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Abstract: With the increased availability of low-cost, off-the-shelf drone platforms, drone data become
easy to capture and are now a key component of environmental assessments and monitoring. Once
the data are collected, there are many structure-from-motion (SfM) photogrammetry software options
available to pre-process the data into digital elevation models (DEMs) and orthomosaics for further
environmental analysis. However, not all software packages are created equal, nor are their outputs.
Here, we evaluated the workflows and output products of four desktop SfM packages (AgiSoft
Metashape, Correlator3D, Pix4Dmapper, WebODM), across five input datasets representing various
ecosystems. We considered the processing times, output file characteristics, colour representation of
orthomosaics, geographic shift, visual artefacts, and digital surface model (DSM) elevation values. No
single software package was determined the “winner” across all metrics, but we hope our results help
others demystify the differences between the options, allowing users to make an informed decision
about which software and parameters to select for their specific application. Our comparisons
highlight some of the challenges that may arise when comparing datasets that have been processed
using different parameters and different software packages, thus demonstrating a need to provide
metadata associated with processing workflows.

Keywords: unmanned aerial vehicle (UAV); digital elevation model (DEM); digital surface model
(DSM); orthomosaic; photogrammetry; Earth observation; environmental monitoring

1. Introduction

Drone data use within environmental sciences has increased considerably over the
past 20 y. This is due in part to the increased availability of drone platforms on the
market, technological advances providing better sensors, a longer battery life, easier-to-use
systems, and enhanced structure-from-motion (SfM) software that is able to process these
datasets into orthomosaics and digital elevation models (DEMs) [1]. Further, in contrast
to traditional aerial survey and satellite data capture, drones are able to survey at a fine
resolution from a low altitude, be deployed on flexible time schedules, and fly below clouds
for unobstructed data collection [2]. In some ways, a drone can capture data more akin
to field surveys, though over larger and potentially inaccessible areas, thus effectively
bridging the gap between satellite and on-ground data collection across terrestrial and
marine environments [3].

Drone data have been captured to provide information across a range of environmental
fields, predominantly to assess vegetation coverage, composition, and/or structure in the
terrestrial environment (e.g., [4–8]). However, they have also been used to study a range
of other environments, including mangroves [9–11], oyster reefs [12], coral reefs [13,14],
coastal dunes [15,16], and seagrass beds [17]. They have also been used to identify invasive
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plant species [18–20] and estimate animal populations [21–23]. Drones are also commonly
used within agriculture (e.g., [24,25]), forestry [26], and urban settings (e.g., [27,28]).

Most of these environmental applications require the drone data to undergo some form
of preprocessing before the data are suitable for mapping analyses. Typically, individual
drone images will retain metadata not only of the time and date of capture, but also the x,
y, z coordinate location of the drone (longitude, latitude, altitude), its orientation, and the
angular rotations of the platform and camera. The combination of imagery and metadata is
used by SfM photogrammetry software to commence the pre-processing workflow.

The two most commonly used outputs of an SfM workflow include a DEM and an
orthomosaic. DEMs are spatial datasets that describe surface terrain features and are broken
up into two categories: digital terrain models (DTMs) and digital surface models (DSMs)
[29]. DTMs measure the elevation of the mapped surface, minus objects on the surface
(e.g., trees, buildings), whereas DSMs measure the mapped elevation including surface
objects. The derived DEM is then used in the process of building an orthomosaic.

Orthomosaics are created by stitching together a series of individual, overlapping
orthorectified aerial images to produce a single continuous image/map [30]. This pro-
cess corrects for distortions in the image, introduced by factors such as camera tilt, lens
distortion, and environmental conditions [31]. The end product is a uniformly scaled,
georeferenced image allowing for accurate estimation of the location, size, and shape of
photographed objects.

The accessibility of drones and their derived data products allow scientists, land
managers, and other users to collect and manage their own spatial datasets [1]. However,
many end users remain unaware of the processes that take place within the workflow of a
chosen software or the potential differences in the end product as a result of processing
and software choices [32]. There are both proprietary and open-source software options
available for conducting SfM photogrammetry. Provided one has sufficient skills in coding,
open-source toolkits can be more flexible and allow customisation of many stages in the
workflow. In contrast, proprietary software often provides a streamlined workflow to
facilitate photogrammetric processing. However, these packages are often referred to as
a “black box”-type solution because they offer little control or insight for users on the
internal workings of the software, and in many cases, there is limited opportunity for
customisation [33].

