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Abstract: In view of traditional point-line feature visual inertial simultaneous localization and
mapping (SLAM) system, which has weak performance in accuracy so that it cannot be processed in
real time under the condition of weak indoor texture and light and shade change, this paper proposes
an inertial SLAM method based on point-line vision for indoor weak texture and illumination.
Firstly, based on Bilateral Filtering, we apply the Speeded Up Robust Features (SURF) point feature
extraction and Fast Nearest neighbor (FLANN) algorithms to improve the robustness of point feature
extraction result. Secondly, we establish a minimum density threshold and length suppression
parameter selection strategy of line feature, and take the geometric constraint line feature matching
into consideration to improve the efficiency of processing line feature. And the parameters and
biases of visual inertia are initialized based on maximum posterior estimation method. Finally, the
simulation experiments are compared with the traditional tightly-coupled monocular visual–inertial
odometry using point and line features (PL-VIO) algorithm. The simulation results demonstrate
that the proposed an inertial SLAM method based on point-line vision for indoor weak texture and
illumination can be effectively operated in real time, and its positioning accuracy is 22% higher on
average and 40% higher in the scenario that illumination changes and blurred image.

Keywords: simultaneous localization and mapping (SLAM); fast bilateral filtering; SURF algorithm;
nearest-neighbor algorithm; geometric constraints; feature extraction

1. Introduction

In recent decades, visual simultaneous localization and mapping (SLAM) [1] algorithm
is regarded as the core technique to achieve a mobile robot’s autonomous operation. Its
appearance enables mobile robots to obtain their own state and surrounding environmental
information through corresponding sensors in indoor environments with weak GPS signals,
so as to realize map construction and environmental cognition and complete specific
tasks autonomously.

According to the coupling mode of vision and IMU, visual inertial SLAM system
can be divided into two types: loosely coupled and tightly coupled. The loosely coupled
method is the result of motion estimation independently by integrating the two modules
of vision and IMU, such as [2,3], while the tightly coupled method uses the original data
of camera and IMU to combine for optimization, which makes it easier to obtain globally
consistent estimation results.

Classical tightly coupled SLAM frameworks include VINS-Mono [4] and ORB-Slam2 [5].
Based on these two frameworks, researchers have proposed many improved versions [6,7].
Point feature is the most commonly used feature type of the above algorithms, but point
feature algorithms such as the Scale Invariant Feature Transform (SIFT) [8], Features from
Accelerated Segment Test (FAST) [9] and the Ori-ented FAST and Rotated BRIEF (ORB) [10]
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have difficulty in detecting sufficient numbers of point features on the scenes of poor
texture such as corridor, window or white wall. In addition, owing to the quick movement
of a camera, poor texture, illumination change and so on, point feature matching’s quality
and quantity may decrease greatly.

One of the effective solutions to solve the above problems is to add line features. Com-
pared with point features, the indoor artificial scenes have plentiful edges, linear structures
and obvious line features. The line features have better illumination invariance and rotation
constancy, so they may provide more geometric structural information and enhance the
robustness and accuracy of the SLAM algorithm based on a single point feature.

Vakhitov et al. [11] proposed the EPn-PL and OPnPL algorithm that combines point
and line features. Zuo et al. [12] attempted to use the Pruck coordinates to show the
line features in the front-end SLAM algorithm, which combines point and line features,
but they used the smallest orthogonality to show the parameterized line features in the
back-end optimization algorithm. Pumarola et al. [13] added line features to the basis of
the ORB-SLAM algorithm and proposed using line features to initialize the algorithm. For
the first time, Gomez-Ojeda et al. [14] developed the open-source SLAM algorithm based
on double-purpose point and line features, which weigh and fully consider point and line
features in the loop detection module. At present, studies based on the combination of
point-line features are mainly represented by PL-VIO [15], PLS-VIO [16], PL-VINS [17], etc.
However, the running efficiency of SLAM system based on point and line features is easily
affected by the front-end algorithm because features of every frame of image need to be
extracted and matched. The introduction of line feature increases the time consumption of
feature extraction and matching, which reduces the operating efficiency and stability of
SLAM system.

