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Abstract: Small unmanned aerial systems (sUAS) and relatively new photogrammetry software
solutions are creating opportunities for forest managers to perform spatial analysis more efficiently
and cost-effectively. This study aims to identify a method for leveraging these technologies to
analyze vertical forest structure of Red-cockaded Woodpecker habitat in Montgomery County, Texas.
Traditional sampling methods would require numerous hours of ground surveying and data collection
using various measuring techniques. Structure from Motion (SfM), a photogrammetric method for
creating 3-D structure from 2-D images, provides an alternative to relatively expensive LIDAR
sensing technologies and can accurately model the high level of complexity found within our study
area’s vertical structure. DroneDeploy, a photogrammetry processing app service, was used to
post-process and create a point cloud, which was later further processed into a Canopy Height Model
(CHM). Using supervised, object-based classification and comparing multiple classifier algorithms,
classifications maps were generated with a best overall accuracy of 84.8% using Support Vector
Machine in ArcGIS Pro software. Appropriately sized training sample datasets, correctly processed
elevation data, and proper image segmentation were among the major factors impacting classification
accuracy during the numerous classification iterations performed.

Keywords: Structure from Motion (SfM); small unmanned aerial system (sUAS); object-based classi-
fication; supervised classification; eCognition; DroneDeploy; photogrammetry

1. Introduction

As small unmanned aerial system (sUAS) methods and technologies become increas-
ingly more affordable, they are well poised to shift the way land and wildlife managers
conduct data acquisition [1–3]. In forestry applications, sUAS platforms present opportuni-
ties to reduce operating cost and increase data precision by substituting for more traditional
methods [4–7]. With sUAS methods, personnel needs are lowered, larger datasets are ob-
tained faster, and limiting factors such as harsh terrain are not as impactful when compared
to ground survey approaches.

sUAS are particularly advantageous when assessing forest classes and structure in
fine detail [5]. Finer resolutions than 1 cm are possible, depending on flight configurations.
Temporal scale is also relatively unrestricted, with sUAS technologies easily and quickly
deployable [8]. This makes sUAS approaches a relatively cost-effective and flexible data
acquisition option when compared to alternatives such as manned flight or satellite remote
sensing methods [7].

Decentralization of forest management from government to smaller communities
is an important trend that works in the interest of forest conservation [9]. Numerous
countries are currently or beginning to adopt this structure of forest governance because
of the benefits of empowering community or municipal level forest managers [10–12].
Successful forest governance looms large in the climate change agenda, with deforestation
and loss of biodiversity being factors to consider [13]. Affordable and accessible forest
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monitoring methods are an invaluable tool to these communities of forest managers,
many of whom are already leveraging sUAS technologies to acquire data and perform
analysis [14–17]. Opportunities to reinforce the capabilities of these technologies and
expand on their applications will only continue to enable forest managers who conduct
data acquisition with limited resources.

Standout methods for assessing vertical structure of forested areas include Structure
from Motion (SfM) and LIDAR, or light detection and ranging, with multiple examples of
comparisons in the literature [18–21]. SfM uses photogrammetry algorithms and numerous
overlapping photos to model vegetation structure, whereas LIDAR sends and receives light
pulses for measuring “ranges” in the study area. Both methods generate a 3-dimensional
point cloud representing vegetation structure. This is then used to assess a variety of forest
indices, such as tree height, stand inventorying, or biomass measurements [6,22,23]. While
LIDAR has shown to be an effective approach for penetrating past the upper canopy to
evaluate vertical forest structure, it is a relatively expensive method when compared to
SfM.

The use of low-cost sUAS technologies has already been leveraged in other success-
ful studies where SfM served as a feasible method of point cloud generation [21,24–27].
SfM was employed in New South Wales to highlight the benefits and capabilities of pho-
togrammetric methods for detecting sirex-attacked trees, and monitoring forest health
remotely [25]. Color orthophotos proved to be an effective tool in this case, especially when
paired with a near-infrared band. Information as discrete as tree species was identified
in another study, where supervised classification using a Random Forests classifier was
performed to identify various tree species along multiple phenological timelines [26]. The
Red-Green-Blue color bands, the same acquired by most consumer-grade cameras, proved
to be more effective at species identification than near-infrared sensing in this study. An-
other study used multi-temporal crop surface models (CSMs) to derive barley plant height
(PH), and later estimate crop biomass using PH and linear modeling [27]. These technolo-
gies are highly adaptable, and can be applied to a variety of research questions. In our
case, we sought to use SfM combined with a consumer-grade sUAS to assess red-cockaded
woodpecker habitat.

