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Abstract: Missing data occur in almost all surveys; in order to handle them correctly it is essential to
know their type. Missing data are generally divided into three types (or generating mechanisms):
missing completely at random, missing at random, and missing not at random. The first step to
understand the type of missing data generally consists in testing whether the missing data are missing
completely at random or not. Several tests have been developed for that purpose, but they have
difficulties when dealing with non-continuous variables and data with a low quantity of missing
data. Our approach checks whether the missing data are missing completely at random or missing at
random using a regression model and a distribution test, and it can be applied to continuous and
categorical data. The simulation results show that our regression-based approach tends to be more
sensitive to the quantity and the type of missing data than the commonly used methods.

Keywords: distribution; Dixon test; generating mechanisms; Jamshidian and Jalal test; Little test;
missing data; regression

1. Introduction

Data collection is a difficult process for any study and the probability of missing
information is huge. It is important that we efficiently deal with missing data (MD) to
minimise the bias of estimates and optimise the estimation of the variance of parameters of
interest [1]. A variety of methods exist, such as deletion, imputation, or Bayesian methods,
but, in general, they are powerful only for certain types of MD [2].

Following the definitions given by Rubin [3], MD are said to be Missing Completely
At Random (MCAR) when (1) the probability of the data being missing is unrelated to
the variable itself and (2) there is no link between the MD and one or several auxiliary
variables, whether collected or not. For instance, a researcher’s typo error when collecting
data is considered as MCAR data. When the amount of missing information is limited,
data analysts often assume that the data are MCAR, although this type of MD is very rare
in reality [2].

MD are said to be Missing At Random (MAR) when the probability of missing (1) is
unrelated to the variable itself but (2) can be explained, at least partially, by another variable.
For example, workers could be more or less likely to answer questions regarding their
income in function of their profession.

MD are said to be Missing Not At Random (MNAR) when they can be explained
(at least partially) by the missing values themselves, in addition to other variables. For
example, assume that highly paid workers are less likely to report their salary. Even if this
situation is intuitively understandable, it is difficult to analyse this type of MD because the
information about missingness is both unrelated with the observed data and unobserved,
so we cannot determine whether the (unknown) values that are missing are themselves the
cause for missingness or not. Moreover, the Rubin’s definition of MNAR includes MAR
hypothesis and it is very difficult to distinguish these two mechanisms.

The type of MD is important because it helps to determine which treatment should
be applied to MD. Suppose we would like to estimate the IQ score from a specific sample
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composed of 12 individuals. Table 1 provides complete and incomplete data (four values
were deleted for the example). The average of the complete sample is 111.75 and the
average of observed values in the incomplete sample is 101.75. In this example, we see that
the average of incomplete data is biased, but, of course, in real life we do not have access
to the value of MD. This relatively high difference is problematic and it let us suppose
that MD are not MCAR. Ignoring them is therefore not the best choice, as the observed
values do not form a representative sub-sample of the population. The first step would be
to formally test whether these MD are MCAR or MAR. Then, an appropriate treatment of
the MD should be applied.

Table 1. Sample with 12 IQ values.

IQ1 IQ2 IQ3 IQ4 IQ5 IQ6 IQ7 IQ8 IQ9 IQ10 IQ11 IQ12

Complete data 95 119 94 134 130 92 128 100 99 110 105 132
Incomplete data 95 119 94 - - 92 - 100 99 110 105 -

The usefulness of testing MD mechanisms is multiple. First of all, it helps to detect
the variables that explain the MD. It is important to identify them to understand the
MD mechanism. This helps to choose the best method to handle MD and to extract
the maximum amount of information. Moreover, the comprehension of the mechanism
generating the MD helps to understand the data and the psychology of respondents. This
information can be used in similar studies to decrease the non-response rate. Finally, when
the mechanism is known, it is easier to apply a correct method to handle MD.

The usual assumption of MCAR is problematic because in the majority of cases it is
false [4], and we can have a relatively large bias if the handling of MD is not appropriate [5].
A common concern with MD is how to determine whether the data are MCAR or MAR. The
difference between these two mechanisms was explored in detail by Heitjan and Basu [6].
On one hand, if the data are MCAR, it is possible to use a relatively easy method to analyse
the data, such as listwise deletion, if the amount of MD is small [1]. On the other hand, if the
data are MAR, they should be treated, for instance, with multiple imputation [3,7], inverse
probability weighting [8], or Bayesian methods [9]. Moreover, it is very useful to know
which variables explain the presence of MD in order to include them in the final model to
answer to the research question. Whether the MAR condition holds is avowedly impossible
to test given only observed data [10,11]. In the case of MNAR data, it is impossible to test
the mechanism on observed data as well, and thus, it has to be analysed with caution with
the use of sensitivity analysis [12].

Several approaches have been developed to test the MD mechanism. Three of them are
commonly used currently: the Dixon test [13], the Little test [14] along with its extensions,
and the Jamshidian and Jalal test [15–17]. These approaches have several advantages and
limitations, which are discussed later. Their aim is to test whether the MD are MCAR. It
is important to mention that when the method for handling MD is valid for both MCAR
and MAR data, then it is also interesting to test the MD mechanisms in order to find
additional information, such as the the combination of variables which explain the MD.
Thus, a procedure that can extract maximum information from the data is needed, because
this is the key to distinguish between MCAR and MAR.

Hereafter, we propose a brief review of the literature on testing MD mechanisms. Then,
we develop a complementary approach to test missingness based on regression, which
can be applied to both categorical (polytomous) and continuous variables. The aim of
our approach is not to test whether MD are ignorable or not, but to correctly differentiate
between MCAR and MAR. This is similar to what is performed by existing tests, but
one should be aware that the possibility that the MD are actually MNAR is left out. We
assume that our data are in a restricted environment so that the amount of information
does not tend to infinity. A simulation study demonstrates the behaviour of our approach,
the objectives being (1) to compare our approach with the commonly used procedure to
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test missingness, and (2) to check the robustness of this approach in function of the MD
mechanism, the quantity of MD, the sample size, and the data distribution.

2. Existing Approaches for Testing Missing Data Mechanisms

A common concern with MD is how to determine whether the data are MCAR or MAR.
Hereafter, we first review the three main tests developed in the literature: the Dixon [13], the
Little [14], and Jamshidian and Jalal [15] tests, which aim to test the following hypotheses:{

H0 : MCAR
H1 : MAR

2.1. Dixon Test

One of the easiest tests to determine whether the MD are MCAR is to verify the sample
group’s differences [13]. Assume that X1 and X2 are two numerical vectors, that a certain
percentage of observations in X1 are missing, and that X2 is a complete vector. The first
step is to divide X2 into two subsamples, one with individuals where X1 is observed, and
the other with individuals where X1 is missing:

X2 =

{
X2,mis if X1 is missing
X2,obs if X1 is observed

Next, the means of X2,mis and X2,obs are compared by using a two-sample t-test to check
for either significant difference between means (alternative hypothesis) or no difference
(null hypothesis). When the null hypothesis is rejected, the conclusion is that the data
are not MCAR. This approach can be extended to the more general case with more than
two variables. However, even in the case of only two variables, a mean comparison does
not allow for a conclusive test, because there could be other differences between the two
distributions [5]. Moreover, the mean comparison can be applied only on continuous
data. To conclude, this test is inappropriate in the majority of cases and this is why other
approaches have been developed.

2.2. Little Test

One of the most used methods to test MD mechanisms was developed by Little [14].
It tests whether the MD in a multivariate Gaussian distributed dataset are MCAR or not.
According to this approach, the missingness can be tested by applying a likelihood ratio
test asymptotically based on a chi-squared distribution. This test is summarised in the
following example. Suppose a dataset D(n× k) containing n observations and k variables
with a general pattern of MD (each variable can contain a certain amount of MD). Let
Xi = Xi1, ..., Xik be the vector of values for observation i, Xobs,i = Xobs,i1, ..., Xobs,ik the vector
of values of observed variables in case i, and ri the indicator for MD for observation i, such
that ri = 1 if Xi is missing and ri = 0 if Xi is observed. This gives the number of distinct
MD patterns, J, and the set Sj of MD patterns for each j = 1, ..., J. Furthermore, µobs,j and
Σobs,j are, respectively, the vector of means and the covariance matrix of observed variables
in j. The aim of this approach is to test whether the means of each Sj are significantly
identical or not. It assumes that the variance is known and uses a likelihood ratio test on
the following test hypotheses: H0 : (Xobs,i|ri) ∼

ind
N(µobs,j, Σobs,j), i ∈ Sj, 1 ≤ j ≤ J

H1 : (Xobs,i|ri) ∼
ind

N(γobs,j, Σobs,j), i ∈ Sj, 1 ≤ j ≤ J

where γobs,j is the vector of means of observed variable in j, but, unlike µobs,j, is distinct for
each pattern j. If the true variance–covariance matrix is unknown, it can be estimated by
the maximum likelihood estimator [14].
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Although this test is relatively efficient for large samples, it is conservative for small
ones. The Little test works well for continuous variables, but categorical data must be
recoded into numerical discrete data, a transformation that can rarely be justified theoreti-
cally [18]. Two other important problems are that the Little test does not test the dispersion
of MD sequence and it is not robust to a deviation from a Gaussian distribution unless
the sample size is large enough. The Little test has several extensions, such as a test for
repeated categorical or longitudinal data using a stratification procedure [19,20] and a
Wald-type test for generalised estimating equations with MD [21].