The uptake of SfM methods in research and monitoring requires some understanding
of the data acquisition and image processing workflow to ensure research design repeatabil-
ity and comparability [34]. Decisions in the image capturing process such as camera type,
image resolution, level of image overlap, use of ground control points (GCPs), time of day,
tides, and weather conditions can all affect the final orthomosaic and DEM [2]. Additionally,
the different SfM software use different algorithms and processing options, which can
also affect the final outputs [34]. The subtle difference in outputs between software types,
combined with the limited photogrammetry background knowledge of many users of the
software, means it is often difficult to reproduce or confidently compare results across
photogrammetry studies.

While there have been some studies that have sought to compare the outputs provided
by different photogrammetry software, they appear to have exclusively been conducted in
the terrestrial environment, with a focus on forests [35,36], sandpits [37], agriculture [38,39],
or urban environments [38]. Only Jiang et al. [38] investigated the output of different
software across different types of datasets (urban and agricultural). There appear to be
no assessments of the comparative accuracy or suitability of different photogrammetry
software in processing unmanned aerial vehicle (UAV) data in marine or coastal environ-
ments that evaluate both orthomosaic and DSM outputs. This is particularly problematic
since most terrestrial UAV mapping uses GCPs and real-time kinematic positioning (RTK)
to enhance the accuracy of mapping outputs from photogrammetry software. Previous
comparative studies that have assessed the performance of SfM software have focussed on
the accuracy of GCPs compared to ground truth GPS measurements under differing levels
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of GCPs [37]. However, in the marine environment, the placement of GCPs and the use of
RTK is extremely difficult, requiring photogrammetry software to produce orthomosaics
with limited or no GCPs and RTK.

Through this research, we aim to assist others in selecting an appropriate SfM software
package for pre-processing drone data. In order to do this, we provide qualitative and
quantitative assessments of four desktop-based SfM photogrammetry packages, assessing
their output file dimensions and specifications, orthomosaics, and digital surface models
using input aerial drone data across a variety of terrestrial and marine environments, both
natural and built. Finally, we compare the outputs of the software packages and against
satellite-derived data in the same locations. We hope that these comparisons highlight
some of the challenges that may arise when comparing spatial datasets that have been
processed using different parameters and different software packages, thus demonstrating
the need to provide the metadata associated with a processing workflow.

2. Methods

There are a multitude of SfM photogrammetry software packages available designed to
pre-process drone data and create DEMs and orthomosaics. Within this study, we focussed
on a subset of these packages and selected four of those that are commonly cited and
are available in the desktop processing environment, namely Pix4Dmapper [40], AgiSoft
Metashape [41], Correlator3D [42], and WebODM [43].

2.1. Study Sites and Input Data

Using the online drone data platform GeoNadir [44], we downloaded datasets rep-
resenting variable and commonly studied ecosystems (agriculture, marine, coastal, and
urban) (Figure 1). All drone images were captured during mapping missions. As such, the
images have a high degree of overlap and sidelap between adjacent photos, were captured
using an RGB camera at nadir angle, and include a location at the time of capture in the
image metadata. The dataset specifications are included in Table 1.

Table 1. Details of each drone image collection dataset.

Common Features No. of Images Drone Sensor Array Size

A Agricultural crops, road 282 DJI Phantom 3 Standard 1/2.3′′ CMOS 4000 × 3000
B Water, coral reef 340 DJI Phantom 4 Pro 1′′ CMOS 5472 × 3648

C Mangroves, tree, beach, water,
road, residential buildings 189 DJI Phantom 4 Pro 1′′ CMOS 4864 × 3648

D Road, cars, residential buildings 587 Autel Robotics Evo II Pro 1′′ CMOS 5472 × 3648
E River, tree, forest 625 DJI Phantom 4 Pro 1′′ CMOS 5472 × 3648

2.2. Software Packages

We selected three commercial and one open-source desktop SfM photogrammetry
software packages to construct a DSM and orthomosaic for each sample area:

• AgiSoft Metashape 1.7.1 [41], formerly known as PhotoScan, is one of the most widely
used commercial software packages and is frequently cited in academic literature.
It supports a range of operating systems (OSs) including Linux, macOS, and Win-
dows [45];

• SimActive Correlator 3D Version 9.0.2 (C3D) [42] processes drone data, as well as
other aerial and satellite imagery. It is only supported on Windows OS [46];

• Pix4D Mapper (P4D) 4.2.26 [40] is available as a cloud-based solution, as well as
supporting desktop OS (Windows, macOS) and mobile OSs (iOS and Android) [47];