Red-cockaded woodpeckers (Dryobates borealis) are currently listed as an endangered
species by the U.S. Fish and Wildlife Service, and are endemic to the Southeastern United
States [28–30]. One of the primary characters defining high-quality red-cockaded wood-
pecker (RCW) habitat is old pine trees for roosting and nesting cavity excavation; preferably
Longleaf Pine (Pinus palustris) or Shortleaf Pine (Pinus echinate), followed by Loblolly Pine
(Pinus taeda) or Slash Pine (Pinus elliotii), although their presence, absence, and ratios can
vary by region and management history [28–32]. Other factors determining habitat quality
include herbaceous groundcover, intermediate pine density, and absence of midstory, all
of which are positive contributors to RCW fitness [28,30,32]. These three habitat features
are also positively correlated with the use of prescribed fire, particularly growing season
fires, as a management tool [28,30,32]. Frances C. James et al. concluded that the density of
larger trees (>35 cm diameter at breast height (dbh)) compared to smaller trees (15–25 cm
dbh), and also the ratio of herbaceous ground cover to woody ground cover, are both major
contributors to RCW fitness [33]. Another study by France C. James et al. suggests that,
in addition to ground cover composition, the extent of natural pine regeneration was also
significantly related to the birds’ success and therefore habitat quality [34].

What previous studies have made clear is that the distribution of these various forest
classes and their abundance are major indicators of RCW habitat quality. There are some
examples where LIDAR technologies were used to asses the vegetative structure of RCW
habitat or similar habitat [35,36]. In this case, SfM will be used as a low-cost, low-complexity
alternative for RCW habitat assessment. Of particular interests are the habitat quality
indicators mentioned above; herbaceous ground cover, the prescence of woody midstory,
the amount of pine regeneration, and the amount of mature or overstory pine.
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2. Materials and Methods
2.1. Study Area

From March 2020 through March 2021, Raven Environmental Services conducted
multiple prescribed burns in and around Unit 0607 on Cook’s Branch Conservancy, or
CBC, in Montgomery County, Texas. The fire resulted in areas of pine overstory loss
and scorching of overstory and midstory pine. Dominant forest species include mature
individuals of Loblolly Pine with some mature Shortleaf Pine, and small amounts of
deciduous species including Southern Red Oak (Quercus falcata), Black Hickory (Carya
texana), and Farkleberry (Vaccinium arboreum). Understory consists of mostly Yaupon Holly
(Ilex vomitoria) and American Beautyberry (Callicarpa americana). Major herbaceous ground
cover species include Little Bluestem (Schizachyrium scoparium) and Longleaf Wood Oats
(Chasmanthium sessiliflorum). Long-term forest management goals aim to preserve and
foster a target amount of natural pine regeneration to serve as a future generation and
source of cavity trees for red-cockaded woodpeckers that inhabit the area. Because CBC’s
surrounding area is becoming rapidly more urbanized in recent years, it is important that
forested areas maintain a long-term perspective by inventorying pine regeneration.

A summary of this study’s workflow can be found in Figure 1, and is broken into
imagery collection, processing imagery in DroneDeploy, and analysis in both eCognition
and ArcGIS Pro.
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2.2. Imagery Capture

Capture of imagery was facilitated by a sUAS that weighs under 24.9 kg, and therefore
subject to the Federal Aviation Administration Part 107 Rules and Regulations. Tailored
for small, commercial use, this regulatory system is relatively simple in its compliance
requirements. A software app service named DroneDeploy that provides photogrammet-
ric services was used to create an orthophoto from over 2000 nadir photographs taken
during flight missions. DroneDeploy, along with other photogrammetry cloud services
such as Pix4D, have and continue to provide access to affordable and low-complexity
photogrammetry options [37,38].

The sUAS used was a consumer-grade DJI Mavic Pro Platinum with a monocular
camera (DJI-FC220 sensor) capturing imagery in the Red-Green-Blue (RGB) color bands.
The initial study area was 120 hectares, and flight time was approximately 4–5 h on
Thursday, 4 March 2021. DroneDeploy’s mission planning services created a predetermined
and editable grid above the study area that the sUAS followed while capturing imagery.
Transects maintained an approximate east-to-west bearing, total images captured was 1890,
and image resolution was 2.57 cm/px. The area was too large to capture during one battery
lifecycle, so multiple flight missions were flown throughout the day. A summary of flight
details is found in Table 1, and the flight path and imagery capture points are presented in
Figure 2.

The timing of imagery capture was intentionally selected during dormant season
so that deciduous trees were in a leaf-off state. This allowed for better discrimination of
hardwood species from pine species. Figure 2 also illustrates the quality of coverage and
where GPS alignment issues occurred. Areas symbolized with yellow boxes and red X’s
correlated with issues in elevation data seen later.

Table 1. Summary of flight details.