2.3. Jamshidian and Jalal Test

Another commonly used approach for testing the MCAR hypothesis was developed
by Jamshidian and Jalal [15]. The authors aim was to create a test of homoscedasticity,
which is a synonym of a test of homogeneity in covariances, that works for data that do
not necessarily follow a Gaussian distribution. The first step of this approach is to test the
normality and homoscedasticity by using the modified Hawkins [22] test. Jamshidian and
Jalal [15] modify it for being able to use it when data are incomplete with the following
hypotheses: {

H0 : Normality and homogeneity of covariances
H1 : Non-normality or non-homogeneity of covariances

If the null hypothesis is accepted, then the data are considered normal and with a
homogeneity of covariances and, without additional information, MD can be considered
as MCAR. On the other hand, when the modified Hawkins test is rejected, data can be
either: (1) non-normal and with a homogeneity of covariances; (2) normal and with a non-
homogeneity of covariances; or (3) non-normal and with a non-homogeneity of covariances.
The next step after the rejection of the modified Hawkins test is to decide whether the
data are normally distributed or not. On one hand, if the researcher assumes that data
follow a normal distribution, then there is no other choice but to reject MCAR hypothesis,
because (1) and (3) are excluded. On the other hand, if it is impossible to make such an
assumption, then Jamshidian and Jalal [15] developed a non-parametric pairwise variable
(NPV) procedure with the following test hypothesis:{

H0 : Homogeneity of covariances
H1 : Nonhomogeneity of covariances

If the null hypothesis cannot be rejected, then the homogeneity of covariances cannot
be rejected as well as the non-normality; consequently, MD are considered to be MCAR.
When the test is rejected, then the MCAR hypothesis is rejected as well. However, in this
last case no test conclusion can be made about normality. First, each variable is divided
in two groups based on the unobserved and observed cases of the variable. The first
part consists of observed values and the the second part consists of missing values. Then,
the Scholz and Stephens [23] rank-based test or the Anderson and Darling [24] k-sample test
is applied to the two parts of the variable to evaluate the equality of distribution between
the subsamples. This is performed K(k − 1) times, where k is the number of variables
and K is the total number of partly observed variables. Thus, the tests are performed
simultaneously, which can be complicated when k > 2 [25]. Moreover, because this test
has a relatively low power to reject Type I errors [26], Jamshidian and Jalal proposed to use
the Benjamini and Hochberg [27] test to fix this issue. More details about the NPV test can
be found elsewhere [16].

Finally, the rejection of both the Hawkins and NPV tests gives evidence against the
MCAR hypothesis.
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2.4. Comparison of the Three Tests

These three approaches for testing MD mechanisms have various limitations. The
Dixon test is a very simple and understandable approach, but it is problematic because of
(1) the collinearity aspect when there are more than two variables and (2) the non-use of the
dispersion within the test. The Little test is the most used approach and it is available in
the majority of statistical software. However, it can accept the MCAR hypothesis as soon as
there is no difference in means between two subsets, which is not always sufficient because
a difference can exist in terms of distribution with no difference in means. Furthermore,
it is not robust to a deviation from a Gaussian distribution unless the sample size is large
enough. The Jamshidian and Jalal procedure takes into account the dispersion of the data,
it does not assume data normality, and no large sample size is required. Nevertheless, its
structure is relatively complicated to implement because it uses a combination of two tests
and it is non-intuitive for end users. Finally, none of the three tests is really appropriate
for categorical data, and they have difficulties dealing with data with a relatively low
number of MD. Therefore, the objective of this article is to provide an alternative and
complementary approach to these tests by (1) testing the distribution rather than the mean
of the variables with MD, and (2) allowing for the approach to be adapted to any type of
variables, continuous or categorical.

3. Regression-Based Approach

This section presents our regression-based (RB) approach for testing the following
hypotheses: {

H0 : MCAR
H1 : MAR

First, the procedure is described for the continuous case and then the binary and
categorical cases are described.

3.1. Principle

Consider a dataset with n observations and k variables. Suppose that only one variable,
X1, has MD and the other variables are fully observed. Let A be the subset of completely
observed data, and let B be composed of observations missing on X1 but fully observed
on X2, X3..., Xk (Figure 1). XA

1,obs is the observed part of X1, and XB
1,mis is the missing part

of X1. The objective is to compare the distribution of XA
1,obs and XB

1,mis, but since data are
unobserved on XB

1,mis, a regression model is built to explain XA
1,obs from A. Then, this model

is used to make predictions X̂A
1,mis and X̂B

1,obs for both XA
1,obs and XB

1,mis.
In practice, a regression model is defined on the fully observed data (part A of

Figure 1):

XA
1,obs = g1(XA

2 , XA
3 , ..., XA

k ) (1)

where XA
2 , ..., XA

k are the fully observed variables from A and g1(.) is a link function that
depends on the type of X1. Interaction terms can also be included in the model.

Partly observed Completely observed

𝑋1,𝑜𝑏𝑠
𝐴

𝑋2,𝑜𝑏𝑠
𝐴 , 𝑋3,𝑜𝑏𝑠

𝐴 , … , 𝑋𝑘,𝑜𝑏𝑠
𝐴

𝑋1,𝑚𝑖𝑠
𝐵

𝑋2,𝑜𝑏𝑠
𝐵 , 𝑋3,𝑜𝑏𝑠

𝐵 , … , 𝑋𝑘,𝑜𝑏𝑠
𝐵

𝐴

𝐵

Figure 1. Data structure.
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The next step of the RB procedure is to compare X̂A
1,obs and X̂B

1,mis according to the

data type. Regression (1) provides a set of estimated coefficients, β̂A. β̂A and A are used to
predict XA

1,obs, and then β̂A and B are used to predict XB
1,mis, to obtain two sets of predicted

values, X̂A
1,obs and X̂B

1,mis. This means that the same set of coefficients is used to predict the
observed and missing data.

The difference in distribution between X̂A
1,obs and X̂B

1,mis is the key element of the RB
approach to accept or reject the hypothesis that data are MCAR. If the MD are truly MCAR,
their presence on the response indicator variable X1 cannot be explained by other available
variables in the dataset. However, if the data on this variable are MAR, some information
obtained from the other variables should at least partially be able to explain the presence of
MD. Consequently, there should be differences between A and B on variables X2, . . . , Xk,

and these differences should imply a difference between X̂A
1,obs and X̂B

1,mis. When the null
hypothesis is accepted, it is assumed that the missing part of data on the dependent variable
is MCAR.

3.2. Continuous Case

X̂A
1,obs and X̂B

1,mis are compared in function of the type of X1. A linear regression is
used to estimate Equation (1) when X1 is numerical, and the general Kolmogorov and
Smirnov (KS) test is applied [28] to compare the estimated values. However, other less
usual tests could be used, because the KS test is known to be limited for different reasons,
one of them being that it has problems when data are not normally distributed [29]. An
interesting alternative could be the Cucconi test [30] because it is generally more powerful
than other non-parametric distribution tests and the assumption about the normality of
the data is not required. It is available in the R software [31]. Other alternatives, such
as the Wilcoxon–Mann–Whitney procedure (a general non-parametric test, [32]) or the
Kruskal–Wallis approach (for ordinal data, [33]), could also be used. We advise the use of
the Kolmogorov–Smirnov test when data are normally distributed and the Kruskal–Wallis
approach when data are ordinal.

Notice that the quality of the regression model used to compute the two sets of
predicted subsamples is not essential for the test to perform well. What is essential is,
as with the Little, the Dixon, and the Jamashidian and Jalal tests, the inclusion of all
explanatory variables relevant to the missingness of data on the response indicator variable
of X1. When such explanatory variables are not sufficient to explain the variations in the
dependent variable, the model fit can be low even if the auxiliary variables are associated
with missingness.

3.3. Binary Case

Suppose that the variable with MD, X1, is binary with two categories, a and b. In this
case, Equation (1) becomes a logistic regression:

πlr = g2(XA
2,obs, XA

3,obs, ..., XA
k,obs) (2)

where g2(.) is the link function and πlr is:

πlr = log
p

1− p

with p = Pr(X1,obs = a) and 1− p = Pr(X1,obs = b). Then, the predicted probabilities are
computed by using the predicted coefficients β̂0, ..., β̂k from model (2):

P̂r(X1,obs = a) =
exp(β̂0 + β̂1XA

2 + ... + β̂kXA
k )

1 + exp(β̂0 + β̂1XA
2 + ... + β̂kXA

k )
(3)
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P̂r(X1,mis = a) =
exp(β̂0 + β̂1XB

2 + ... + β̂kXB
k )

1 + exp(β̂0 + β̂1XB
2 + ... + β̂kXB

k )
(4)

P̂r(X1,obs = b) = 1− P̂r(X1,obs = a) (5)

P̂r(X1,mis = b) = 1− P̂r(X1,mis = a) (6)

Then, the differences between (3) and (4) and between (5) and (6) must be tested
using the KS test, because the acceptance or rejection of the test for one category does
not automatically imply the acceptance or rejection of the test for the other category. This
procedure requires two tests (number of categories), and thus the problem of simultaneity
of tests should be addressed. A general Bonferroni-type method could be used. However,
this procedure is known to have a low power to reject incorrect null hypotheses [26]. To
deal with this problem, we propose adjusting the p-values of the KS test by applying the
Benjamini and Hochberg (BH) test [27]. If the hypothesis of no significant distribution
differences is not rejected for both categories, then the MD are assumed to be MCAR.
Otherwise, it is supposed that the MD are not MCAR.

3.4. Categorical Case

Consider the more general case, where the variable with MD, X1, is categorical (or
polytomous) with z > 2 modalities (z = 1, ..., Z). A multinomial regression model must
then be used. In some cases, an ordinal regression can be considered, but it is often
impossible to assume the same gaps between modalities [34], so the multinomial model is
generally preferred.

After the prediction process based on the multinomial regression, the difference
between predicted probabilities needs to be verified with the KS and BH tests:

P̂r(X1,obs = z) d∼ P̂r(X1,mis = z)

The number of comparisons is equal to the number of categories, so that there are J
KS and BH tests, because the acceptance or rejection of the first J − 1 categories does not
automatically imply the acceptance or rejection of the test for the last category. The BH test
is always conducted to avoid the problems due to multiple comparisons. If all J KS and BH
tests accept the equality of distributions, then we conclude that the MD for the incomplete
variable are MCAR. Otherwise, the null hypothesis is rejected.

3.5. Discussion

In contrast to the existing approaches for testing missing data mechanisms which
consider the mean [13,14] or the covariance [15], we developed a regression-based approach,
which can be applied to either continuous or categorical data. A related, but different,
procedure was also proposed in the literature. It consists of dichotomising the variable
with MD between observed and non-observed values, and to apply a logistic regression
model [35,36]. However, this method has never been applied on a large scale, and it is not
proposed in the commonly used statistical software or in textbooks as a standard method.