Aiming at the above problems, an indoor visual inertial SLAM algorithm based on
point-line feature is proposed. By adopting bilateral filtering algorithm and SURF [18]
feature extraction algorithm, the system has a stronger ability to resist light changes. The
fast nearest neighbor algorithm is used for feature matching, and the matching accuracy is
higher than the original SLAM system. Compared with the original SLAM system based on
point-line feature, our method has higher accuracy. Line Segment Detector (LSD) [19] algo-
rithm was adjusted to solve the problem of large computation and inefficiency. At the same
time, we change the original complex matching process. Geometric constraints and random
sampling consistency algorithm are used to reduce the computation of feature matching
process to improve the real-time performance of the system. And step joint initialization is
used to improve the stability of the algorithm. The purpose of this study is to improve the
real-time performance, stability and accuracy of SLAM systems in complex environments.

The rest of the paper is organized as follows. The algorithm framework is proposed
in Section 2. Section 3 proposes the image processing method in detail and describes the
initialization work. Lastly, the experimental result is presented in Section 4 to verify the
advantage in Section 3.

2. The Algorithm Framework

This paper mainly studies image processing algorithm and visual inertial initialization
algorithm at front-end, and the traditional nonlinear optimization framework at back-end.
The main contribution is the colored part in Figure 1. As shown in Figure 1, the algorithm
is established based on the PL-VIO algorithm. This study focuses on the point and line
feature extraction and matching algorithms of data preprocessing module:

(1) The SURF algorithm can extract stable features even at the circumstances of trans-
lation, rotation and perspective change, so this paper uses the SURF algorithm to
extract point features. The traditional optical flow tracking method is not suitable
for the environment with drastic light changes. The matching algorithm used in
this paper is the fast nearest-neighbor algorithm (FLNN) [20], which can link to the
SURF parameters.
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(2) In terms of online feature extraction and matching, LSD algorithm was initially
proposed to describe the contour of the object, which is not suitable for line segment
positioning in space. Therefore, the parameters of LSD algorithm need to be adjusted,
and an adaptive line segment constraint method is proposed to greatly reduce the
time required for line feature matching. Based on the work of Gomez-Ojed [21], a
constraint method of pole-geometry and point-line affine invariants is proposed to
improve the speed of line feature processing.

(3) Point-line feature SLAM based on nonlinear optimization has the defects of long
inertial initialization time and poor stability. In this paper, a step-by-step joint initial-
ization [21] method is used to improve stability and reduce initialization time.
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3. Front End Processing

The processing flow chart of point and line features is shown in Figure 2.
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3.1. The Image Processing

Noise and some other pseudo-point features and lines need to be eliminated before
the extraction of point and line features. Considering the spatial proximity and gray-scale
similarity between pixel points and the surrounding pixel strips, we use bilateral filtering
to process [21]. Edge preservation of bilateral filtering is achieved by combining spatial
and range kernel functions during convolution, as shown below:

HI =
1

W ∑
x∈N

Gσd(‖x− y‖)Gσr(Ix − Iy)Iy (1)
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where
W = ∑

x∈N
Gσd(‖x− y‖)Gσr(Ix − Iy)

Gσd = e−
1
2 (

d(x,y)
σd

)
2

Gσr = e−
1
2 (

δ(Ix ,Iy)
σr )

2

(2)

y is the pixel to be obtained, N is the square neighborhood centered on pixel y in
image I, and x is any other pixel in the neighborhood, Ix, Iy is the number of pixels, Gσd

is the spatial neighbor-domain relational function, ‖x− y‖ is the spatial distance, Gσr is
the grey-scale value resemblance function, σd is the standard deviation of spatial Gaussian
function and σr is the standard deviation of the range Gaussian function, d (x, y) and
δ
(

Ix, Iy
)

represent the Euclidean distance of pixel points x and y, respectively and the gray
difference of pixel values Ix and Iy.

Thus, in the flat area of the image, the value of Ix − Iy changes very little, and the
corresponding range weight is close to 1. At this time, the spatial domain weight plays a
major role, which is equivalent to directly Gaussian blurring of this area. In the edge area,
Ix − Iy will have a large difference, and then the domain coefficient will decrease, resulting
in a decrease in the distribution of the entire kernel function here, while maintaining the
details of the edge.