Project Name 0600–Map Plan

Photogrammetry Engine DroneDeploy Proprietary
Date of Capture 4 March 2021
Date Processed 11 March 2021

Processing Mode Standard
GSD Orthomosaic (GSD DEM) 2.57 cm/px (DEM 10.29 cm/px)

Area Bounds (Coverage) 1,206,020 m2

Image Sensors DJI–FC220

2.3. Processing Imagery Using DroneDeploy

Following imagery capture, photos were uploaded to DroneDeploy’s website where
photogrammetric processing occurs in their cloud environment. Processing of photos took
approximately an hour, and exported data included an orthoimage (Figure 3), a digital
terrain model (DTM) (Figure 4), and a point cloud with a point density of 10.44 points/m2

(Figure 5). Exportable options include various file types and projected coordinate systems.
For this study, .tiff file types were used for the DTM and orthoimage, a .las file type was
used for the point cloud, and all of the data were exported using a NAD 1983 UTM Zone
15 projected coordinate system.
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2.4. Classification Configuration and Classifier Selection

Forest classification methods are numerous, and primarily consist of object or pixel-
based, supervised or unsupervised, and parametric or non-parametric machine learning
classifiers [39,40]. A variety of approaches have been employed, but more recent forest clas-
sification studies suggest that supervised, object-based classifications are favorable [26,41].
There is, however, ambiguity found when considering the optimal classifier to use, with
several comparisons made of Random Forests (RF) (referred to as Random Trees (RT) in
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ArcGIS), Maximum Likelihood (ML), Support Vector Machine (SVM), K-Nearest Neigh-
bor (KNN), and also deep learning algorithms, such as Convolutional Neural Networks
(CNN) [39,40,42,43].

Supervised, object-based classification using both ArcGIS Pro and eCognition software
packages was performed for this study. For both software options, results were compared
when using SVM and RT classifiers, whereas other classifiers specific to either software
option were also used. Those included ML in ArcGIS Pro, and KNN, Naïve Bayes, and
Decision Tree (DT) in eCognition. Both ArcGIS Pro and eCognition provided processing
tools for rasterizing point cloud data and normalizing surface elevation, but training and
accuracy assessment samples created in ArcGIS Pro were used for analysis in both software
products.

2.5. Classification in ArcGIS Pro
2.5.1. Reduction in Study Area and Normalizing Elevation Data in ArcGIS Pro

A workflow and model were then developed in ArcGIS Pro to arrive at a raster
representing normalized elevation or a Canopy Height Model (CHM). This was done by
converting the point cloud to raster format, and then subtracting those values by the DTM
using a Raster Calculator tool.

The resulting CHM contained a large anomalous area that coincided with GPS align-
ment issues during sUAS flights, and seen in Figures 2, 4 and 5. Additionally, there
appeared to be evidence that the stopping and starting of imagery capture, due to the need
to change batteries, may have had an impact on the continuity of elevation data moving
northward. These issues are highlighted by well-defined graduations in elevation data,
seen occurring twice in the DTM in approximately the northern third of the study area
(Figure 4). For this reason, a 27 hectare area of consistent and reliable elevation data was
selected from the original study area to be used for analysis going forward (Figure 6).

The selected area was surveyed continuously, and without interruptions due to battery
changes. Therefore, it also had more consistent luminosity features, in addition to elevation
data. It also excludes the large, questionable area of elevation data, while almost completely
including a continuous management unit. This reduction in study area also enabled faster
processing time during subsequent analysis steps, which amounted to an overall significant
time savings because of the large number of iterations performed.

2.5.2. ArcGIS Pro: Creation of CHM Classes and a Segmented Image

After clipping out the new study area, a histogram of the CHM was created (Figure 7).
The distribution of height values is noticeably similar to the vegetative structure found in
another where LIDAR was used [35]. In both cases, most of the distribution is found at
lower elevations, with negligible amounts of negative values. This figure provides several
insights into the vertical structure of the study area and how to organize classes.
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Using the CHM histogram, and a comparison of the CHM and orthoimage, image
interpretation was used to create height classes using the Reclassify Raster geoprocessing
tool. Additionally considered were heights for major herbaceous ground cover species, and
approximate heights for midstory and pine classes in similar studies.

Most of the pixels are found between −0.55 and 1.17 m, which is interpreted as pixels
representing approximately ground level, basal vegetation, and woody debris laying on the
ground (Figure 8). Because identifying herbaceous ground cover is of interest, and serves
as a relevant metric for assessing RCW habitat, the heights of two major grass species in the
study area were also factored into this height class. The first, Little Bluestem, has a culm
height range of 7–210 cm, and the second, Longleaf Wood Oats, has a culm height range of
50–150 cm [44]. Therefore, an upper height of 117 cm will capture most of these two species
occurrences.
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Figure 8. The study area’s orthoimage (a) alongside its corresponding height reclassification (b).
The orthoimage and CHM were used together to identify where major height classes are occurring.
Examples of height classes after reclassifying the CHM are labeled: (1) represents ground cover, (2)
shrub layer, (3) a pine overstory canopy, and (4) is an area of scorched regeneration.

Heights between 1.17 and 2.9 m were interpreted as shrub vegetation. Yaupon Holly
is a common shrub species within the study area and does not lose its leafy vegetation
during dormant season. Between its height profile and textural characters, it was frequently
identified as making up this height class (Figure 8). Additionally, previous study describes
“medium-quality” RCW habitat as having woody hardwood vegetation that is on average
2.7 m or shorter, so an upper threshold of 2.9 m is approximately within this threshold [32].