The RB method assumes that only one variable in the dataset has MD. Obviously,
this situation rarely occurs in reality. One possibility is to replace the MD of independent
variables in the regression model using imputation [3], but imputing data before testing
to determine the type of MD is problematic because wrong imputations can modify the
relationship between the cause of the MD and the MD themselves, thus limiting the
probability of identifying the real MD type. A possible solution to this issue is an iterative
procedure composed of two steps: an initialisation and an iterative phase. We describe this
procedure in the case of single imputation, but it can be used with multiple imputation as
well. During the initialisation step, the RB approach is first applied to one of the variables
with MD using only the variables without MD as predictors. Then, in function of the
result of the RB test, the MD are imputed with respect to their mechanism: a random draw
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from observed data is used to replace MCAR data, and MAR data are imputed using the
chained equation principle [37]. An additional complete variable is then available. Next,
a second variable with MD is tested for missingness, using the imputed variable and the
variables without MD. This procedure is repeated until the data are fully completed. Next,
the RB approach is iteratively applied to each variable with MD, using all other variables as
predictors in the regression model (including imputed variables). This is essential, because
any change between two iterations can have an impact on the prediction of the dependent
variable. If the test result for a variable with MD differs from that of the previous iteration,
the MD are imputed again. At the end of each iteration, the pattern of MD is computed
again. This step is repeated until no differences are found between the MD patterns of
two successive iterations. It must be noted that convergence is not certain, so a maximal
number of iterations has to be set. This procedure is applied to a real example in Section 5.

4. Simulation Study

We describe hereafter a simulation study demonstrating the behaviour of the RB test.

4.1. General Setting

In this section, we compare the behaviour of the Regression-based approaches with
the more standard Little, Dixon, and Jamshidian and Jalal procedures (see Dixon [13],
Little [14] and Jamshidian and Jalal [15]). Two sets of experiments, consisting of indepen-
dent and correlated data, were designed for this comparison:

1. Experiment set 1: independent data:

• Continuous data with a U(0, 1) distribution;
• Continuous data with a N(0, 1) distribution;
• Binary data with a Bernoulli distribution B(1, 0.4);
• Polytomous data with a B(1; 0.1, 0.3, 0.6) distribution.

2. Experiment set 2: correlated data:

• Continuous data with different uniform and normal distributions.

In the case of independent data, a set of 10 variables (X1, ..., X10) with the given
distribution was first randomly generated, X1 being then modified to include a missing
part, and the nine other variables being used as explanatory factors in the regression models.
In the case of correlated data, after generating the initial set of 10 variables, four variables
were randomly selected between X2 and X10 (noted Xsel_1, ..., Xsel_4). Then, these four
variables were transformed as follows to correlate them with the dependent variable X1:

• Xsel_1 = ζU(0,3)X1 + ζU(0,1);
• Xsel_2 = ζU(0,0.5)X2

1 + ζU(0,1);

• Xsel_3 = X1+1
10 + ζU(0,1);

• Xsel_4 = X3
1 + ζN(0,1)ζU(0,1)

where ζU(0,1) and ζN(0,1) are two random vectors generated from, respectively, U(0, 1)
and N(0, 1) distributions, and ζU(0,3) and ζU(0,0.5) are two random values generated from,
respectively, U(0, 3) and U(0, 0.5) distributions.

The sample size ranged from 100 to 10,000 and the percentage of missingness on X1
varied between 1% and 50%. MCAR and MAR mechanisms were studied.

4.2. Simulated Missing Data Mechanisms

Different MD mechanisms were simulated by deleting the observations on variable X1,
following rules defined to mimic MCAR and MAR situations. Let h denote the percentage
of MD generated for X1. The algorithms used to generate the MD are described below
with examples:

• MCAR: A random vector ν of size n containing uniformly distributed data between 0
and 1 is generated. Then, all data above the (100− h)th percentile in ν are selected
and the corresponding observations in X1 are replaced with MD.
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Example. Let h = 20. In this case, X1 is missing when the random vector ν ∼ U(0, 1)
is larger than its 80th percentile.

• MAR1: In the first MAR mechanism, the MD for X1 are caused by only one other
variable. One of the variables between X2 and X10, say, X`, is randomly chosen to
become the cause of the MD for X1. Then, all data above the (100− h)th percentile in
X` are selected, and the corresponding observations in X1 are replaced with MD.
Example. Let h = 20. In this case, X1 is missing when X` is larger than its 20th
percentile.

• MAR2: In the second MAR mechanism, the MD for X1 are caused by two independent
variables. Two variables between X2 and X10, say, X` and Xk, are randomly chosen
as the cause of the MD for X1. Then, first, select all data above the (100− h/2)th
percentile in X` and replace the corresponding observations in X1 with MD. Second, do
the same with Xk. Since some missing data generated from Xk could have already been
generated from X`, continue to generate MD from Xk by going under the (100− h/2)th
percentile until exactly h percent of data are replaced by MD for X1.
Example. Let h = 20. In this case, X1 is missing when X` and Xk are larger than their
90th percentile. Since some MD generated from Xk could have already been generated
from X`, then the largest values from Xk are additionally used until exactly 20% of the
data for X1 are missing.

• MAR3: The third MAR-generating mechanism is quite similar to MAR2, but it uses
three different variables to generate MD. The difference with MAR2 is that it uses the
second and third variables to build an interaction term (simple multiplication) and
generates the second part of the MD from this interaction term rather than from the
original variables. The interaction term allows to make the generation of MD more
complex and to have an indirect explanation of MD.
Example. Let h = 20. In this case, X1 is missing when X` and the interaction between
Xk and Xj (simple multiplication) are larger than their 90th percentile. Since some MD
generated from the interaction term could have already been generated from X`, then
the largest values from XkXj are additionally used until exactly 20% of the data for X1
is missing.

• MAR4: The last MAR mechanism is similar to MAR1, except that the MD are caused
by an interaction term built from two variables randomly selected from X2, ..., X10
instead of from only one randomly selected variable.
Example. Let h = 20. In this case, X1 is missing when the interaction between X` and
Xk is larger than its 80th percentile.

Figures 2 and 3 explain the different MD mechanisms on a reduced example with only
4 variables (instead of 10 in the real simulations) and 20 observations. Figure 2 represents a
complete dataset composed of four uncorrelated variables, X1 to X4, following a U(0, 1)
distribution, and of two interaction terms, X3X4 and X2X3. These interaction terms are a
simple multiplication element by element of the generating variables, which is commonly
called the Hadamard product [38]. In addition, there is a a random generated vector, ν,
that does not belong to the dataset, but that is used to generate MCAR data. The desired
quantity of MD is 20% (4 observations). Figure 3 represents the MD mechanisms. For
MCAR, the highest four values of the random vector ν are used to assign missing values
to X1. Then, the original X2, ..., X4 complete variables are used to define the MD in the
different MAR mechanisms. For MAR2 and MAR3, some of the MD can be generated
identically from both independent variables. In this case, one or several additional values
from the second vector have to be used in order to have exactly 20% of MD for X1. That is
why three values (instead of two) from the interaction X3X4 are used to generate MAR3 for
X1. Appendix A presents the R code for (1) the general way to simulate the MCAR and
MAR1 to MAR4 mechanisms, and (2) the simulated example from Figures 2 and 3. Notice
that the difference between MCAR and MAR mechanisms lies in the fact that the random
vector ν, which explains the presence of MCAR data, does not belong to the dataset, so it
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cannot be used in the regression model of the RB test, while vectors X1 to X4, which explain
the presence of MAR data, are in the dataset.

0.684 0.472 0.908 0.786 0.911 0.715 0.713

0.873 0.302 0.178 0.277 0.881 0.244 0.049

0.690 0.110 0.276 0.100 0.624 0.062 0.028

0.116 0.572 0.405 0.518 0.980 0.043 0.210

0.195 0.791 0.946 0.218 0.980 0.213 0.206

0.461 0.638 0.198 0.511 0.789 0.403 0.101

0.789 0.311 0.133 0.925 0.428 0.395 0.123

0.591 0.693 0.508 0.290 0.884 0.257 0.148

0.374 0.675 0.072 0.072 0.069 0.028 0.029

0.141 0.758 0.575 0.892 0.804 0.717 0.513

0.096 0.841 0.768 0.730 0.654 0.478 0.560

0.703 0.240 0.312 0.794 0.643 0.511 0.248

0.078 0.680 0.054 0.072 0.942 0.068 0.004

0.235 0.070 0.639 0.691 0.239 0.165 0.441

0.960 0.647 0.630 0.596 0.239 0.535 0.375

0.795 0.102 0.823 0.788 0.363 0.286 0.648

0.387 0.956 0.777 0.375 0.192 0.072 0.292

0.976 0.748 0.551 0.172 0.195 0.034 0.095

0.095 0.150 0.032 0.805 0.641 0.516 0.026

0.582 0.308 0.251 0.685 0.245 0.168 0.172

𝑣 𝑋1 𝑋2 𝑋4𝑋3 𝑋3𝑋4 𝑋2𝑋3

observed variables
random 
vector

Figure 2. A dataset of uncorrelated variables following a uniform distribution (X1, X2, X3, X4), two
interaction terms (X3X4, X2X3), and an independent vector ν. The sample size is 20.

0.472 0.684 — 0.908 — 0.908 0.786 — 0.908 0.715 — 0.713
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0.638 0.461 0.638 0.198 0.638 0.198 0.511 0.638 0.198 0.403 0.638 0.101

0.311 0.789 0.311 0.133 — 0.133 0.925 0.311 0.133 0.395 0.311 0.123

0.693 0.591 0.693 0.508 0.693 0.508 0.290 0.693 0.508 0.257 0.693 0.148

0.675 0.374 0.675 0.072 0.675 0.072 0.072 0.675 0.072 0.028 0.675 0.029

0.758 0.141 0.758 0.575 — 0.575 0.892 — 0.575 0.717 — 0.513

0.841 0.096 0.841 0.768 0.841 0.768 0.730 0.841 0.768 0.478 — 0.560

0.240 0.703 0.240 0.312 0.240 0.312 0.794 0.240 0.312 0.511 0.240 0.248

0.680 0.078 0.680 0.054 0.680 0.054 0.072 0.680 0.054 0.068 0.680 0.004

0.070 0.235 0.070 0.639 0.070 0.639 0.691 0.070 0.639 0.165 0.070 0.441

— 0.960 0.647 0.630 0.647 0.630 0.596 — 0.630 0.535 0.647 0.375

— 0.795 — 0.823 0.102 0.823 0.788 0.102 0.823 0.286 — 0.648

0.956 0.387 — 0.777 0.956 0.777 0.375 0.956 0.777 0.072 0.956 0.292

— 0.976 0.748 0.551 0.748 0.551 0.172 0.748 0.551 0.034 0.748 0.095

0.150 0.095 0.150 0.032 0.150 0.032 0.805 0.150 0.032 0.516 0.150 0.026

0.308 0.582 0.308 0.251 0.308 0.251 0.685 0.308 0.251 0.168 0.308 0.172

𝑋1 𝑣 𝑋1 𝑋1 𝑋1 𝑋1𝑋2 𝑋2 𝑋3 𝑋2 𝑋3𝑋4 𝑋2𝑋3

MCAR MAR1 MAR4MAR2 MAR3

Figure 3. An example of the five missing data generating mechanisms with 20% of missing data on
X1 in each case. Red font: top 20% values.