The SURF operator is based on scale space detection and uses a Gaussian filtered
Hessian matrix to extract point features. The Hessian matrix of image point I(x, y) with
scale σ is defined as:

H(I, σ) =

[
Lxx(I, σ) Lxy(I, σ)
Lxy(I, σ) Lyy(I, σ)

]
(3)

where Lxx(I, σ), Lxy(I, σ) and Lyy(I, σ) are the two-dimensional convolution of the image
by the Gaussian second-order differential at point I.

Surf uses Box filter to approximately replace Gaussian filter. The image filtering
problem of Box filter is transformed into the calculation of the addition and subtraction
of pixel sum between different regions of the image, which can be completed by simply
searching the integral graph for several times. An approximation of the determinant of the
Hessian matrix [18] for each pixel:

det(H) = Dxx(x)Dyy(x)− (0.9Dxy(x))2 (4)

The algorithm uses a Box filter to approximately replace the Gaussian filter. Therefore,
it multiplies Dxy with the weight coefficient 0.9 so as to even out the errors caused by the
Box filter. In discrete image pixels, an image processing template can be used instead. For
example, the templates in X direction, Y direction and XY direction are shown in Figure 3.
We calculate Dxx through the template in X direction, Dyy through the template in Y direc-
tion and Dxy through the template in XY direction. Finally, the value of the determinant of
the Hessian matrix for each pixel can be obtained by taking it into Formula (4).
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The raw image is used to create its pyramids of various scales through enlarging the
size of a square frame filter; then an integral image is used to accelerate its convolution,
the further solution of which produces the determinants of the fast Hessian matrix. Experi-
ments show that when the size of the box filter is enlarged twice, that is, when the pyramid
model is set to 2, the operation time and effect of feature extraction are optimal.

In the point feature extraction algorithm, the Hessian value of the SURF is set to 800,
and the results of the original extraction algorithm are shown in Figure 4. After the bilateral
filtering of the SURF algorithm is shown in Figure 5, the reduction of invalid point features
on the white wall and ground can be seen.
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In this paper, the FLANN algorithm is used to match features, and the implementation
steps of FLANN algorithm are as follows:
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(1) Using the point features of the first image as the training set and the point features
of the second image as the query set, the Euclidean distances between all the point
features in the training set and the point features in the query set are obtained.

(2) By comparing Euclidean distances, the closest and second closest points of Euclidean
distance between each point feature of training set and point feature of query set are
preserved, and the remaining matches are discarded. Euclidean distance is:

D(x, y) = ‖x, y‖ =

√√√√ d

∑
i=1

(Xi −Yi)
2 (5)

(3) If the nearest Euclidean distance and the sub-nearest Euclidean distance satisfy For-
mula (6) keep the matching pair, otherwise delete the matching pair. Wherein, ratio
is the threshold for judging the difference between the matching pair of the near-
est Euclidean distance and the matching pair of the sub-nearest Euclidean distance
(0 < ratio < 1). The larger the ratio, the more matching pairs, and the lower the match-
ing accuracy. The smaller the ratio value, the fewer matching pairs, and the higher
matching accuracy. Through experiments, it is found that when the ratio is 0.6, the
number of point feature matching can reach 150, and the error of matching is small.

Nearest Euclidean Distance
Sub-near Euclidean distance

< ratio (6)

As shown in Figure 6, SURF-based feature matching has a large number, but mis-
matching still exists. The matching results based on the algorithm in this paper are shown
in Figure 7. Obviously, after the addition of FLANN algorithm, partial mismatching and
redundant point features are eliminated, and the point feature matching effect is better.
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Setting appropriate internal parameters of LSD such as pyramid number, scale factor
and minimum density threshold can significantly improve the extraction speed. Through
verification, the extraction process can be accelerated when the number of pyramid layers
N is 3, the scale factor is 0.5 and the minimum density threshold is 0.5.