Midstory height classes consisted of 2.91–6.34, 6.35–9.79, and 9.80–11.51 m. Areas in-
cluding all of these classes (2.91–11.51 m) typically represented pine regeneration, were often
spatially large and contiguous, and height classes were largest in the central areas (Figures 8
and 9). Pine trees with heights below 12 m are shown to provide significantly less RCW
foraging potential than pines trees above 12 m, so an upper threshold of 11.51 m also serves to
divide pine regeneration from older pine trees used for foraging or cavity trees [32].

Canopy levels represented pine overstory or hardwood, and were broken into two
classes, 11.51–18.41 and 18.42–39.08 m. Similar studies of RCW habitat have maximum pine
heights of 24.54 m in one example, and 27.1–30 m in another [32,35]. Our CHM histogram
is similar, with the height distribution falling off abruptly at approximately 30 m (Figure 7).
The histogram also provides some context for these height classes, with their distribution
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of pixels spread over several values. Additionally, the number of pixels decrease slightly as
the heights increase, indicating that taller trees occur less frequently. The height profiles of
pine overstory tended to be complex but conspicuously taller (Figure 8). This made sense
intuitively, with the pixel resolution allowing for penetration past the tallest branches and
into some of the more irregular and lower portions of a pine trees canopy. Figure 10 shows
a finalized map of the CHM reclassification.
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portions and consist of level 1–3 midstory elevations.
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2.5.3. Image Segmentation

Image segmentation was performed using the Image Segmentation tool in ArcGIS
Pro. Because of the orthoimage’s high complexity and fine pixel resolution, this process
took several attempts before identifying the best parameters for segmentation. Ideally, a
segmented image will represent discrete objects, while also representing them completely
and separately from neighboring objects. This was best achieved when slightly reducing
spectral detail and increasing spatial detail from the tool’s default settings. Minimum
segment size in pixels was kept at the default setting of 20. Figure 11 illustrates a portion of
the segmented image compared to its orthoimage counterpart.
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2.5.4. Combining Segmented Image and CHM Bands

To incorporate both the segmented image and elevation data in the classification
analysis, the two raster layers were combined using the composite bands geoprocessing
tool. The resulting layer contained red, green, and blue bands, and a fourth band containing
the study area’s reclassified CHM.

2.5.5. ArcGIS Pro: Creation of Forest Classes and Training Samples

A class schema was created and consisted of seven forest classes: Pine Overstory, Pine
Regeneration, Scorched Pine Overstory, Scorched Pine Regeneration, Deciduous/Dead
Pine, Shrub Layer, and Ground Cover. Deciduous trees and dead pine were grouped
together because of their visual similarities, and because discriminating one from the other
was not necessary for the purpose of this study.

Training samples were produced by overlaying the reclassified CHM and segmented
image, and identifying areas where an image segment coincided with the appropriate
elevation data. For example, a training sample for Pine Overstory would be selected
where green canopy and the highest elevation values overlapped. Training samples were
drawn in some cases, and in other cases, a segment selection tool was used. Ground
Cover training samples were always drawn manually because when entire segments were
selected, the classifier tended to overrepresent them. All the pine classes were appropriately
represented using both segment selections or manually drawn training samples. The use
of the segment selection tool greatly increased the efficiency and speed at which training
samples were created. Effort was made to randomly distribute segments throughout the
study area for each class, but for some classes this was difficult because of their sparse
distribution. Scorched Overstory and Hardwood/Dead Pine were the best examples of this,
with representatives being less frequent and their distribution uneven. Previous studies



Drones 2022, 6, 26 14 of 27

indicated that an insufficient amount of training samples for classifier training could have
a negative impact on accuracy, with less than 125 greatly reducing accuracy [15]. With
this number in mind, 1400 training samples were created for all 7 classes. They were
divided into two groups; 1050 were used for training classifiers, and 350 were later used for
accuracy assessment. Training samples were divided equally amongst classes, with 150 per
class used for training classifiers, and 50 per class used for accuracy assessment. Figure 12
illustrates the distribution of training samples throughout the study area.
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Figure 12. The image on the left (a) illustrates the entire distribution of training samples used for
training classifiers and accuracy assessment. The right image (b) shows a larger scale example of
training samples in a regeneration area.

2.5.6. ArcGIS Pro: Classification

The Image Classification Wizard in ArcGIS Pro was used to train three classifiers:
SVM, RT, and ML. Both SVM and RT are non-parametric classifiers, and ML is a parametric
classifier. Object-based, supervised classification was selected for configuration. The
previously mentioned classification schema of seven classes was added to the tool, along
with the 1050 training samples (150 per class), and the RGB segmented image that included
the reclassified CHM. SVM was configured to 500 samples per class, and RT was configured
to a maximum of 50 trees, a maximum tree depth of 30, and a maximum of 1000 samples
per class. ML did not require any specific configuration setup.