4.3. Simulation Procedure

The main purpose of these simulations is to compare the behaviour of the RB approach
with the Dixon, Jamshidian and Jalal, and Little tests. The four approaches were applied to
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continuous data, and the RB and Little approaches were also applied to categorical data
for different MD mechanisms, sample sizes, and percentages of generated MD. For MAR
mechanisms, all tests are performed using the nine variables X2, . . . , X10 as explanatory
variables in the regression model. Moreover, because the MAR4 mechanism uses only an
interaction term, the situation with this interaction variable added to the dataset is also
tested (MAR4i). Each situation is replicated 1000 times and the percentage of acceptance of
the null hypothesis (MCAR) by each approach is analysed.

Because the data for this simulation study were randomly generated, there is no
significant difference between the variables X2, . . . , X10 in part A and in part B of each
dataset (see Figure 1). If there was a significant difference between them, the concerned
variable would have been a natural candidate for the cause of the MD for X1. This trivial
case being excluded, the reason for rejecting the null hypothesis of the test can actually be
found in the MAR mechanisms described above.

The RBtest [39] package of the open-source statistical software R [40] was used for all
computations. The Type I error was set to 5%.

4.4. Experiment Set 1: Independent Data
4.4.1. Uniform Distribution

For continuous dependent variables, two types of dataset were simulated, the only
difference being the data distribution:

• U(0, 1) with a sample size of 1000;
• N(0, 1) with a sample size of 1000.

Table 2 summarises the simulation results for MCAR and MAR generating mechanisms
when the sample size is 1000 and the data follow a U(0, 1) distribution. For this setting,
all tests accept the MCAR hypothesis when the MD are really MCAR with a probability
close to the degree of confidence of the test (95%). The conclusions diverge between tests
for MAR mechanisms. Both the Dixon and Little tests reject MCAR in the majority of cases,
while the Jamshidian and Jalal procedure tends to accept MCAR in the presence of a large
quantity of MD. In addition, Jamshidian and Jalal accepts MCAR when MAR1, MAR4,
and MAR4i are used and for a relatively low quantity of MD as well. This unexpected
behaviour is a sign that the Jamshidian and Jalal is not appropriate for all types of MD.
There is no definitive explanation for this unexpected behaviour, although the following
elements should be considered:

1. The Jamshidian and Jalal procedure uses a combination of two tests: the modified
Hawkins test and a non-parametric distribution test. However, there is no adjustment
for the total error, which is problematic for simultaneous tests [27];

2. Its procedure is such that when data follow a multivariate normal distribution, the
test rejects the null hypothesis more often. Thus, it is impossible to compare the
application of the test on different types of data;

3. The construction of the Hawkins test is such that whatever the distribution, when
the sample size is relatively small the test fails to reject the null hypothesis (lack of
statistical power). This means that when there is a relatively small quantity of MD, it
is too easy for the modified Hawkins test to accept the null hypothesis;

4. It is known that non-parametric tests are generally less powerful than parametric
ones [41], and the Jamshidian and Jalal procedure uses a non-parametric test to check
for missingness.

The same behaviour was also observed for other sets of simulated data. All these
considerations lead us to consider that the Jamshidian and Jalal test sometimes has a
poor reliability.

Finally, in presence of MAR data the probability of the RB approach to correctly
identify this MD mechanism is positively correlated with the percentage of MD. The higher
the percentage of MD, the higher the probability of rejecting the MCAR case. This behaviour
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is not surprising, since the more information (here: missing data), the easier it should be to
identify the correct type of MD.

Table 2. MCAR and MAR mechanisms, U(0, 1), n = 1000. The percentage of acceptance of the
MCAR hypothesis is provided for Jamshidian and Jalal (JJ), Dixon (D), Little (L), and regression-based
(RB) approaches.

% of MD MCAR MAR1 MAR2
JJ D L RB JJ D L RB JJ D L RB

50% 95.4 95.0 95.6 95.3 90.6 0 0 8.5 0 0 0 11.8
45% 94.7 94.5 93.2 94.6 43.8 0 0 9.7 1.3 0 0 12.3
40% 95.4 95.6 96.0 94.7 4.2 0 0 10.8 4.8 0 0 16.6
35% 94.9 94.9 94.5 96.0 0.1 0 0 9.8 12.0 0 0 18.5
30% 95.5 95.2 94.8 96.3 0 0 0 15.5 20.3 0 0 21.0
25% 95.0 95.9 95.3 96.4 0 0 0 17.9 32.0 0 0 20.8
20% 94.4 94.5 94.5 94.4 0 0 0 19.5 44.3 0 0 26.2
15% 92.8 95.1 94.4 96.5 0.6 0 0 22.6 44.3 0 0 26.2
10% 95.1 95.1 95.3 94.6 4.0 0 0 25.7 63.2 0 0 34.4
5% 93.1 95.3 95.4 95.6 28.8 0 0 41.3 75.8 0 0 50.8
4% 94.5 94.9 94.8 95.4 38.2 0 0 40.9 78.5 0 0 58.0
3% 95.3 94.4 95.6 96.1 51.6 0 0 46.7 81.5 0.6 0 63.3
2% 93.1 94.8 95.6 95.2 61.8 0 0 57.9 82.7 11.8 0.3 72.5
1% 92.2 90.9 95.6 95.7 75.1 0 0 70.1 81.1 62.5 19.0 82.8

% of MD MAR3 MAR4 MAR4i
JJ D L RB JJ D L RB JJ D L RB

50% 0 0 0 14.2 9.6 0 0 12.2 95.1 0 0 15.0
45% 0 0 0 14.2 9.0 0 0 12.0 79.5 0 0 11.9
40% 0.1 0 0 14.2 0 0 0 11.9 36.5 0 0 12.7
35% 0.5 0 0 20.4 0 0 0 13.1 8.6 0 0 12.9
30% 2.7 0 0 20.9 0 0 0 14.2 1.7 0 0 11.1
25% 7.0 0 0 20.8 0 0 0 15.2 0.1 0 0 10.4
20% 16.1 0 0 27.0 0 0 0 16.9 0 0 0 12.3
15% 31.0 0 0 29.5 0 0 0 19.3 0 0 0 13.6
10% 46.6 0 0 36.0 0 0 0 23.9 0 0 0 14.2
5% 64.5 0 0 54.5 0.2 0 0 32.2 0 0 0 20.5
4% 67.6 0.2 0 55.8 0.4 0 0 32.7 0 0 0 19.0
3% 72.0 0.8 0 61.9 3.6 0 0 41.7 0.4 0 0 27.6
2% 80.3 14.3 0.5 72.3 12.0 0 0 45.6 1.7 0 0 32.5
1% 78.3 61.8 13.5 79.5 41.9 0 0 56.1 10.6 0 0 37.4

4.4.2. Normal Distribution

Table 3 summarises the simulation results for MCAR and MAR generating mechanisms
when the sample size is 1000 and the data follow a N(0, 1) distribution. In this setting, all
approaches accept MCAR when the MD are truly MCAR. In the case of MAR mechanisms,
both the Dixon and Little tests reject MCAR when MD are MAR1, MAR2, MAR3, and
MAR4i. On the other hand, the MAR4 has a specific behaviour. This special behaviour is
due to the absence of the interaction variable when computing these tests (note that when
the interaction is added (MAR4i.) this problem disappears). This difference for the MAR4
case is specific to N(0, 1) data as compared to U(0, 1) data. To understand this difference
between distributions, scatter plots, and Pearson correlation tests were performed between
X1, the complete variables that form the interaction and the interaction itself. For normal
data, Figure 4 shows that there are no significant correlations between the variables that
form the interaction (X2 and X3) and the interaction (X2X3). This means that when the
interaction is not added to the model (MAR4 case), the presence of X2 and X3 in the
model may not impact on the presence of MD for X1 (even if they are explained by the
interaction). Consequently, there is no other choice but to accept the MCAR hypothesis. The
RB approach rejects the MCAR hypothesis less often when the number of MD is relatively
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low, except for MAR4. The results of the Jamshidian and Jalal procedure show, once again,
unexpected behaviour, as explained in the previous section.
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Figure 4. N(0,1) distribution for MAR4 missing data mechanism.
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Table 3. MCAR and MAR mechanisms, N(0, 1), n = 1000. The percentage of acceptance of the MCAR
hypothesis is provided for the Jamshidian and Jalal (JJ), Dixon (D), Little (L), and regression-based
(RB) approaches.