In order to improve the quality of line feature extraction, the length threshold was
set to screen out the long line segments that were conducive to pose estimation, and the
unstable short line segments that contributed little to pose estimation were eliminated. The
length of a line segment must meet the following conditions:{

lenli ≥ {lenmin = β•[max(WI , HI)]}, i ∈ {1, 2, . . . , k}
β = 1− e−0.001·k (7)

where lenli is the length of the line segment i, lenmin is the shortest segment length, WI
is the input image frame width, HI is the height of the input image frame, the symbol •
represents an upward rounding, β represents a length factor, k represents the number of
line features extracted by the current frame.

Pl-VINS [17] uses a similar strategy to improve the quality of line segments, but it only
selects length factors empirically, which is not applicable to the situation where the number
of line segments varies greatly. If the selected value of length factor is large, the number of
effective tracking line segments is insufficient when the number of line segments is small. If
the selected value is small, redundant short line segments cannot be effectively eliminated
when there are many line segments. In this paper, the number of line segments is mapped
to the length factor by formula β = 1 − e−0.001·k. When the number of line segments
is small, the length threshold is increased to obtain more line segments for inter-frame
tracking. When the number of line segments is large, reducing the length threshold reduces
the influence of short line segments on the stability of pose estimation, which improves
the adaptability of the length threshold screening strategy under different number of line
segments. Finally, the speed of line feature extraction is three times of the original LSD
algorithm before adjustment.

This paper presents a line feature matching method based on geometric constraints.
Define segments lk = {sk, ek}, sk and ek as the start and end of the segment respectively. Let
the reference line segment be li, the query line segment be lj, and the line segment pair to be
matched is

(
li, lj

)
. The parallel relationship between the line segment pairs is represented

by the included angle θij of the line segment pair:

θij = arc tan
(
‖
→
I i ×

→
I j‖/

→
I i ·
→
I j

)
,
→
I k =

sk − ek
‖sk − ek‖2

(8)
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The constraints on polar geometry are expressed by the angle between the midpoint
flow xij = mi −mj, mk = ( sk + ek)/2 of a line segment and the coordinate axis in a two-
dimensional coordinate system. In inter-frame matching, the corresponding pole-to-pole
geometry constraint is:

θ
f
ij = arcsin

(
‖xij × ηy‖/‖xij‖

)
(9)

θs
ij and θ

f
ij are the angles between the midpoint flow direction xij and the coordinate

axis X and Y, respectively. ηx and ηy are direction vectors of coordinate axis X direction
and coordinate axis Y direction respectively.

Take advantage of the singularity in tracking problems that a segment in a reference
frame can only correspond to the only segment in a query frame. Define the matching
vector ω between li, which is the reference line segment and line segment lj , which is in
the query frame.

ωi =
[
ωi0 . . . ,ωij . . . ,ωin

]T (10)

When li and lj match successfully, component ωi of ωij is 1, otherwise it is 0.
A pair of line segments

(
li, lj

)
can be successfully matched when the matching error

and target value are βij and b respectively.

βij =


θij

θ
epip
ij
ρij
µij

 , b =


0
0
1
1

 (11)

µij and ρij are the length ratio and projection ratio of two lines respectively,θij is the
included Angle of line segment pairs, and epip is the outer pole constraint defined in
Formulas (8) and (9).

Ai =
[
βi0, · · ·, βij, · · ·, βin

]
(12)

Only when the linear equations Aiωi = b is established, the singleness of the above
tracking problem can be guaranteed; that is, the sum of all components of the matching
vector wi is 1. Therefore, the line segment matching problem is transformed into the
optimization problem under the above constraints; in this paper, the sparse representation
of the optimal solution is obtained by using the L1 norm as shown in Equation (13).

min
ωi

λ‖ωi‖1 +
1
2
‖Aiωi − b‖1 (13)

After solving Equation (13), sparse vector ωi is obtained and normalized. ωim which
is the largest component in vector ωi means that line segment lm in the query frame is the
best match of line segment li in the reference frame.

Finally, the random sampling consistency (RANSAC) [18] algorithm is used to elimi-
nate mismatching and redundant line features.