• Web Open Drone Map Version 2.6.4 (WebODM) [43] is a commercial-grade open-
source software for drone image processing. Based on the open-source command
line toolkit Open Drone Map [48], it can also be used across Linux, macOS, and
Windows OS.
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Figure 1. Study site locations and orthomosaic examples: (A) a vineyard (6°21′14.62042592′′ E,
49°32′41.87405578′′ N) located at Remich, Luxembourg [49]; (B) Fringing Reef on Yanooa
(Pelorus) Island on the Great Barrier Reef (146°30′03.20650026′′ E, 18°33′37.06807973′′ S) located
in Queensland, Australia [50]; (C) coastal suburban recreational beach (145°42′38.60723871′′ E,
16°47′52.90367696′′ S) in Trinity Park, Queensland, Australia [51]; (D) urban residential block
(111°03′33.67593896′′ W, 32°20′56.84116378′′ N) located in Tucson, Arizona, USA [52]; and (E) Lung
Island (145°13′49.31663938′′ E, 15°31′16.66610816′′ S) in Annan River (Yuku Baja-Muliku) National
Park located in Cooktown, Queensland, Australia [53]. Service layer credits: HERE, Garmin, USGS,
ESRI, ©OpenStreetMap (and) contributors, CC-BY-SA.

Each of the software packages have their own manufacturer-suggested workflows, in
addition to a variety of parameters that can be manually altered depending on the user
requirements. In this study, we opted to follow the suggested workflow of each package,
based on the assumptions that many users are likely to opt for default settings at least
initially and that the default settings have been selected by the manufacturer as producing
the most consistent and hopefully optimal outcomes. It was outside the scope of this
study to evaluate each and every parameter within the software themselves, and we refer
interested persons to the user manuals of each software for further details.
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With minor variations in terminology between software packages, each follows a
similar workflow including loading data, aligning photos, bundle adjustment, creating
a dense point cloud and/or mesh, creating a DSM, and building an orthomosaic. We
used the “True Ortho” Correlator3D wizard workflow; the “3D Maps—Standard” Pix4D
workflow; and the default template for WebODM. As AgiSoftMS does not have a templated
automated workflow, we selected the manufacturer-recommended components, namely
align photos, optimise alignment, build dense cloud, build DEM, and build orthomosaic.
We accepted the default recommended settings for each package.

While we recognise the benefit of including independent GCPs to improve the spatial
registration of the output products, we did not have access to the required reference data
for this study. Further, there are many circumstances where it may not be possible to obtain
sufficient GCP data (e.g., in marine environments). This study therefore evaluated the
software outputs in their absence, but remains relevant as a relative comparison of the
“worst-case” spatial registration between each software package.

All processing was performed using a computer with Windows 10 Enterprise OS,
an Intel(R) Core(TM) i7-7700 CPU @ 3.60 GHz, 32 GB of installed RAM, and an NVIDIA
Quadro P1000 GPU with 4096 MB RAM. All spatial analyses to compare the output products
were conducted in ArcGIS Pro [54], and quantitative analytics were completed using
Python [55].

2.3. Comparing Output File Dimensions and Specifications

After processing all datasets using the manufacturer-recommended default parame-
ters, we compared the output details for every software and dataset combination including
output file size, projected coordinate system, geographic coordinate system, x and y reso-
lution, absolute geographical coverage, and relative coverage. The areal coverage of each
orthomosaic was obtained by extracting the polygon footprint of the projected DSM and
orthomosaic boundary, excluding the “no data” values.

We selected the output from AgiSoft Metashape as the baseline product to which the
other datasets were compared to obtain the relative areal coverage.

2.4. Comparing Orthomosaics

To compare the output orthomosaics, we assessed the following:

a Colour correlation score: The luminance value of each pixel was extracted from each
colour channel (red, green, and blue) from the original drone images, as well as the
output orthomosaic. A density histogram was subsequently plotted to visualise the
similarity between the unprocessed and the processed image of each colour band.
A correlation score [56] was also calculated to quantify the resemblance of each
histogram with each other using the equation below:

d(H1, H2) =
∑l(H1(I)− H̄1)(H2(I)− H̄2)√

∑l(H1(I)− H̄1)
2 ∑i(H2(I)− H̄2)

2
(1)

where H1 and H2 are the colour density histograms of any two out of five sources
(original drone images and outputs from four software) being compared,

H̄k =
1
N ∑

j
Hk(J) (2)

and N is the total number of histogram bins (256 for 8 bit true colour images). A
correlation score close to one indicates high similarity between the colour density
of the input images and that of the orthomosaic, while a score approaching zero
indicates low similarity;

b Geographic shift: As no GCPs were available, traditional horizontal and vertical
accuracy assessments (i.e., [37]) could not be conducted; instead, Dataset D had
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very clear and identifiable features within an urban environment, and we used it to
calculate the geographic shift resulting after processing with the different software
packages. We digitised the polygon boundaries of 20 identifiable features across each
of the four orthomosaics, plus a reference satellite image available within the Esri
ArcGIS Pro base maps [57]. We ensured that 50% of identifiable features were outlined
in the centre region (within 150 m of the orthomosaic centre) and 50% around the edge
(within 150 m of the orthomosaic edge). We then calculated the centroid coordinates of
each polygon and the distance between feature locations in each software orthomosaic
in relation to the same feature location within the satellite base map. Averages (±SE)
of the distance from satellite features were calculated for each software at both the
centre and edge of orthomosaics;

c Visible artefacts: All orthomosaic outputs were visually scanned through to select
obvious distortion and artefacts in the map, ensuring both the middle and edges of
the datasets were evaluated.