% of MD MCAR MAR1 MAR2
JJ D L RB JJ D L RB JJ D L RB

50% 95.6 94.4 94.9 94.0 94.7 0 0 12.6 4.7 0 0 11.8
45% 96.1 95.0 95.0 95.3 90.3 0 0 12.6 6.8 0 0 14.0
40% 95.6 94.9 95.4 96.2 81.5 0 0 12.3 8.0 0 0 12.5
35% 94.0 94.4 96.1 94.6 71.8 0 0 13.2 7.8 0 0 13.6
30% 95.0 95.0 94.7 95.1 60.9 0 0 14.6 9.0 0 0 15.8
25% 96.3 93.9 93.9 95.8 48.5 0 0 16.7 10.3 0 0 15.3
20% 94.5 95.0 95.1 96.2 45.9 0 0 17.9 9.4 0 0 19.2
15% 95.2 94.6 95.5 94.4 48.4 0 0 18.9 11.3 0 0 20.7
10% 95.1 95.8 95.2 95.5 54.6 0 0 22.5 11.0 0 0 25.4
5% 94.4 95.3 95.2 94.9 70.2 0 0 29.7 15.8 0 0 34.5
4% 92.8 96.2 95.8 96.5 77.1 0 0 32.1 16.8 0 0 39.0
3% 94.7 95.7 96.1 96.4 79.9 0 0 36.8 19.6 0 0 43.6
2% 94.3 95.3 95.3 97.2 85.4 0 0 43.6 27.1 2.1 0 52.0
1% 94.3 94.2 95.7 95.4 87.5 0 0 51.2 37.3 64.1 4.6 62.9

% of MD MAR3 MAR4 MAR4i
JJ D L RB JJ D L RB JJ D L RB

50% 0.2 0 0 16.6 95.2 93.8 94.7 64.8 95.1 0 0 15.0
45% 0 0 0 18.1 82.4 95.3 96.3 61.7 80.6 0 0 14.5
40% 0 0 0 19.7 42.7 94.5 94.7 61.4 36.7 0 0 13.6
35% 0 0 0 19.0 12.5 95.4 94.4 59.2 9.7 0 0 12.6
30% 0 0 0 18.8 1.8 95.5 93.5 62.2 0.8 0 0 11.9
25% 0 0 0 18.6 0.3 95.6 91.1 61.6 0 0 0 10.6
20% 0 0 0 24.6 0.1 94.4 88.7 61.1 0 0 0 11.4
15% 0 0 0 27.9 0 95.3 85.4 62.2 0 0 0 13.6
10% 0 0 0 33.9 0 95.0 85.4 69.2 0 0 0 15.1
5% 0 0 0 43.8 0 95.2 79.5 71.3 0 0 0 19.9
4% 0 0 0 46.0 0 94.8 78.6 74.8 0 0 0 19.6
3% 0.3 0.8 0 53.6 0.1 94.3 75.2 78.6 0.1 0 0 24.2
2% 1.4 14.3 0 63.0 0.7 95.3 71.6 77.1 1.8 0 0 28.3
1% 9.5 79.3 2.4 70.9 7.8 95.3 66.0 83.8 15.4 0 0 39.5

4.4.3. Comparison of the Continuous Results

In this subsection, we summarise and graphically compare the simulation results on
all continuous data (Figure 5). The left side of the figure represents the results for data
following a U(0, 1) distribution, while the right side represents data following a N(0, 1)
distribution. Only the MCAR and MAR1 generated MD mechanisms are presented here.

The MCAR hypothesis is widely accepted by all approaches when data are truly
MCAR. For the MAR1 case, the main comparison results are that (1) the Little and Dixon
tests always reject the MCAR hypothesis and (2) the Jamshidian and Jalal and RB procedures
accept the MCAR hypothesis more often when data follow the N(0, 1) distribution.

When there is a small number of MD, it should be more difficult to find a powerful
argument to reject the null hypothesis. Thus, the results are not expected to be correct in
100% of cases. Figure 5 shows that the decrease in the percentage of MD has no impact on
both Little and Dixon tests. This result is also explained by the strong MAR1 assumption,
where MD are completely explained by one variable. The RB approach gives more weight
to MCAR data and balances the results in function of the percentage of MD.
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Figure 5. MCAR and MAR1 mechanisms, U(0, 1) and N(0, 1), n = 1000. The percentage of accep-
tance of the MCAR hypothesis is provided for the Dixon (D), Jamshidian and Jalal (JJ), Little (L),
and regression-based (RB) approaches. For MAR1, the Dixon and Little tests achieve exactly the
same results.

4.4.4. Binary Distribution

For data with a dependant binary variable, X1 has two modalities, [a] with probability
p = 0.3 and [b] with probability 1 − p = 0.7. The sample size takes different values in the
following set: n = [100; 250; 500; 1000; 2000; 10, 000]. From 1% to 50% of MD are generated
for the dependant incomplete variable X1 either purely by random (MCAR case) or by
using the MAR1 mechanism.

Notice that even if it is used for comparison purpose, the Little test is not really able to
test missingness when data are categorical; therefore, categorical data are first transformed
into numerical values. The transformed data could be tested by the Jamshidian and Jalal
and the Dixon tests as well, but since these approaches were not developed for categorical
data, there is no sense in applying them to the categorical case. This argument is also valid
for the Little test but, because it is nevertheless commonly used for categorical data in the
literature, it was important to compare it with the RB approach.

The results are summarised as percentage of cases in which the null hypothesis, that is
the MCAR hypothesis, is accepted. Results are given in Table A1 and Figure 6 (Appendix A).
The figure contains five graphics:



Data 2022, 7, 16 16 of 28

• (a) Represents the results of the RB approach for MAR1 data. It shows how this
approach behaves as a function of the quantity of MD and the sample size;

• (b) Represents the difference between the RB approach and the Little test when the
sample size is equal to 100;

• (c)–(e) are the same as (b), except that the sample size increases respectively to 250,
500, and 1000.

Figure 6a shows that whatever the sample size, the RB approach rejects the MCAR
hypothesis more often when the quantity of MD increases. Moreover, the results of the RB
approach evolve with the sample size. Moreover, the larger the sample size, the easier it is
to reject the MCAR hypothesis. Figure 6b–e show that the Little test and the RB approach
tend to be closer in terms of rejection of the MCAR hypothesis (while the data are truly
MAR) with an increase in the sample size. Furthermore, the Little test always rejects the
MCAR mechanism when the sample size is at least 1000, even when the sample includes a
very small percentage of MAR data. However, it may not always be correct to reject MCAR
when the percentage of MD is very small, because the information set on which to base
the decision is then very small. The relatively strong MAR1 assumption, where MD are
completely explained by one variable, could partially explain this result of the Little test.

4.4.5. Multinomial Distribution

For the multinomial case, we consider three modalities {a; b; c} for variable X1 with
the following probability of occurrence:

X1 =


a with p = 0.1
b with p = 0.3
c with p = 0.6

For this set of simulations, the sample size is constant and equal to 10,000. Five MD
mechanisms are used: MCAR, MAR1, MAR2, MAR3, MAR4, and MAR4i (same algorithms
as before).

Table A2 (Appendix A) summarises the results for the Little and RB tests by giving the
percentage of acceptance of the MCAR hypothesis. Both tests lead to similar conclusions.
They accept the MCAR hypothesis when the data are MCAR in 95% of cases on average
and when the MD are MAR, they reject MCAR in the large majority of cases. However,
when the total amount of MD is less than 3%, the probability of acceptance of the MCAR
hypothesis in the RB approach is larger than 5% when the MD are MAR.

4.5. Experiment Set 2: Correlated Data

Real data are often correlated. It is then important to verify how the tests of MD mech-
anisms are influenced by the level of inter-variable correlation. Therefore, we simulated
one set of correlated continuous data, as explained in Section 4.1.

We applied the RB, Little, and Dixon approaches to verify the impact of the quality
of the linear regression models on the results. The regression models for the dependent
variable X1 used the nine other variables as explanatory variables, including variables
Xsel_1, . . . , Xsel_4. Tables A3–A5 present the results for, respectively, the Dixon, Little, and
RB approaches with different ranges of R2 (Appendix C). The R square measure is very
helpful to evaluate the quality of a regression model. We used it because we wanted to
explore the relationship between the quality of the regression model and the accuracy of the
RB test. Table A6 (Appendix C) shows the sample size for each range of the R2, given that
there are 1000 replications for each percentage of MD and, thus, there are 14,000 datasets.
The results show that whatever the level of the R2, the three approaches work well for
MCAR data because they accept the MCAR hypothesis in 95% of the cases in average.
However, for MAR data, the RB approach tends to accept the MCAR hypothesis much
more often than when data are independent (whatever the R2), while the Dixon and Little
tests always accept the MAR hypothesis. As already noted in the case of independent data,
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the behaviour of these latter two tests is somewhat strange, since it implies a near-infinite
power of the tests, even in presence of a very low amount of information. In contrast,
even if the RB test proves sometimes wrong in detecting correctly MAR data, at least its
behaviour is related to the R2 of the model, the probability of obtaining the true result being
inversely related to the degree of dependence between data.
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Figure 6. MAR1 mechanism, B(1, 0.3), different sample sizes. The percentage of acceptance of the
MCAR hypothesis is provided for the Little and RB approaches.

4.6. Discussion

For continuous data the results are relatively similar whether the data follow a N(0, 1)
or a U(0, 1) distribution, except for one of the MAR mechanisms (MAR4, N(0, 1)). The
percentage of non-observed data is an important factor: the RB and Jamshidian and Jalal
approaches tend to accept the MCAR hypothesis more often as compared to the Little and
Dixon procedures when there is a relatively large quantity of MAR data.

The RB approach is less conservative than the Little and Dixon tests, while the Jamshid-
ian and Jalal approach seems to be more similar to the RB procedure. However, as explained
in Section 4.4.1, the Jamshidian and Jalal approach has an unexpected behaviour, mainly
due to its principle based on a combination of two tests. For very small percentages of MD,
the MCAR hypothesis is more often accepted by the RB approach.
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For the categorical and independent data experiment, only the RB and Little ap-
proaches were used, because the other methods are not appropriate for this data type. As
shown by the simulations, the Little and RB approaches tend to behave similarly, except
that the Little test is less sensible to a variation in the percentage of MD than the RB
approach. In the case of a binary incomplete variable and MAR data, neither approach
is recommended when n = 100; in a conservative approach, a minimum sample size of
n = 1000 seems necessary. In the case of a multinomial incomplete variable with three
categories and MAR data, there are no important differences between the Little and RB
approaches, whatever the MAR mechanism. The RB approach works well even if the
number of modalities increases, however the size of each subsample of a category should
be at least 100 to achieve plausible results.

When data are correlated, the results for MCAR data are generally very similar to
the ones obtained on the independent data: the MCAR hypothesis is accepted in 95% of
the situations on average. In the case of U(0, 1) data and MAR mechanisms, the different
ranges of the R2 show that the RB approach tends to give too much importance to MCAR
data when data are truly MAR (as compared to the Dixon and Little tests). Meanwhile,
the Little test always rejects correctly the MCAR hypothesis for both independent and
correlated data.