As shown in Figure 8 [22], in weak texture scenes with weak light and poor features,
the adjusted LSD algorithm can still obtain clear line features. Although the number of
line features is relatively reduced, the matching time is reduced from 70 ms to 20 ms (seen
Figure 9).
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3.2. Visual-Inertia Initialization

In this section, the parameter and deviation of visual inertia are estimated by means
of a step-by-step joint initialization method referring to the initialization method in ORB-
SLAM3 [20]. Visual-inertial Bundle Adjustment (BA) optimization is first used to form an
initial map consisting of multiple poses of camera and sparse point clouds. The camera
pose Rt was fixed in the map, and Rt was used to calculate the IMU motion residual in the
second stage.

In the inertia-only initialization stage, the goal is to obtain the best estimate of the iner-
tia variable. Based on the maximum a posteriori estimation, only fixed camera trajectories
and inertial variables between these keyframes are used. These inertial variables can be
superimposed on the inertia-only state variable Vk as shown in Equation (14):

Vk = {U , g,B, v0:k} (14)

U is the scale factor in the pure visual initialization stage. g is the vector of gravity,
B is the accelerometer and gyro deviation assumed to be constant at initialization,v0:k is
the scaled camera speed from the first key frame to the last key frame, which is initially
estimated by means of a fixed camera trajectory.

Based on the above description, only the inertial measurement values are considered:

X0:k
.
= {X0:1,X0:2, · · ·,Xk−1:k} (15)

Therefore, the maximized posterior distribution is shown in Equation (16).

p(Vk | X0:k) ∝ p(X0:k | Vk)p(V0) (16)
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where p(X0:klVk) represents the likelihood value and p(V0) represents the prior value.
According to markov properties, image measurement at a certain moment only de-

pends on the state at that moment. According to the standard independence assumption
between measurements, Equation (16) can be expressed as Equation (17).

p(V0)Πp
(
xij | si, sj

)
Πp(Zi | si) (17)

Considering the independence of measurement, the maximum posterior estimation
problem of pure inertia can be expressed as Equation (18).

V′k = argmax︸ ︷︷ ︸
Vk

(
p(V0)

k

∏
i=1

p(χi−1:i | µ, g,B, vi−1, vi)

)
(18)

The maximum posteriori estimate V′k corresponds to the maximum of Equation (17),
or the minimum of the negative logarithmic posteriori estimate. The negative logarithm
and Gaussian error are taken for the pre-integration and prior distribution of IMU. The
negative logarithm posterior estimate can be written as the sum of squares of residuals.
Finally, the optimization problem is obtained, as shown in Equation (19).

Vk = argmin︸ ︷︷ ︸
vk

(
γp

2 +
k

∑
i=1

γ
ψ−1,

2
Σn−1,

)
(19)

The difference between the optimization equation of Equation (19) and Equation (14) is
that it does not consider visual residual, but uses prior residual γp to make IMU deviation
close to zero, and the covariance of Equation (15) is given by IMU features.

After inertial optimization, frame pose and velocity, as well as 3D map points, are
scaled to the estimated scale and rotated to align the Z axis with the estimated gravity
vector. During this time, various biases will be updated and inertial measurement unit
pre-integration will be repeated to reduce linearization errors. The parameter Formula (15)
of IMU is obtained by comprehensive use of visual constraints and IMU constraints. After
initialization, the detected new key points and new measurements of IMU can be used to
locate and build maps.

4. Experimental Results and Their Analysis

The experiments are accomplished with the DJI Manifold2-C computer, whose config-
uration is as follows: the CPU is the Intel® Core™ i7-8559U processor; the main frequency
is between 2.7 GHz and 4.5 GHz; the memory is 8 G; the computer has no GPU; its system
is Ubuntu 16.04 LTS 64 bits with ROS Kinetic. To evaluate the algorithm, we use the public
dataset EuRoC [23], which contains 11 data sequences of the three grades: simple, medium
and difficult. The comprehensive consideration of illumination, movement speed and other
flight conditions can thoroughly evaluate the performances of the algorithm.

Figure 10 shows the average computation time per frame of each module under EuRoC
data set of three algorithms.