2.5. Comparing Digital Surface Models

DSMs are often associated with various uncertainties and errors that could happen
at either the data collection time or during the processing time [58]. In the absence of
high-resolution LiDAR or field-verified elevation data, all DSM outputs were compared
to each other and to the DSM derived from the Space Shuttle Radar Topography Mission
(SRTM) DEM 1 Arc-Second Global data (approximately 30 m resolution) [59]. At each site,
the four SfM-derived DSMs, in addition to the SRTM DSM, were paired up with each other
(i.e., n = 10 combinations per site). Within each pair, both DSMs were resampled to the
smaller pixel size of the pair and using the following statistical measures adapted from
Szypuła [60]:

a The mean bias error (MBE) measures the average magnitude of differences (i.e., errors)
between any two DSM outputs. It also takes the error direction into consideration
(Equation (3));

b The mean absolute error (MAE) measures the average of the absolute differences
between two DSM layers, where all individual differences have equal weight (Equa-
tion (4));

c The root-mean-squared error (RMSE) is a quadratic scoring rule that also measures
the average magnitude of the error and is the square root of the average of the squared
differences between two observations (Equation (5)). Combining the MBE and MAE
will demonstrate the magnitude and direction (i.e., higher or lower) of the difference
between any two DSM datasets. Combining the MAE and RMSE, on the other hand,
will provide the variance of the difference (i.e., all pixel have a relative uniform
difference or not) between two DSMs.

MBE =
∑N

i=1(ai − bi)

N − 1
(3)

MAE =
∑N

i=1|ai − bi|
N − 1

(4)

RMSE =

√
∑N

i=1(ai − bi)

N − 1
(5)

where ai, bi are the pixel values (i.e., elevation) at the same location of the paired up
DSMs and N is the total number of overlapping pixels.

3. Results and Discussion

All software packages were able to successfully build a DSM and orthomosaic using the
input datasets; however, we observed differences in the output file size, projected coordinate
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system, geographic coordinate system, x and y resolution, geographical coverage, relative
coverage, and processing time between software packages.

Unsurprisingly, the total processing time was closely and linearly related to the number
of images processed (Figure 2). In most cases, C3D was the fastest-performing software
package, followed by AgiSoftMS. With the three smaller datasets, P4D was the slowest-
performing software; however, with the two larger datasets, WebODM became the slowest.
It is likely that the slow performance of WebODM for large datasets was due to it using the
CPU for processing, while the other three packages are able to access the GPU for higher
performance. Of particular note, P4D had a processing time of up to 348% more than that
of C3D (Figure 3). The longer processing time for Pix4D is likely related to the additional
processing steps requiring the software to generate a 3D mesh and also automatically
exporting the DEM and orthomosaic. These features are not included in the recommended
templates for the other packages, where 3D models are not required or where the export of
files occurs after the processing stage. There was only one case where Correlator 3D was
outperformed on speed (Dataset C—Trinity Park), where AgiSoftMS processed these data
in 29 min compared to 34 min, or 85% of the time taken for C3D (Figure 3).
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Figure 2. Comparison between the number of images to be processed and the time taken for each
software package to complete the processing.

When time is money, the speed of processing is likely to influence software selection,
particularly when multiple large datasets are captured. Yet, this cannot be considered
in isolation, as the quality of the output is most likely the primary determinant of SfM
software choice. We also note that it is possible to reduce the processing time of each of
these packages by modifying the standard workflows (e.g., deselect the mesh option for
P4D and WebODM), with the caveat that the modification may reduce the quality of the
output products, so it should be evaluated accordingly.
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Figure 3. Comparison of the percentageof time taken for each software package to complete the
processing, using Correlator 3D as the baseline. Blue shades depict a faster comparison time, while
red shades indicate slower comparison times. The darker the tone, the greater the difference is.