2.5.7. ArcGIS Pro: Accuracy Assessment

Once each map was generated, they were individually assessed for overall accuracy
using an Accuracy Assessment tool and the 350 remaining training samples (50 per class)
not used for training the classifiers. Stratified Random sampling was used, where accuracy
assessment points were distributed randomly within each class, and with a number of
points proportional to the overall pixel size of each class. Outputs for each classifier include
a confusion matrix with accuracy per class, user accuracy, producer accuracy, overall
accuracy, and Kappa Index.
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2.6. Classification in eCognition
2.6.1. eCognition: Normalizing Elevation Data

Using eCognition software, the point cloud was rasterized using the average of Z-
coordinates and a kernel size of 11 (Figure 13). A histogram of elevation values was also
produced (Figure 14) and shows an almost identical distribution of elevation values when
compared to the histogram produced in ArcGIS Pro (Figure 7). The kernel size parameter
was compared to other trial settings and appeared to do the best job of smoothing outputs.
Next, using the nDSM tool, the rasterized point cloud and DTM were inputted to produce
a CHM. A median filter tool with a kernel size of 3 was then used on the CHM to remove
outlier elevation values.
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low as approximately 45 m, a negligible amount of the values are negative, as seen on the histogram
for the eCognition (Figure 14).
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2.6.2. eCognition: Image Segmentation and Training Samples

Using the Multiresolution Segmentation tool, image segmentation was performed that
considered the red, blue, and green bands (RGB) from the orthoimage, and the filtered
CHM as a fourth band. Multiple iterations of this step using different parameters were
performed to try to best identify a method for image segmentation. It was decided to use
band weights of 2 for the RGB bands, and 0.5 for the CHM band. Image segmentation that
weighed the CHM too heavily resulted in relatively low classification accuracies later. The
scale parameter was set to 50, shape to 0.3, and compactness to 0.7.

The 1050 training samples created and used in ArcGIS Pro were now imported into
eCognition as a thematic layer. Using the Assign Classes by Thematic Layer tool, the same
class hierarchy was generated, including the Pine Overstory, Pine Regeneration, Scorched
Pine Overstory, Scorched Pine Regeneration, Ground Cover, Hardwood/Dead Pine, and
Shrub Layer classes. Next, the Classified Image Objects to Samples tool was used to take
the image objects created from segmentation and create training samples for each class
where the thematic layer and image objects overlapped (Figure 15).
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These training samples were then saved as training sample statistics in a .csv file, and
the class hierarchy removed. The 350 accuracy assessment samples used in ArcGIS Pro
were then imported as a thematic layer, and the same steps performed for creating samples
in eCognition. The intention here was to separate the saved training sample statistics for
classification from the newly imported accuracy assessment samples.

2.6.3. eCognition: Classification

With image segmentation completed and training sample statistics saved, supervised,
object-based classification was performed. Multiple classifier algorithms are available
within the Supervised Classification tool in eCognition, some of which were not available
in ArcGIS Pro. Classifiers used on both software packages were SVM and RT, and classifiers
specific to eCognition used included Bayes, KNN, and DT.

A classification model was created, classifier parameters selected, and each of the
classifiers were trained using the stored sample statistics. For KNN, K-values of both 3
and 5 were used in separate iterations. For RT and DT, minimum sample counts of 0 and a
maximum number of 16 categories were used, and for RT specifically, 50 trees per node.
When using SVM, a linear kernel type and C value of 2 were used.

2.6.4. Ecognition: Accuracy Assessment

Generating a confusion matrix in eCognition was done using the Accuracy Assessment
tool and selecting “output of error matrix bases on sample statistics”. The image object
level already has the accuracy assessment samples imported from previous steps, so the
tool used them to generate results. This step was performed for each classifier.

3. Results

For ArcGIS Pro classifications, accuracy was highest using Support Vector Machine,
followed by Random Trees, and least accurate using Maximum Likelihood. eCognition’s
best classification results were produced by KNN, with the remaining classifier options
producing relatively less accurate classifications when compared to their KNN counterpart
and ArcGIS Pro results. SVM in eCognition was a significant outlier, with a poor overall
accuracy. A summary of these results is seen in Table 2:

Table 2. Overall accuracy and Kappa Index values for all the classifiers in both software packages.