5. Application on Real Data

We apply the four approaches—RB (use of the two step procedure explained in
Section 3.5), Dixon, Little, and Jamshidian–Jalal—to test MD mechanisms on a set of
variables (completely and partially observed) of the first wave of the Professional Path
Survey [42]. The main purpose of this survey was to understand the professional transitions,
career pathways, personal experiences, and well-being of employed and unemployed
middle-aged adults (25–55 years) living in the French and German speaking regions of
Switzerland. The sample size is 1902 (excluding the unit non-responses). The selected
variables are listed in Table 4.

For the RB approach, the maximum number of iterations is set to 50. Moreover, given
that there is a certain amount of uncertainty in the iterative step of the RB approach (mainly
due to the high amount of variables and the multiple imputation by the chained equation
method), we replicate the RB procedure 100 times (number of simulations). This gives
more credibility to the RB approach when compared to the other tests.

The Dixon test is applied (K − 1)K times, K being the number of variables with at
least one missing value. Thus, only variables with at least one missing value are tested
by the Dixon approach. Two special cases require discussion. First, the test cannot be
computed when all MD on one variable are also missing on the second variable. In such a
case, we suppose that MD are MAR for not taking the risk of a bad replacement. Second,
when both variables have a certain amount of MD in common, in addition to MD that
are differently distributed over the two variables, the t-test is applied. This is problematic
when the remaining quantity of observed data is relatively low, because it is known that
the power of the t-test decreases with the sample size [43].

Table 4 summarizes the results. The variables are listed in the first column. The second
column gives the absolute frequency of MD per variable. The third column represents
the number of times the MCAR hypothesis is accepted by the RB approach over the
100 simulations. The results of the Dixon procedure are in the fourth column, where
the first value is the number of testing variables leading to the acceptance of the MCAR
hypothesis and the second value is the number of testing variables leading to the rejection of
the MCAR hypothesis. The fifth and sixth columns provide the p-values of the Jamshidian
and Jalal and Little procedures, which test missingness using the overall information,
and, thus, only one number per test is provided. Note that for the Jamshidian and Jalal
procedure, the p-value shown in Table 4 corresponds to the last step of the procedure where
the homogeneity of covariances is tested. Of course, in this case, the null hypothesis in the
first step of the procedure was rejected.
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Table 4. Results of the RB, Dixon, Jamshidian and Jalal, and Little tests applied on the first wave of
the Professional Path Survey data. The first column lists the variables. The second column gives the
number of missing data per variable. The third column provides the number of times the MCAR
hypothesis is accepted by the RB approach over the 100 simulations. The fourth column represents
the number of times the missing data are considered as MCAR or MAR for the variable of interest by
the Dixon test. The fifth and sixth columns represent the p-values of the Jamshidian and Jalal and
Little procedures (overall tests).

Variables Number of MD RB D JJ L

Children 103 0 6; 6
Income 62 100 8; 4
General health 20 82 8; 4
Education 13 98 8; 4
Household 9 58 0; 12
Self-rated health 9 99 6; 6
Marital status 7 90 5; 7
Agreeableness 4 99 0; 12
Conscientiousness 4 100 0; 12
Extraversion 4 100 0; 12
Neuroticism 4 100 0; 12
Number of jobs 4 100 8; 4
Openness 4 100 0; 12
Age 0 - -
Benefits 0 - -
Gender 0 - -
Nationality 0 - -
Work rate 0 - -

Overall 0.086 0

When the RB approach is applied, there is no ambiguity for self-rated health, number
of jobs, income, neuroticism, extraversion, openness, agreeableness, conscientiousness, and
education; the MCAR hypothesis is accepted in at least 95% of cases. The conclusion is
the opposite for Children, because the MCAR hypothesis is always rejected, and, thus, the
MD are supposed to be MAR. Marital status is supposed to be MCAR, because the MCAR
hypothesis is accepted in 90% of cases. Results are more contrasted for the two remaining
variables; the MCAR hypothesis is rejected in 42% of cases for Household and in 18% of
cases for General health. A first naive explanation could be that only the number of MD
affects the result, that is there is a higher probability of accepting the MCAR hypothesis
when this number is relatively low. For instance, Education has a relatively low number
of MD (13) and the RB approach accepts the MCAR hypothesis in 98% of cases. However,
this hypothesis does not hold for Household, which contains only 9 missing values and for
which the RB approach approximately equally accepts and rejects the MCAR hypothesis
over the 100 simulations. Both variables (Household and Education) have a similar and
relatively low quantity of MD; however, the difference in the distributions between the
acceptance and rejection of the MCAR hypothesis is important.

For the Dixon approach, the results are more contrasted with respect to the RB proce-
dure. For instance the Dixon test always rejects the MCAR hypothesis for the four variables
related to personality, while the RB approach accepts MCAR in the large majority of cases.
The Little test suggests that these MD are globally not MCAR, but without doing any
distinction between variables, while the Jamshidian and Jalal globally accepts the MCAR
hypothesis. Such results provide a contrasting conclusion about the type of MD.
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6. Conclusions

There are few methods in the literature to test missingness. The most commonly used
ones, the Dixon [13], Little [14] and Jamshidian and Jalal [15] methods, are all limited in
different ways. This article has described an innovative approach to test MCAR versus
MAR data. This method is adapted both to continuous and categorical data. Demonstrating
that MD are not MCAR is important because in that case it is generally recommended to use
multiple imputation to handle MD, while it is very common in practice to simply delete non-
observed data. Moreover, knowing the MD mechanism can help to detect some response
patterns and to better understand the data, as well as the psychology of respondents.

Our results show that no test can be universally applied to correctly detect the correct
MD mechanism. All tests have difficulties when data are correlated. A limitation of
the our approach, but similar to other tests, is that it is not designed to test the MNAR
hypothesis. However, in the longitudinal context, the RB approach could be extended to
detect non-ignorable MD by combining it with the drawn indicator family of methods [44].
Furthermore, simulations of MAR mechanisms with a weaker link between MD and there
explanation would be necessary.

The method developed in this article is not meant to replace existing testing procedures,
but to offer an additional tool for scientists and data analysts to check whether their MD are
completely randomly distributed over their dataset or not, and to offer them an additional
point of view on missingness.
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Appendix A. R Code for Generated Missing Data Mechanisms

m<-10 # number of variables.
n<-10000 # sample size.
mis<-20 # percentage of missing data on the dependent variable

set.seed(40)

############# MCAR and MAR mechanisms #############

#----------------#
#----- MCAR -----#
#----------------#

X<-matrix(NA,ncol=m,nrow=n)
for (i in 1:m){
X[,i]<-runif(n,0,1)
}
X<-data.frame(X)

X_MCAR<-X
aa<-runif(n,0,1)
X_MCAR[which(aa<=sort(aa)[mis*(n/100)]),1]=NA

https://www.swissubase.ch/fr/catalogue/studies/12734/17161/overview
https://www.swissubase.ch/fr/catalogue/studies/12734/17161/overview
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#----------------#
#----- MAR1 -----#
#----------------#

X<-matrix(NA,ncol=m,nrow=n)
for (i in 1:m){
X[,i]<-runif(n,0,1)
}
X<-data.frame(X)

X_MAR1<-X
selection<-sample(c(2:ncol(X_MAR1)),1)
x_s<-X_MAR1[,selection] # one sampled independent variable.

q_MAR_1<-quantile(x_s,seq(0,1,0.01))[100-mis+1]
X_MAR1[which(x_s>q_MAR_1),1]<-NA

#----------------#
#----- MAR2 -----#
#----------------#

X<-matrix(NA,ncol=m,nrow=n)
for (i in 1:m){
X[,i]<-runif(n,0,1)
}
X<-data.frame(X)

X_MAR2<-X

selection<-sample(c(2:ncol(X_MAR2)),2)
x_s<-X_MAR2[,selection] # two sampled independent variables.

q_MAR_1<-quantile(x_s[,1],seq(0,1,0.005))[mis+1]

X_MAR2[which(x_s[,1]<q_MAR_1),1]=NA
X_MAR2[which(is.na(X_MAR2[,1])==F)
[which(x_s[which(is.na(X_MAR2[,1])==F),2]<
quantile(x_s[which(is.na(X_MAR2[,1])==F),2],
(mis/2)/(100-(mis/2))))],1]=NA

#----------------#
#----- MAR3 -----#
#----------------#

X<-matrix(NA,ncol=m,nrow=n)
for (i in 1:m){
X[,i]<-runif(n,0,1)
}
X<-data.frame(X)

X_MAR3<-X
selection<-sample(c(2:ncol(X_MAR3)),3)
x_s<-x_s_1<-X_MAR3[,selection] # three sampled independent variables.
x_s<-cbind.data.frame(x_s[,1],x_s[,2]*x_s[,3])

q_MAR_1<-quantile(x_s[,1],seq(0,1,0.005))[mis+1]

X_MAR3[which(x_s[,1]<q_MAR_1),1]=NA
X_MAR3[which(is.na(X_MAR3[,1])==F)
[which(x_s[which(is.na(X_MAR3[,1])==F),2]<
quantile(x_s[which(is.na(X_MAR3[,1])==F),2],
(mis/2)/(100-(mis/2))))],1]=NA

#----------------#
#----- MAR4 -----#
#----------------#

X<-matrix(NA,ncol=m,nrow=n)
for (i in 1:m){
X[,i]<-runif(n,0,1)
}
X<-data.frame(X)

X_MAR4<-X
x_s<-X_MAR4[,sample(c(2:ncol(X_MAR4)),2)] # two sampled independent variables.
x_s<-x_s[,1]*x_s[,2]

q_MAR_1<-quantile(x_s,seq(0,1,0.01))[100-mis+1]
X_MAR4[which(x_s>q_MAR_1),1]=NA

##########################################################
#--------------------------------------------------------#
#----- Simulated example of missing data mechanisms -----#
#--------------------------------------------------------#
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##########################################################

set.seed(40)
# 5 variables with a uniform distribution and a sample size of 20
D<-matrix(NA,ncol=5,nrow=20)
for (i in 1:5){
D[,i]<-runif(20,0,1)
}

colnames(D)=c("v","X1","X2","X3","X4") # names of columns
D<-data.frame(D)

D$X3X4<-D$X3*D$X4 #interaction term between X3 and X4
D$X2X3<-D$X2*D$X3 #interaction term between X2 and X3

D<-round(D,digit=3) # 3 digits

# Check for the highest 20% of values for each variable

D_s<-D # sorted data.frame
for (i in 1:ncol(D)){
D_s[,i]<-sort(D[,i])
}
D_s[17:20,c(1,3:7)] # the 4 highest values of each
# variable and interactions,
# except X1
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Appendix B. Simulation Results of Experiment Set 1

Table A1. MAR1 and MCAR mechanisms, binary data with p = 0.3. The percentage of acceptance of the MCAR hypothesis is provided for the Little (L) and
regression-based (RB) approaches.