3.1. Comparing Output File Dimensions and Specifications

The output orthomosaic and DSM file sizes varied considerably between the software
packages (see the details in Tables A1 and A2). This is a result of a combination of the
output image resolution and the area that was successfully processed. For example, the
default WebODM processing resamples the output to a resolution of 5 × 5 cm per pixel.
This lower resolution results in the lowest output file size among all software, which is
useful for sharing data between collaborators or hosting on online servers. However, the
loss of detail may prove problematic for some users. The other packages tend to generate
the maximum resolution output by default, which is closer to the ground sample distance
(GSD) of the original input drone images. As with all other parameters, the user can deviate
from the default settings to stipulate the desired output resolution, and the software will
resample the output accordingly. This might be important for maintaining consistency
across multiple datasets, in particular for time series analysis, but resampling will inevitably
alter the output image accuracy.

In combination with the output pixel size, the total areal coverage also impacts the
file size. In Figure 4, we compare each of the software DSM and orthomosaic outputs to
the areal coverage generated by AgiSoftMS and note the considerable differences. Pix4D
in particular returns smaller areal coverages for both the DSM and orthomosaic in each
of the datasets that contain water bodies (B, C, and E—Yanooa Reef, Trinity Park, and
Lung Island). P4D and, to some extent, WebODM clearly have difficulty aligning and
resolving water and submerged features—in particular where there is sunglint on the
water’s surface—and consequently crop these features from the final products (Figure 5).
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WebODM failed to reconstruct the crop field on the right half of Dataset A, also resulting in
a comparatively small areal coverage for those output products (Figure 6).

Figure 4. Relative coverage for the DSM (left) and orthomosaic (right) in all datasets where the cell
colouring is blue, the output areal extent is smaller than the AgiSoft reference, while shades of red
indicate an area larger in extent.

Figure 5. AgiSoft vs. P4D with Dataset B (left), Dataset C (middle), and Dataset E (right). The red
shade and the inset at the bottom right corner are the coverage of the orthomosaic generated by P4D.
The red cluster scattered in the shade is voids that have no value in the orthomosaic datasets. This is
overlaid with the output from AgiSoft to show the difference of coverage.
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Figure 6. AgiSoft vs. WebODM with Dataset A. The red shade and the inset at the bottom right corner
are the coverage of the orthomosaic generated by WebODM. The red cluster scattered in the bottom
right edge of the shade is voids that have no value in the orthomosaic datasets. This is overlaid with
the output from AgiSoft to show the difference of coverage.

3.2. Comparing Orthomosaics

In comparing the orthomosaics, we aimed to evaluate the similarity in colour between
the input and output data; any geographic shift between the output products and reference
satellite imagery; and the visual consistency between the output product and ground
features.

3.2.1. Colour Density Correlation Score

During the process of building an orthomosaic, pixel values are averaged in areas
of overlap, and as we already demonstrated with the coastal datasets, some pixels are
excluded entirely. The colour density correlation score provides further evidence for the
differences seen between the SfM packages and original drone images (Figures 7–9). In
particular, the density histogram for the red channel for the P4D orthomosaics created
from Dataset B (Figure 10A) are very different from the original images and other software
outputs, which could be due to the cropped water feature pixels (Figure 5). The green
and blue channels (Figure 10B,C) show closer alignment between all software packages
with the exception of P4D, in particular in the middle range values for luminance (i.e.,
pixels that are neither very bright nor dark). This also results in decreased contrast across
the orthomosaic scene. In cases where it is important to retain the input absolute pixel
values (e.g., for quantitative mapping and assessments), it is worth further investigating
the methods of feathering and averaging between images in overlapping areas to ensure
the appropriate algorithms are used.
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Figure 7. Correlation scoreof red pixel luminance values. The results from each dataset comprise half of
the square presented, separated by the diagonal dashed line and labelled with the corresponding letter.
Both columns and rows are labelled with orthomosaic sources, and “Original” refers to the original
drone images. Darker shading denotes a higher correlation score, i.e., similar luminance value density.

Figure 8. Correlation score of green pixel luminance values. The results from each dataset comprise half
of the square presented, separated by the diagonal dashed line and labelled with the corresponding letter.
Both columns and rows are labelled with orthomosaic sources, and “Original” refers to the original
drone images. Darker shading denotes a higher correlation score, i.e., similar luminance value density.

Figure 9. Correlation score of blue pixel luminance values. The results from each dataset comprise half
of the square presented, separated by the diagonal dashed line and labelled with the corresponding letter.
Both columns and rows are labelled with orthomosaic sources, and “Original” refers to the original
drone images. Darker shading denotes a higher correlation score, i.e., similar luminance value density.
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Figure 10. A subset of colour density histograms that show the most variance (i.e., lowest correlation
score) between different software packages and original drone images. (A) Red channel colour
density plot for Dataset B, where the lowest score (0.55) occurs between P4D and AgiSoft outputs.
(B) Green channel colour density plot for Dataset C, where the lowest score (0.47) occurs between
P4D and C3D outputs. (C) Blue channel colour density plot for Dataset C, where the lowest score
(0.39) occurs between P4D and C3D outputs.