Software Classifier Overall Accuracy Kappa Index

ArcGIS Pro
ML 0.754 0.689
RT 0.804 0.752

SVM 0.848 0.805

eCognition

KNN 0.744 0.695
Bayes 0.687 0.63

DT 0.521 0.437
RT 0.418 0.432

SVM 0.123 0.008

3.1. Classification Maps and Confusion Matrices

The results of the top-performing classifiers in each software option are focused
on specifically here; SVM in ArcGIS Pro and KNN in eCognition. Classification maps
(Figures 16 and 17) and confusion matrices (Tables 3 and 4) provide more details about
classification results. Visually, the major themes of both classification maps are similar, with
larger-scale examples in each figure providing more conspicuous differences in outputs.
One similar trend in both classifiers’ confusion matrices is the poor user accuracy for
the Hardwood/Dead Pine class. User accuracy is relatively lower in the Pine Overstory,
Ground Cover, and Shrub Layer classes when using KNN in eCognition. Conversely, KNN
only marginally outperformed SVM in ArcGIS Pro in a few instances. Both classifiers
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performed well when classifying Pine Regeneration, Scorched Pine Regeneration, and
Scorched Pine Overstory classes.

Classification maps and confusion matrices for the remaining ArcGIS Pro and eCogni-
tion classifiers can be found in the Appendix A section.
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Figure 16. SVM classification map produced in ArcGIS Pro. The bottom left displays a larger-scale
image of the classification output, and the bottom left is the corresponding orthoimage.
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Figure 17. KNN classification map produced in eCognition. The bottom left displays a larger-scale
image of the classification output, and the bottom left is the corresponding orthoimage.
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Table 3. Support Vector Machine confusion matrix and classification results in ArcGIS Pro.

Class Overstory Regeneration Overstory
Scorched

Regeneration
Scorched Ground Cover Deciduous/Dead

Pine Shrub Layer Total

Overstory 50 2 7 0 1 0 1 61
Regeneration 2 49 0 0 0 0 0 51

Overstory Scorched 0 0 161 2 6 0 1 170
Regeneration

Scorched 0 0 9 41 0 0 0 50

Ground Cover 2 1 11 0 91 0 1 106
Deciduous/Dead

Pine 3 0 12 1 10 17 0 43

Shrub Layer 4 0 0 0 0 0 15 19

Total 61 52 200 44 108 17 18 500

Producer Accuracy 0.819672 0.942308 0.805 0.931818182 0.842593 1 0.833333
User Accuracy 0.819672 0.960784 0.947059 0.82 0.858491 0.395349 0.789474

Overall Accuracy 0.848
Kappa Index 0.805034

Table 4. K-Nearest Neighbor confusion matrix and classification results in eCognition.

Class Overstory Regeneration Overstory
Scorched

Regeneration
Scorched Ground Cover Deciduous/Dead

Pine Shrub Layer Total

Overstory 307 62 27 20 55 31 20 522
Regeneration 6 284 7 15 9 6 1 328

Overstory Scorched 13 2 559 17 31 17 4 643
Regeneration

Scorched 4 4 21 310 6 14 0 359

Ground Cover 20 13 27 8 404 78 58 608
Deciduous/Dead

Pine 9 9 10 6 42 151 3 230

Shrub Layer 6 19 5 1 22 4 119 176

Total 365 393 200 377 569 301 205 2866

Producer Accuracy 0.841 0.7226463 0.8521341 0.8222812 0.71 0.5016611 0.5804878
User Accuracy 0.5881226 0.8658537 0.8693624 0.8635097 0.6644737 0.6565217 0.6761364

Overall Accuracy 0.74453918
Kappa Index 0.6953414

3.2. Area Calculations Using ArcGIS Pro Classification Results

Quantifying area per class was also performed by taking individual pixel area, mul-
tiplying it by pixel count per class, and converting area from square meters to hectares.
ArcGIS Pro classification results were used to quantify area because of their relatively high
accuracy results. Table 5 illustrates these areas per class, and the percentage of coverage
each class represents.

Table 5. Area per class in hectares, and percentage of coverage for each class.

Area in Hectares Percent Coverage

ML RT SVM ML RT SVM

Overstory 3.21 5.32 4.72 11.89% 19.73% 17.51%
Regeneration 4.46 4.03 4.04 16.56% 14.94% 14.99%

Overstory Scorched 1.28 1.42 1.74 4.74% 5.27% 6.45%
Regeneration Scorched 2.62 2.55 2.61 9.70% 9.47% 9.68%

Ground Cover 10.27 9.86 9.68 38.09% 36.58% 35.91%
Deciduous/Dead Pine 1.02 1.71 2.28 3.78% 6.35% 8.45%

Shrub Layer 4.11 2.06 1.89 15.24% 7.66% 7.01%

Total 26.97 26.95 26.96 100.00% 100.00% 100.00%

ML classification results visually and quantifiably underrepresented Pine Overstory
at 11.89% coverage, while overrepresenting the Shrub Layer at 15.24% coverage. This
represents the largest disparity in land coverage amongst the three classifiers, with RT
and SVM having 19.73% and 17.51% coverage for pine overstory, and 7.66% and 7.01%
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coverage for the Shrub Layer, respectively. Ground cover represents the largest amount
of coverage at 36.86% on average. Scorched Pine Overstory is consistently lower across
all three classifiers at 5.48% on average when compared to Scorched Pine Regeneration at
9.62% on average.