It can be seen from Figure 10 that point feature extraction and matching takes 30 ms
if SURF and FLANN algorithms are adopted, which has little impact on real-time perfor-
mance of the system but has better positioning accuracy and stability (see Figures 13 and 14).
The average time consuming of the line feature extraction algorithm in this paper is 20 ms
per frame, and the time consuming of point and line feature extraction and matching thread
is 55 ms in total. The overall time consuming of the front end of the system is reduced and
it can run in real time.
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The motion estimation error of VINS-Mono, PL-VIO and the algorithm in this paper
under the EuRoC data set (a total of 10 sub-sequences) is shown in Table 1, Absolute
Trajectory error (ATE) is used to evaluate the accuracy of algorithms.

Table 1. Motion estimation errors of three algorithms in the EuRoC dataset (RMSE unit: m) Absolute
trajectory error for both algorithms.

Serial VINS-Mono PL-VIO Ours

MH_01_easy 0.355 0.129 0.145
MH_02_easy 0.343 0.183 0.150

MH_03_medium 0.558 0.262 0.218
MH_04_difficult 0.595 0.377 0.224
MH_05_difficult 0.587 0.283 0.257

V1_01_easy 0.359 0.166 0.085
V1_03_difficult 0.529 0.221 0.148

V2_01_easy 0.280 0.109 0.128
V2_02_medium 0.546 0.174 0.150
V2_03_difficult 0.572 0.319 0.183

According to the alignment and pose error of the algorithm in data 3 in Table 1
under EuRoC data set, it can be concluded that the point-line features of MH_01_easy and
V2_01_easy are sufficient, full of light and without fast motion. However, the advantages
of this are mainly aimed at scenes with missing texture and fast movement, so the PL-VIO
positioning accuracy in these two data sets is higher than that of the algorithm in this paper.
The algorithm of this paper is optimal in all other scenes. In the MH_04_difficult sequence
with missing scene texture and V1_03_difficult sequence with fast camera movement, the
algorithm presented in this paper shows excellent accuracy.

In the scene in Figure 11, lighting changes dramatically, and objects with few features
such as windows and door frames are all surrounded by them, and their motion is very
violent, which belongs to one of the most extreme environments and is very consistent with
the scene targeted in this paper, which puts forward high requirements for the algorithm.
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In order to verify the positioning effect of the three algorithms in this scenario and
make the results more convincing, the EVO (Evaluation of Odometry and SLAM) toolkit is
used to draw the results.

Figures 12–14 are the comparison diagrams of plane trajectory and real trajectory of
VINS-Mono, PL-VIO and our algorithm under this data set, respectively.
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Figures 12–14 represent the Absolute Pose Error (APE) of the two sequences. The
gradient color band from dark blue to red in the figure represents the Error size, and the
values at the top and bottom of the color band are the maximum and minimum values of
the Error. The closer the track color is to dark blue, the smaller the error between track and
true value is. V1_03_difficult sequence is a data set of indoor motion and fuzzy illumination.
Figures 11–13 respectively show the comparison of plane trajectory and real trajectory of
this algorithm and PL-VIO under this sequence. The absolute pose error of VINS-Mono,
PL-VIO and our algorithm is 0.236 m, 0.190 m and 0.148 m respectively. It can be seen that
the gap between the algorithm in this paper and the truth value is closer and the stability
is higher.

The real-time error of the three algorithms in V1_03_difficult is shown in Figure 15.
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Figure 15a shows the real-time absolute pose error. It can be seen that the trajectory of
the proposed algorithm is smoother than that of the other two algorithms. Figure 15b shows
the root mean square error, median error, mean error, extreme error and sum of squares of
error of the three algorithms. The algorithm in this paper is optimal in all indicators.

As can be seen from Figure 16, the algorithm presented in this paper has concentrated
error distribution, stable effect and strong robustness. Overall, the performance of the
proposed algorithm is better than the other two algorithms.
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Actual Scene Experiment

The experimental site is the underground parking lot of Northwest China University
of Technology. The test scene is relatively empty and surrounded by white walls, so it is
difficult to extract point feature. The light intensity of different positions and the speed of
UAV flight is not fixed, which is a challenge for the algorithm performance. To verify the
performance of the algorithm in actual weak-textured environment, a quadrotor drone is
equipped with a smart computing host and a D453i camera (camera frame rate 30 Hz, IMU
frame rate 200 Hz). The three algorithms were tested online. The experimental field and
the experimental acquisition equipment are shown in Figure 17.
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Figure 17. Experimental field and equipment.