3.2.2. Geographic Shift

When compared to the satellite data available in Esri base maps within ArcGIS Pro [57],
the drone data show between two and four metres of displacement (Figure 11), which
is reasonable considering the positional accuracy of Global Navigation Satellite System
(GNSS) units on drone platforms, in particular without additional ground control (Kalac-
ska et al. 2020). The geographical shift is more prominent towards the edges of the ortho-
mosaic than in the centre, due to the lower overlap of the input images in these areas. This
reinforces the need to plan data capture missions that cover areas beyond the bounds of the
central region of interest. In the centre of all software-generated orthomosaics, all features
were within 2.50 m of the satellite features (WebODM: 1.86 ± 0.36 m, C3D: 2.06 ± 0.10 m,
P4D: 2.44 ± 0.25 m, AgiSoftMS: 2.50 ± 0.26 m).

Agisoft C3D P4D WebODM
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Figure 11. Average displacement (m) (±SE) of the centre and edge features on the AgiSoft Metashape,
Correlator3D, Pix4DMapper, and WebODM Orthomosaics from satellite imagery [57]).

In contrast, at the orthomosaic edges, P4D, AgiSoftMS, and WebODM showed slightly
larger displacement from the satellite features (Pix4DMapper: 3.29 ± 0.51 m, AgiSoftMS:
3.61 ± 0.53 m, WebODM: 4.13 ± 0.49 m). C3D, however, displayed similar displacement at
the orthomosaic edges to the centre, (2.12 ± 0.16 m), making it the nearest to the satellite
imagery at the orthomosaic edges. Interestingly, while WebODM appeared to be nearest to
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the satellite imagery in the centre of the orthomosaic, displacement at the edges was the
furthest, at 2.2-times further from the satellite imagery than the centre features.

There are a range of factors in both the data collection and image processing phases
that can influence geographic shift/geometrical accuracy. These include flight path, camera
quality, calibration, georeferencing strategy (use of GCPs or reliance on the direct onboard
georeferencing Global Navigation Satellite System (GNSS) with RTK), and the SfM algorithms
[61]. While georeferencing strategies that have employed GCPs have been found to result in
finer horizontal accuracy at the decimetre/centimetre scale [61–63], direct methods that rely on
GNSS (i.e., non-RTK drones) alone have resulted in accuracies at the metre scale [31]. The metre
scale of horizontal accuracy found in these previous studies that have not employed GCPs or the
GNSS with RTK appear to correspond to the results of this study where average displacement
ranged from 1.86–2.50 m in the centre of the orthomosaics and 2.12–4.13 m at the orthomosaic
edges. If users are seeking accuracy at much finer scales, the software choice is not likely to
improve the outcome greatly, and they will need to consider the addition of GCPs or the use of
a GNSS with RTK to achieve centimetre-scale accuracy [64,65]. The SfM algorithms employed
by each software are another possible source of variation in the geographic shift observed.
Although C3D appeared more consistent in the geographic shift across the orthomosaic, this is
based on the assumption that the satellite imagery represents the true location of the features.
A previous study comparing both horizontal and vertical accuracy across software platforms
found AgiSoft PhotoScan to be more accurate than Pix4D web-based image processing and
Bundler SfM algorithms [66], but did not evaluate C3D or WebODM. Additionally, a study that
compared the accuracy of five different software packages that included AgiSoft and Pix4D in
their assessment found little difference in accuracy; however, this was under differing levels
of GCPs as opposed to what the software can produce without these inputs [37]. While these
differences were attributed to differences in the algorithms in this case, it remains difficult
to directly compare the cause due to the lack of detailed information released by proprietary
software developers [34,66]. This however serves as a reminder to always retain copies of the
original imagery so the data can be re-processed using the best available methods, as software
packages and their algorithms will change and hopefully improve over time.

3.2.3. Visual Artefacts

The qualitative analysis of artefacts contained within orthomosaics found that all software
contained more artefacts at the edges of the orthomosaic, compared to the centre. Centre
artefacts were generally at a smaller scale and were only evident once viewed at increased zoom.
Artefacts were also more evident in areas where DSM values in neighbouring pixels changed
rapidly, such as at the edges of buildings or trees and forests (Figure 12). Artefacts presented in
the form of missing data or gaps in information; “filled” data through smoothing, interpolation,
extrapolation, or filtering; and cutlines at feature edges. Cutlines in the orthomosaic often
produce visual artefacts at high zoom levels and will also present challenges for automated
information extraction at later processing stages. Alternatively, the user can deviate from the
standard workflow to create the orthomosaic using the derived DTM instead of the DSM, which
tends to result in fewer visual artefacts, though can introduce a greater geographic shift of
tall features in the imagery due to uncorrected radial displacement. The users must therefore
determine for themselves the most suitable outcome for their specific application.