4. Discussion

Overall, accuracy assessments yielded positive classification results amongst almost
all the forest classes, but could be moderately to significantly impacted by the classifier
used. Support Vector Machine produced the best accuracy results in ArcGIS Pro, and
K-Nearest Neighbor in the case of eCognition. Support Vector Machine performed the
worst when used in eCognition, and by a wide margin at 12% overall accuracy. While the
Hardwood/Dead Pine class was not a target group for this study, classifiers performed
relatively inaccurately when classifying this group.

Reclassifying the CHM in ArcGIS Pro arguably had a positive impact on accuracy
results and is possibly one explanation for its outperformance of eCognition. This extra
step was the major difference between the two classification methodologies used in the
software packages. Additionally, the image segmentation algorithms, and CHM outputs
were slightly different for eCognition and ArcGIS Pro. Outside of these exceptions, both
software programs used the same orthoimage, DTM, point cloud, training samples, and
accuracy assessment samples.

Producer accuracy was consistently lower for overstory classes when compared to
their regeneration counterparts. This is most likely because of the complex assortment
of height classes found within an overstory pine’s canopy, and because fine resolution
elevation data can penetrate past the upper-most canopy vegetation. Regeneration elevation
data were typically more continuous, and not as interrupted by canopy openings large
enough to create complex and variable elevation groupings. Therefore, training samples
for regeneration classes were not capturing a variety of height classes, possibly resulting
in higher producer accuracies. Random Trees in ArcGIS Pro was the most successful at
reducing this error (Table A2).

Low user accuracy for Hardwood/Dead Pine is consistent across all the ArcGIS Pro
classifications, while producer accuracy is relatively high. This indicates that despite having
well-referenced training samples, all three classification strategies struggled to accurately
classify Hardwood/Dead Pine. A possible explanation is the spectral similarities between
leaf-off hardwood and dead pine, and the frequent presence of dead, woody debris on the
ground level. This creates a situation where objects of similar spectral characters, such as
color and texture, also possess an unpredictable range of height classifications. Confusion
matrix results appear to support this idea, with all three ArcGIS Pro classifiers possessing a
significant amount of Ground Cover mistakenly classified as Hardwood/Dead Pine.

The results provide a number of insights into the quality of red-cockaded wood-
pecker habitat based on standards created by previous studies. The RCW recovery plan
recommends managing for 40% or more herbaceous groundcover, with group size and
reproduction increasing at this threshold [28]. Our measurement of Ground Cover was just
shy of this threshold, at 38.09%. Next, a measure of woody hardwood with a height of ap-
proximately 2.7 m or less is made with our Shrub Layer class, at 7.01–15.24% depending on
the classifier. A reduction in this class has shown to have a positive impact on RCW fitness,
and here we successfully quantified and mapped its distribution. This information can
help with vegetation management approaches such as mechanical removal or herbicidal
treatments.

Comparisons can also be made between the amount of Pine Overstory to Pine Regen-
eration, and the ratio of Ground Cover to Shrub Layer. Both of these ratios are considered
strong indicators of RCW habitat quality based on one study [33]. Specifically, the indica-
tors used were the difference between 15–25 cm dbh trees and >35 cm dbh trees, and also
the difference in groundcover between wiregrass and woody-plug-palmetto vegetation.
Frances C. James et al. performed their work on the Wakulla and Apalachicola Ranger
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Districts in Florida, a region of Longleaf Pine RCW habitat far separated from our own
study area. Despite the differences of study area, vegetation, etc., the habitat indicators are
similar in many regards.

Quantifying and mapping the Pine Regeneration class was an important goal of this
study. Pine regeneration is amongst the RCW habitat quality indicators, and of particular
interests because of our goal of managing a long-term outlook when forest planning.
Because Cook’s Branch Conservancy maintains an annual fire program to promote and
improve RCW habitat, information about pine regeneration can help strategize where to
burn and with what intensity. The seasonality of burning and particular burn conditions
can help preserve or naturally thin pine regeneration, so this information informs forest
managers of where to best apply fire.

Accurate and correctly reclassified elevation data were a key component of successful
forest classification. For the sake of comparison, some iterations without elevation data
were performed, along with unsupervised and pixel-based classification configurations. In
all cases, classification accuracies were noticeably lower using the same training sample
dataset. Most notably, the omission of elevation data resulted in significantly lower accuracy
results, and so the inclusion of elevation data was not only necessary but confirmed the
validity of Structure from Motion as a source of elevation data for our targeted classes.

A well-constructed training sample dataset was also important for accurate classifi-
cation. This step, along with processing time during trial iterations, represent the most
time-intensive portion of analysis. Once the parameters of a suitable training sample
dataset were identified, they can be reproduced with much more efficiency in future and
similar classification efforts.