% of MD
n = 100 n = 250 n = 500 n = 1000 n = 2000 n = 10,000

MCAR MAR1 MCAR MAR1 MCAR MAR1 MCAR MAR1 MCAR MAR1 MCAR MAR1
L RB L RB L RB L RB L RB L RB L RB L RB L RB L RB L RB L RB

50% 96.2 93.9 0 29.8 94.7 94.5 0 20.0 93.9 95.3 0 11.9 95.6 95.9 0 9.1 95.6 94.7 0 6.5 95.2 95.7 0 3.7
45% 96.3 93.4 0 32.7 95.4 94.4 0 21.3 94.0 94.6 0 14.2 96.0 96.3 0 9.8 95.4 95.2 0 8.3 96.1 94.2 0 2.5
40% 95.9 94.6 0 35.2 93.8 93.7 0 23.9 94.6 95.3 0 18.5 96.1 95.2 0 12.6 95.6 94.8 0 9.3 95.8 95.4 0 3.6
35% 96.0 93.5 0 37.6 95.1 95.4 0 24.7 93.7 95.8 0 21.4 95.6 95.4 0 13.5 95.5 94.5 0 10.3 96.1 94.8 0 4.0
30% 96.3 95.8 0 44.5 95.0 96.4 0 27.4 94.6 96.6 0 20.6 96.1 95.6 0 14.4 94.5 94.6 0 11.6 95.3 95.1 0 3.5
25% 95.5 96.4 0 48.2 95.6 96.1 0 32.3 94.5 95.3 0 23.0 96.9 96.5 0 16.6 94.4 94.3 0 11.6 96.5 94.7 0 4.2
20% 95.0 95.7 0 51.1 95.4 95.4 0 35.7 93.4 94.8 0 25.2 95.2 94.8 0 19.6 94.1 95.6 0 12.6 95.4 94.7 0 5.3
15% 95.1 95.3 0 57.4 95.2 94.6 0 43.4 94.8 96.1 0 32.7 95.9 96.3 0 20.5 95.6 94.1 0 16.0 95.6 95.1 0 7.2
10% 96.2 94.6 0 65.8 95.7 95.4 0 52.8 94.9 95.6 0 40.3 96.2 95.8 0 28.8 96.3 95.3 0 22.1 95.4 95.3 0 7.3
5% 96.5 94.5 9.6 79.5 95.5 95.0 0 65.8 94.4 95.5 0 53.4 96.2 96.3 0 39.0 95.5 95.6 0 29.6 95.1 95.6 0 12.5
4% 96.5 94.7 32.9 81.8 95.5 95.4 0 70.2 95.3 94.4 0 55.1 95.3 97.1 0 45.0 95.4 95.1 0 34.8 95.6 95.2 0 14.4
3% 97.3 94.2 61.3 85.0 95.6 95.3 0 72.7 95.2 95.6 0 63.7 96.1 96.3 0 49.1 95.0 94.7 0 38.6 96.3 93.4 0 17.4
2% 97.4 93.3 85.3 87.6 95.4 95.0 5.1 79.7 96.1 94.6 0 70.2 96.3 96.0 0 59.2 95.3 94.5 0 45.8 95.7 95.6 0 20.6
1% 99.2 93.9 98.5 93.4 97.7 95.0 57.8 87.0 96.6 95.3 3.2 80.5 97.2 95.6 0 70.7 94.0 96.8 0 58.9 95.1 95.8 0 26.6
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Table A2. MCAR and MAR mechanisms, B(1, 0.1, 0.3, 0.6), n = 10, 000. The percentage of acceptance
of the MCAR hypothesis is provided for the Little (L) and regression-based (RB) approaches.

n = 10,000

% of MD MCAR MAR1 MAR2 MAR3 MAR4 MAR4i
L RB L RB L RB L RB L RB L RB

50% 95.2 94.5 0 0 0 0 0 0 0 0.1 0 0
45% 96.1 95.0 0 0 0 0 0 0.1 0 0.2 0 0
40% 95.8 94.1 0 0.3 0 0.1 0 0 0 0.2 0 0.1
35% 96.1 95.7 0 0.5 0 0 0 0.3 0 0.2 0 0
30% 95.3 96.2 0 0.3 0 0.4 0 0.1 0 0.1 0 0
25% 96.5 95.3 0 0.2 0 0.2 0 0.1 0 0.3 0 0
20% 95.4 96.1 0 0.4 0 0.4 0 0.3 0 0.1 0 0
15% 95.6 95.3 0 0.2 0 0.5 0 0.6 0 0.5 0 0
10% 95.4 95.9 0 0.8 0 1.3 0 1.0 0 0.3 0 0
5% 95.1 96.1 0 2.3 0 2.8 0 3.0 0 0.5 0 0.2
4% 95.6 96.2 0 1.8 0 3.4 0 5.0 0 0.9 0 0.6
3% 96.3 96.0 0 2.8 0 4.3 0 4.7 0 2.0 0 0.2
2% 95.7 96.5 0 4.6 0 7.0 0 8.8 0 2.5 0 0.9
1% 95.1 95.8 0 9.2 0 15.1 0 17.5 0 3.9 0 2.1

Appendix C. Simulation Results of Experiment Set 2

Table A3. Dixon test, MCAR and MAR mechanisms, U(0, 1), n = 10,000, R2 ∈ [0,1[.

% of MD R2 ∈ [0, 0.05[ R2 ∈ [0, 0.1[
MCAR MAR1 MAR2 MAR3 MAR4 MAR4i MCAR MAR1 MAR2 MAR3 MAR4 MAR4i

50% 94.1 0 0 0 0 0 97.4 0 0 0 0 0
45% 100.0 0 0 0 0 0 100.0 0 0 0 0 0
40% 92.9 0 0 0 0 0 97.1 0 0 0 0 0
35% 76.9 0 0 0 0 0 87.9 0 0 0 0 0
30% 86.4 0 0 0 0 0 87.2 0 0 0 0 0
25% 85.7 0 0 0 0 0 91.2 0 0 0 0 0
20% 96.2 0 0 0 0 0 96.4 0 0 0 0 0
15% 94.4 0 0 0 0 0 94.9 0 0 0 0 0
10% 87.5 0 0 0 0 0 92.1 0 0 0 0 0
5% 100.0 0 0 0 0 0 100.0 0 0 0 0 0
4% 100.0 0 0 0 0 0 97.3 0 0 0 0 0
3% 100.0 0 0 0 0 0 100.0 0 0 0 0 0
2% 100.0 0 0 0 0 0 100.0 0 0 0 0 0
1% 85.7 0 0 0 0 0 90.0 0 0 0 0 0

% of MD R2 ∈ [0, 0.25[ R2 ∈ [0.25, 0.5[
MCAR MAR1 MAR2 MAR3 MAR4 MAR4i MCAR MAR1 MAR2 MAR3 MAR4 MAR4i

50% 97.5 0 0 0 0 0 94.9 0 0 0 0 0
45% 96.7 0 0 0 0 0 93.8 0 0 0 0 0
40% 94.2 0 0 0 0 0 93.1 0 0 0 0 0
35% 92.6 0 0 0 0 0 94.6 0 0 0 0 0
30% 92.9 0 0 0 0 0 96.0 0 0 0 0 0
25% 92.1 0 0 0 0 0 95.5 0 0 0 0 0
20% 95.1 0 0 0 0 0 95.1 0 0 0 0 0
15% 96.2 0 0 0 0 0 91.1 0 0 0 0 0
10% 93.9 0 0 0 0 0 94.3 0 0 0 0 0
5% 96.6 0 0 0 0 0 95.7 0 0 0 0 0
4% 93.9 0 0 0 0 0 93.9 0 0 0 0 0
3% 96.0 0 0 0 0 0 94.9 0 0 0 0 0
2% 97.0 0 0 0 0 0 93.8 0 0 0 0 0
1% 92.3 0 0 0 0 0 92.5 0 0 0 0 0
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Table A3. Cont.

% of MD R2 ∈ [0.5, 0.75[ R2 ∈ [0.75, 1[
MCAR MAR1 MAR2 MAR3 MAR4 MAR4i MCAR MAR1 MAR2 MAR3 MAR4 MAR4i

50% 97.5 0 0 0 0 0 94.5 0 0 0 0 0
45% 97.0 0 0 0 0 0 95.8 0 0 0 0 0
40% 93.6 0 0 0 0 0 95.1 0 0 0 0 0
35% 96.7 0 0 0 0 0 94.8 0 0 0 0 0
30% 94.6 0 0 0 0 0 98.6 0 0 0 0 0
25% 95.6 0 0 0 0 0 95.9 0 0 0 0 0
20% 97.3 0 0 0 0 0 95.8 0 0 0 0 0
15% 95.2 0 0 0 0 0 96.3 0 0 0 0 0
10% 94.5 0 0 0 0 0 95.9 0 0 0 0 0
5% 93.7 0 0 0 0 0 95.6 0 0 0 0 0
4% 91.9 0 0 0 0 0 91.9 0 0 0 0 0
3% 94.4 0 0 0 0 0 94.0 0 0 0 0 0
2% 97.9 0 0 0 0 0 93.5 0 0 0 0 0
1% 94.7 0 0 0 0 0 94.5 0 0 0 0 0

Table A4. Little test, MCAR and MAR mechanisms, U(0, 1), n = 10,000, R2 ∈ [0,1[.