Each software’s default appears to deal with missing data in different ways. C3D
simply excludes pixels where it cannot reconstruct portions of the image, presenting them
as “no data” fill in the orthomosaic (see Figure 12I). Pix4DMapper and AgiSoftMS have
interpolation enabled in the default settings to fill the space based on surrounding values
resulting in warped or shaded sections on an orthomosaic (see Figure 12G). However, inter-
polation will only fill when there are enough close points, and a lack of information from
close points can result in areas that are filtered out of the final DSM and orthomosaic and
present as holes (See Figure 12G,H). Close inspection of the DSM and the final orthomosaic
is recommended to detect holes and warped areas, as these may not be detected until
zooming in on smaller features in the orthomosaic.
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Figure 12. Examples of artefacts found in Dataset D (A–E) and Dataset C (F–J) orthomosaics generated
from various image processing software where: (A) raw image, (B) AgiSoftMS, (C) Correlator3D,
D: Pix4DMapper, and (E) WebODM for Dataset D; (F) raw image, (G) AgiSoftMS, (H) Correlator3D,
(I) Pix4DMapper, and (J) WebODM for Dataset C.
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3.2.4. Comparing Digital Surface Model

When using similarity metrics to evaluate the output DSMs, we found that there was
very little overall difference between the software outputs except Dataset E, though all
differed somewhat from the SRTM data. The MAE (Figure 13) and RMSE (Figure 14) had
little difference in Datasets A, B, and D, between comparison pairs, which indicates that
the difference between all the pixels was fairly even. A mixture of terrestrial and aquatic
features yet led to a greater variance of the difference (the RMSE of Datasets C and E was
higher than the MAE). The depth (or “negative elevation”) of underwater features was
inadequately represented across all models, though none of them boast a capability in this
respect, and bathymetric LiDAR would certainly be a better option for deriving depth
information [67].

Figure 13. Mean absolute error (MAE) comparison between each DSM output. The results from each
dataset comprise half of the square presented, separated by the diagonal dashed line and labelled
with the corresponding letter. Both columns and rows are labelled with DSM sources (SRTM and
drone derived). Darker shading denotes higher MAE values.

Figure 14. Root-mean-squared error (RMSE) comparison between each DSM output. The results
from each dataset comprises half of the square presented, separated by the diagonal dashed line and
labelled with the corresponding letter. Both columns and rows are labelled with DSM sources (SRTM
and drone derived). Darker shading denotes higher RMSE values.

For the datasets dominated by terrestrial features, drone-derived elevation was over-
estimated, producing a positive MBE in Datasets A and D when compared to the SRTM
data (Figure 15). Most of the differences between the drone-derived DSMs from AgiSoftMS,
C3D, and P4D were minor (seen as light shading in Figure 15), indicating that the software
algorithm is not the most important factor in obtaining an accurate elevation estimate.
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However, WebODM displayed greater differences from the other drone-derived DSM
values, in particular with Dataset D. WebODM was also more closely aligned to the SRTM
data for Dataset D than the other software packages. As a previous review pointed out,
the accuracies of UAV true colour image-derived DSM are comparable to those obtained
by LiDAR [68]. Regardless of the usage of GCP or check points, the absolute difference
between LiDAR and true colour image-derived DSM was less than 4 m [69,70]. The simi-
larity between software outputs was as expected (Figures 13–15). On the other hand, the
relatively large difference between SRTM data and the software outputs is worth noting
since UAV imagery is considered as a new tool to fill in the gaps between satellite imagery
and in-person field surveys. However, with such a small sample size, inconsistent findings
between datasets, and no GCP information, these results are inconclusive. Given the signif-
icant difference in resolution between the SRTM and the true-colour-image-derived DSMs,
this technique fits better for comparisons at the regional scale. Higher-resolution DSMs
(e.g., derived from UAV-based LiDAR sensors or commercial-level satellites) would allow
for more detailed comparison at the pixel level.

Figure 15. Mean bias error (MBE) comparison between each dataset. Each dataset takes up
half of the quadrant, separated by the diagonal dash line and labelled with the corresponding
letter. Both columns and rows are labelled with DSM sources (SRTM and drone derived). In
each quadrant, for the top right half, cellvalue = DSMrow − DSMcolumn. For the bottom left half,
cellvalue = DSMcolumn − DSMrow.