Experimental scheme is as belows. After starting the positioning algorithm, the UAV
is controlled to fly for a period of time. The landing point coincides with the starting point,
locate and map its trajectory in real time, and compare the distance between the final plane
and the origin after the landing of the three algorithms.

As shown in a(1), a(2) and a(3) in Figure 18, compared with the VINS-Mono algorithm,
the PL-VIO algorithm and the algorithm in this paper can extract more line features in an
open environment with more white walls and insufficient point feature extraction. It can
be seen from b(1) and b(2) that after the algorithm in this paper removes mismatching and
redundant line features, the number of remaining line segments is smaller, but the quality
is higher, which can reduce the mismatching rate of line features.
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Figure 18. Actual scene experiment. a(1) VINS-Mono algorithm for feature extraction of images in
real scenes. a(2) PL-VIO algorithm for feature extraction of images in real scenes. a(3) The proposed
algorithm for feature extraction of images in real scenes. b(1) The real-time localization trajectory
of VINS-Mono algorithm is in the actual scene. b(2) The real-time localization trajectory of PL-VIO
algorithm is in the actual scene. b(3) The real-time localization trajectory of the proposed algorithm is
in the actual scene.

The actual running trajectories of the three algorithms are shown in Figure 19.
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Figure 19. Plar trajectories of the three algorithms in the actual scenario.

After running, the distance from the origin of our algorithm, PL-VIO and VINS-Mono
are 2.902 m, 6.99 m and 5.963 m respectively. By comparison, the error of the proposed
algorithm in practical scenarios is smaller, and the accuracy of the proposed algorithm
is 51.33% higher than that of the VINS-Mono algorithm and 58% higher than that of the
PL-VIO algorithm.

Based on Figure 19, it can be seen that the positioning results of the PL-VIO system
began to drift after the aircraft took off, because the SLAM system with line features could
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not calculate all the initialization parameters within a short time after startup. After running
for a while, the system stabilizes as new features are added. The algorithm in this paper
optimizes image processing and initialization, so that the system can calculate accurate
initialization parameters in a short time. Therefore, the trajectory of UAV is stable and
the positioning accuracy is relatively high after startup. Although VINS-Mono does not
diverge, its positioning accuracy is not as high as that of the proposed algorithm.

Figures 20 and 21 record the pose changes of the three systems after initialization.
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By comparing Figures 20 and 21 respectively, it can be seen that our algorithm has
shorter initialization time and smoother trajectory compared with VINS-Mono and PL-VIO.

Through the experimental comparison, it can be found that the proposed algorithm
can better solve the pose estimation problem in the low texture region and provide better
initialization effect and feature extraction matching effect of SLAM system, which has the
best performance in the actual scene. Due to the fusion of line features and IMU data, the
accuracy and robustness of the algorithm are improved effectively.

5. Conclusions

In this paper, a novel point-line visual inertial SLAM method is proposed. Public data
set EuRoC and UAV flight tests are used for validation. The conclusions are as follows:
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(1) Adding bilateral filtering algorithm to SLAM front-end image preprocessing module
can effectively reduce image noise and the difficulty of point-line feature extraction.

(2) Aiming at the problem of image blur when the camera moves, SURF algorithm
and FLANN matching algorithm are adopted. Although the overall consumption
time of processing point features is slightly increased, the positioning accuracy is
significantly improved.

(3) The parameters of LSD line feature extraction algorithm are selected, and the extrac-
tion speed is increased by 3 times by using length suppression strategy line feature. A
line feature matching method based on geometric constraints is proposed, and the
matching time of line segments is reduced by 66.66%.

(4) The step joint initialization method greatly reduces the initialization time, improves
accuracy and makes the location trajectory smoother.
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