, nCoV2019, Covid_19, Wuhan virus, images, testkits, �éK
Xñª�Ë@_ A 	KðPñ»#, Nepal COVID-19, Corona Islip NY, vegetables shortage,

#socialdistancing Ohio, #coronavirus #covid-19, Tanzania Coronavirus, Brazil Coronavirus, COVID-19 USA, #coronavirusnyc, #socialdistancing Maine, #
コロナウイルス, social distancing, #sentom, #Covid-19, UAE COVID-19, corona virus outbreak, Taiwan Coronavirus, Monaco Coronavirus, Israel COVID-19,
#socialdistancing New Hampshire, #coronaday, Indonesia Coronavirus, Symptoms, loss of smell, #CoronaVirusIreland, Panama Coronavirus, Barbados COVID-19,
#covid19ireland, Burma Coronavirus, Covid19 Suffolk NY, Milano, Gabon Coronavirus, #security, #africa, Iran COVID-19, #covid19india, Ivory Coast COVID-19,
#Covid19 united states, #masks, Senegal COVID-19, South Sudan COVID-19, coronavirus epidemic, #Connecting, Gambia Coronavirus, mascherina, Corona Babylon
NY, social distance, United Kingdom COVID-19, Singapore Coronavirus, restrictions, #Covid-19brasil, tapabocas Colombia, #CoronavirusAustralia, Suriname
COVID-19, Algeria COVID-19, #coronavirusecuador, #conronaviruspandemic, Yemen COVID-19, #Covid-19 US, #coronaviruscure, cereals shortage, Morocco
COVID-19, #socialdistancing Nebraska, ncov19, Bolivia COVID-19, Japan COVID-19, Solomon Islands COVID-19, Corona Huntington NY, United States Coronavirus,
#socialdistancing Alaska, Guinea-Bissau Coronavirus, #ncov2019, duterte, novel corona virus, Romania COVID-19, #quarantine, #covid2019, #socialdistancing usa,
#Socialdistancing, Brunei Coronavirus, Qatar Coronavirus, #milano, #코로나19, Maldives Coronavirus, #coronavirusmaharashtra, Congo Coronavirus, Uzbekistan
COVID-19, ��@QªË@_ A 	KðPñ»#, Ghana COVID-19, Laos Coronavirus, Zimbabwe COVID-19, #coronadeutschland
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