In most cases, if deriving absolute elevation is an important project consideration, us-
ing the standard processing workflows listed above will be insufficient. Similar to reducing
geographic shift, large improvements in elevation accuracy are unlikely to be achieved
through software or algorithm choice at this stage, based on the options available. Rather,
previous research has indicated that the use of GCPs is highly important to calibrate DEMs
[61], and additional direct georeferencing also improves the precision and accuracy [66].
There is growing potential for platforms with onboard RTK GNSS capability to also ad-
dress this challenge [71]. Employing these technologies where available will undoubtedly
increase the output product’s accuracy, but will require an increase in the user’s time and
financial investment across both data capture and processing.

4. Conclusions

In this study, we tested the prescribed workflows and output products (DEMs and
orthomosaics) of four different SfM photogrammetry packages using five drone image
datasets. We observed considerable differences in processing times, with Correlator3D and
AgiSoft outperforming Pix4Dmapper and WebODM, in particular with large datasets. It
was also clear that Pix4Dmapper in particular struggled to reconstruct underwater features,
while the other software packages provided suitable outputs in reef and coastal ecosystems.
Each software package introduced visual artefacts in the output orthomosaic products,
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in particular around the edges of buildings and tall vegetation, and we leave the opinion
of the acceptable level of artefacts to the users and their particular application. Based on
our qualitative and quantitative assessments of the output orthomosaics and DSMs, we
caution users against comparing multitemporal drone datasets that have been processed
using different software packages and algorithms. Using the same software will give users
greater confidence that any detected change is in fact a change in an ecosystem and not due
to the processing workflows. The information contained herein will allow users to make
informed decisions about future software selections and the impact that their choices may
have on the output product’s accuracy.
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Appendix A

Detailed output file dimensions and specifications.

Table A1. Output file specifications for the DSMs.

Features Dataset AgiSoft C3D P4D WebODM

File size (MB)

A 63 134 482 3
B 93 119 617 13
C 106 145 410 84
D 207 171 1590 242
E 284.4 372.1 930 365.4

X resolution (cm)

A 3.7 4 0.76 5
B 2.5 3.3 0.6 5
C 8.6 10 2.1 5
D 10.7 12.5 2.4 5
E 10 12.5 2.55 5

Y resolution (cm)

A 3.7 4 0.76 5
B 2.5 3.3 0.6 5
C 8.2 10 2.1 5
D 10.7 12.5 2.4 5
E 10 12.5 2.55 5

Coverage (m2)

A 13,541 12,286 14,437 8850
B 12,507 12,591 9043 11,626
C 149,168 151,489 99248 139,317
D 537,804 531,526 534,683 55,1744
E 544,650 517,100 322,233 465,383

Relative coverage (%)

A 100 91 107 65
B 100 101 72 93
C 100 102 67 93
D 100 99 99 103
E 100 95 59 85

Projected coordinate system

A

NA

WGS 1984 UTM Zone 32N
B WGS 1984 UTM Zone 55S
C WGS 1984 UTM Zone 55S
D WGS 1984 UTM Zone 12N
E WGS 1984 UTM Zone 55S

Geographic coordinate system

A

WGS 1984
B
C
D
E



Drones 2022, 6, 24 19 of 22

Table A2. Output file specifications for the orthomosaics.

Features Dataset AgiSoft C3D P4D WebODM

File size (MB)

A 1110 1520 617 12
B 1510 2920 752 16
C 1280 2810 620 150
D 3270 3540 2160 565
E 4290 6450 1310 674.2

X resolution (cm)

A 0.9 0.8 0.76 5
B 0.6 0.6 0.6 5
C 2.1 2 2 5
D 2.7 0.25 2.4 5
E 2.6 2.6 2.55 5

Y resolution (cm)

A 0.6 0.8 0.76 5
B 0.6 0.6 0.6 5
C 2.1 2 2 5
D 2.3 2.5 2.4 5
E 2.5 2.6 2.55 5

Coverage (m2)

A 13,439 12,180 13,558 8640
B 12,500 11,186 8833 11,584
C 148,473 146,799 99,288 138,452
D 536,672 532,164 532,849 549,017
E 542,947 510,800 304,165 461,166

Relative coverage (%)

A 100 91 101 64
B 100 89 71 93
C 100 99 67 93
D 100 99 99 102
E 100 94 56 85

Projected coordinate system

A

NA

WGS 1984 UTM Zone 32N
B WGS 1984 UTM Zone 55S
C WGS 1984 UTM Zone 55S
D WGS 1984 UTM Zone 12N
E WGS 1984 UTM Zone 55S

Geographic coordinate system

A

WGS 1984
B
C
D
E
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