% of MD R2 ∈ [0, 0.05[ R2 ∈ [0, 0.1[
MCAR MAR1 MAR2 MAR3 MAR4 MAR4i MCAR MAR1 MAR2 MAR3 MAR4 MAR4i

50% 88.2 0 0 0 0 0 94.7 0 0 0 0 0
45% 95.2 0 0 0 0 0 97.7 0 0 0 0 0
40% 92.9 0 0 0 0 0 97.1 0 0 0 0 0
35% 92.3 0 0 0 0 0 93.9 0 0 0 0 0
30% 90.9 0 0 0 0 0 89.7 0 0 0 0 0
25% 85.7 0 0 0 0 0 91.2 0 0 0 0 0
20% 96.2 0 0 0 0 0 96.4 0 0 0 0 0
15% 88.9 0 0 0 0 0 92.3 0 0 0 0 0
10% 93.8 0 0 0 0 0 89.5 0 0 0 0 0
5% 200.0 0 0 0 0 0 100.0 0 0 0 0 0
4% 92.3 0 0 0 0 0 89.2 0 0 0 0 0
3% 94.1 0 0 0 0 0 91.2 0 0 0 0 0
2% 91.7 0 0 0 0 0 96.2 0 0 0 0 0
1% 92.9 0 0 0 0 0 90.0 0 0 0 0 0

% of MD R2 ∈ [0, 0.25[ R2 ∈ [0.25, 0.5[
MCAR MAR1 MAR2 MAR3 MAR4 MAR4i MCAR MAR1 MAR2 MAR3 MAR4 MAR4i

50% 96.2 0 0 0 0 0 93.9 0 0 0 0 0
45% 93.9 0 0 0 0 0 94.2 0 0 0 0 0
40% 97.9 0 0 0 0 0 90.3 0 0 0 0 0
35% 93.2 0 0 0 0 0 94.6 0 0 0 0 0
30% 93.5 0 0 0 0 0 95.7 0 0 0 0 0
25% 95.8 0 0 0 0 0 96.1 0 0 0 0 0
20% 97.5 0 0 0 0 0 94.7 0 0 0 0 0
15% 94.5 0 0 0 0 0 92.3 0 0 0 0 0
10% 92.4 0 0 0 0 0 94.7 0 0 0 0 0
5% 96.6 0 0 0 0 0 95.1 0 0 0 0 0
4% 93.9 0 0 0 0 0 96.5 0 0 0 0 0
3% 96.6 0 0 0 0 0 94.9 0 0 0 0 0
2% 97.6 0 0 0 0 0 93.8 0 0 0 0 0
1% 94.7 0 0 0 0 0 92.5 0 0 0 0 0
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Table A4. Cont.

% of MD R2 ∈ [0.5, 0.75[ R2 ∈ [0.75, 1[
MCAR MAR1 MAR2 MAR3 MAR4 MAR4i MCAR MAR1 MAR2 MAR3 MAR4 MAR4i

50% 95.1 0 0 0 0 0 94.8 0 0 0 0 0
45% 97.6 0 0 0 0 0 95.5 0 0 0 0 0
40% 93.1 0 0 0 0 0 94.0 0 0 0 0 0
35% 96.1 0 0 0 0 0 96.5 0 0 0 0 0
30% 92.6 0 0 0 0 0 96.3 0 0 0 0 0
25% 95.6 0 0 0 0 0 95.3 0 0 0 0 0
20% 97.8 0 0 0 0 0 93.3 0 0 0 0 0
15% 94.0 0 0 0 0 0 96.6 0 0 0 0 0
10% 95.8 0 0 0 0 0 95.9 0 0 0 0 0
5% 96.2 0 0 0 0 0 94.7 0 0 0 0 0
4% 97.1 0 0 0 0 0 91.3 0 0 0 0 0
3% 97.0 0 0 0 0 0 94.3 0 0 0 0 0
2% 94.2 0 0 0 0 0 93.8 0 0 0 0 0
1% 98.8 0 0 0 0 0 95.4 0 0 0 0 0

Table A5. RB test, MCAR and MAR mechanisms, U(0, 1), n = 10,000, R2 ∈ [0,1[.

% of MD R2 ∈ [0, 0.05[ R2 ∈ [0, 0.1[
MCAR MAR1 MAR2 MAR3 MAR4 MAR4i MCAR MAR1 MAR2 MAR3 MAR4 MAR4i

50% 94.1 5.6 4.2 11.5 10.7 13.0 89.5 11.4 4.8 15.6 10.5 10.9
45% 90.5 2.3 20.8 4.5 4.3 23.8 93.2 6.0 20.0 16.1 2.4 14.6
40% 92.9 6.1 6.7 11.1 3.4 11.1 94.1 10.7 11.5 12.5 5.7 12.5
35% 92.3 7.7 10.5 7.1 10.0 5.0 97.0 13.5 26.5 21.1 10.0 17.0
30% 86.4 5.9 10.0 10.5 0.0 7.7 92.3 9.1 18.4 11.8 7.7 16.7
25% 100.0 0.0 15.0 10.0 13.0 20.0 94.1 12.3 21.6 15.9 18.3 28.6
20% 100.0 17.4 20.0 12.5 3.8 23.5 96.4 24.6 25.0 10.5 8.2 25.0
15% 100.0 19.0 16.7 37.5 12.9 14.3 97.4 38.0 32.5 33.3 20.4 24.4
10% 81.2 48.0 29.4 20.0 23.4 20.0 89.5 48.1 28.6 30.0 21.7 28.0
5% 86.7 55.0 46.7 33.3 31.2 40.0 90.9 39.0 37.8 34.1 40.9 51.3
4% 100.0 50.0 20.0 71.4 26.9 23.8 97.3 60.0 36.4 61.8 29.5 28.9
3% 100.0 50.0 41.2 50.0 39.1 25.0 100.0 52.2 38.9 31.9 30.2 35.4
2% 75.0 54.5 22.2 22.2 44.0 56.5 88.5 60.5 18.4 33.3 43.2 56.0
1% 100.0 33.3 21.4 35.7 9.1 43.5 100.0 40.5 21.6 46.2 29.7 52.3

% of MD R2 ∈ [0, 0.25[ R2 ∈ [0.25, 0.5[
MCAR MAR1 MAR2 MAR3 MAR4 MAR4i MCAR MAR1 MAR2 MAR3 MAR4 MAR4i

50% 96.2 18.1 17.0 14.9 15.7 10.0 95.5 32.0 25.2 15.7 25.5 20.4
45% 94.5 18.3 22.1 17.0 12.8 7.5 95.5 32.9 32.2 18.9 27.7 17.7
40% 93.7 22.4 17.7 16.6 14.3 14.4 95.8 36.1 26.8 22.0 28.2 26.1
35% 93.8 27.3 22.0 20.8 14.6 14.3 94.6 43.4 27.8 19.4 37.8 28.7
30% 92.9 23.0 27.6 19.9 15.9 19.1 94.6 44.8 33.0 25.2 30.8 28.2
25% 96.4 25.3 33.1 21.5 21.2 23.6 95.2 44.8 31.6 23.2 30.7 30.2
20% 95.6 36.6 29.3 25.8 19.6 30.2 95.4 56.9 40.0 26.5 33.0 36.1
15% 94.0 38.9 33.7 25.1 22.8 34.3 91.4 58.5 35.4 28.3 34.2 37.5
10% 93.9 56.0 32.3 34.1 24.0 34.5 92.5 58.2 38.2 26.6 35.4 38.1
5% 96.0 48.8 40.3 33.9 30.9 42.7 93.6 63.8 44.3 35.3 34.2 44.4
4% 93.3 55.6 37.2 37.9 32.6 35.5 97.1 58.2 35.6 33.1 38.3 46.1
3% 97.7 58.4 34.8 35.4 29.1 45.2 92.8 56.4 41.7 35.8 37.5 46.7
2% 94.6 55.2 35.5 39.8 34.9 50.5 95.2 66.9 43.4 36.6 41.0 47.5
1% 94.1 56.9 36.7 43.6 38.3 47.6 95.2 64.1 36.9 47.7 43.6 52.4
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Table A5. Cont.

% of MD R2 ∈ [0.5, 0.75[ R2 ∈ [0.75, 1[
MCAR MAR1 MAR2 MAR3 MAR4 MAR4i MCAR MAR1 MAR2 MAR3 MAR4 MAR4i

50% 91.7 29.0 22.5 11.9 20.3 22.1 95.4 58.0 36.2 17.0 30.3 28.4
45% 97.6 40.9 22.4 14.6 28.3 20.0 93.6 57.8 30.3 15.5 31.3 25.7
40% 95.4 43.4 24.3 10.3 25.1 24.4 95.1 58.5 30.8 15.5 30.3 32.5
35% 94.4 42.6 24.7 12.6 28.4 25.3 93.9 62.1 36.1 13.9 30.8 28.9
30% 95.0 45.9 24.4 13.7 22.3 28.0 94.0 63.1 30.2 16.7 33.4 28.6
25% 95.6 49.2 28.9 11.5 31.8 25.0 93.7 58.3 30.0 22.3 32.4 28.5
20% 98.4 48.9 28.1 14.4 27.2 29.3 94.2 55.6 27.8 14.8 26.9 29.7
15% 94.0 58.1 29.1 20.5 22.8 32.4 96.9 59.9 30.8 18.4 29.8 30.7
10% 92.7 54.5 25.8 18.4 24.3 32.4 96.9 55.7 30.2 21.9 31.1 34.3
5% 96.9 54.9 30.2 20.8 22.7 34.6 92.3 55.2 37.9 20.4 36.4 36.1
4% 96.0 55.6 25.0 21.9 33.0 40.2 96.4 57.2 26.7 24.3 36.4 38.3
3% 95.4 57.2 25.9 17.9 31.1 42.1 93.7 58.6 27.6 22.3 33.9 42.6
2% 94.8 57.0 31.8 26.5 30.0 37.4 96.6 57.3 31.0 25.5 31.6 34.3
1% 98.2 61.4 32.1 23.1 25.0 43.4 95.4 56.8 27.9 28.7 30.6 44.6

Table A6. Sample sizes for the examples of Tables A3–A5.

% of MD R2 ∈ [0, 0.05[ R2 ∈ [0, 0.1[ R2 ∈ [0, 0.25[ R2 ∈ [0.25, 0.5[ R2 ∈ [0.5, 0.75[ R2 ∈ [0.75, 1[

50% 17 38 157 311 204 328
45% 21 44 181 292 168 359
40% 14 34 190 289 173 348
35% 13 33 176 299 180 345
30% 22 39 170 277 202 351
25% 21 34 165 310 206 319
20% 26 55 203 285 182 330
15% 18 39 183 326 168 323
10% 16 38 197 318 165 320
5% 15 33 176 327 159 338
4% 13 37 180 312 173 335
3% 17 34 176 292 197 335
2% 12 26 166 291 191 352
1% 14 30 169 333 169 329
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