The results of this study indicate the functionality of software applications, such as
DroneDeploy, for creating elevation models using Structure from Motion photogrammetric
methods, and how they can be leveraged in specific forest management scenarios. In
this case, it effectively mapped indicators of RCW habitat quality. The time and cost
efficiency are substantial when compared to hand-crew methods and highlight the value
of continuing to further incorporate sUAS technologies into land management practices.
Cost-savings are not only to the advantage of landowners, but to conservation efforts
overall. sUAS gathered datasets will enable larger and more frequent coverage, along with
potentially more detailed and accurate information on a comparable budget. Efforts to
identify where data acquisition is most necessary, and how to effectively leverage it will
likely be the challenge going forward.
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Table A1. Maximum Likelihood confusion matrix and classification results in ArcGIS Pro.

Class Overstory Regeneration Overstory
Scorched

Regeneration
Scorched Ground Cover Deciduous/Dead

Pine Shrub Layer Total

Overstory 36 0 9 0 0 1 0 46
Regeneration 9 47 0 0 0 0 0 56

Overstory Scorched 0 0 143 1 5 0 0 149
Regeneration

Scorched 0 1 28 42 1 0 0 72

Ground Cover 3 2 16 0 84 3 4 112
Deciduous/Dead

Pine 2 0 3 1 17 11 0 34

Shrub Layer 11 2 1 0 1 2 14 31

Total 61 52 200 44 108 17 18 500

Producer Accuracy 0.590163934 0.903846154 0.715 0.954545455 0.777777778 0.647058824 0.777778
User Accuracy 0.782608696 0.839285714 0.959731544 0.583333333 0.75 0.323529412 0.451612903

Overall Accuracy 0.754
Kappa Index 0.689523

Table A2. Random Trees confusion matrix and classification results in ArcGIS Pro.

Class Overstory Regeneration Overstory
Scorched

Regeneration
Scorched Ground Cover Deciduous/Dead

Pine Shrub Layer Total

Overstory 51 1 15 0 0 1 0 68
Regeneration 5 48 0 2 0 0 0 55

Overstory Scorched 0 0 150 0 3 0 2 155
Regeneration

Scorched 0 1 21 40 1 0 0 63

Ground Cover 3 0 12 0 83 1 1 100
Deciduous/Dead

Pine 0 1 2 0 16 15 0 34

Shrub Layer 2 1 0 2 5 0 15 25

Total 61 52 200 44 108 17 18 500

Producer Accuracy 0.836066 0.923077 0.75 0.909090909 0.768519 0.882352941 0.833333
User Accuracy 0.75 0.872727273 0.967741935 0.634920635 0.83 0.441176471 0.6

Overall Accuracy 0.804
Kappa Index 0.751763

Table A3. Bayes confusion matrix and classification results in eCognition.

Class Overstory Regeneration Overstory
Scorched

Regeneration
Scorched Ground Cover Deciduous/Dead

Pine Shrub Layer Total

Overstory 226 8 24 4 11 18 0 291
Regeneration 53 294 12 26 6 9 0 400

Overstory Scorched 9 1 392 16 25 23 1 467
Regeneration

Scorched 5 14 68 319 10 13 0 429

Ground Cover 18 27 108 8 425 61 56 703
Deciduous/Dead

Pine 16 1 48 4 56 167 0 292

Shrub Layer 38 48 4 0 36 10 148 284

Total 365 393 656 377 569 301 205 2866

Producer Accuracy 0.6191781 0.748 0.597561 0.8461538 0.747 0.554817 0.722
User Accuracy 0.7766323 0.735 0.8394004 0.7435897 0.6045519 0.572 0.5211268

Overall Accuracy 0.6877181
Kappa Index 0.6301982
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Table A4. Decision Tree confusion matrix and classification results in eCognition.

Class Overstory Regeneration Overstory
Scorched

Regeneration
Scorched Ground Cover Deciduous/Dead

Pine Shrub Layer Total

Overstory 235 53 174 22 59 56 4 603
Regeneration 55 278 40 126 30 38 0 567

Overstory Scorched 21 0 195 5 14 28 0 263
Regeneration

Scorched 13 20 51 215 33 34 0 366

Ground Cover 28 17 70 0 382 72 83 652
Deciduous/Dead

Pine 3 4 111 7 19 71 0 215

Shrub Layer 10 21 15 2 32 2 118 200

Total 365 393 656 377 569 301 205 2866

Producer Accuracy 0.6438356 0.7073791 0.2972561 0.5702918 0.6713533 0.2358804 0.5756098
User Accuracy 0.3897181 0.4902998 0.7414449 0.5874317 0.5858896 0.3302326 0.59

Overall Accuracy 0.521284
Kappa Index 0.437

Table A5. Random Trees confusion matrix and classification results in eCognition.

Class Overstory Regeneration Overstory
Scorched

Regeneration
Scorched Ground Cover Deciduous/Dead

Pine Shrub Layer Total

Overstory 263 60 204 24 76 73 10 710
Regeneration 52 284 47 198 46 50 0 677

Overstory Scorched 7 0 242 5 13 32 0 299
Regeneration

Scorched 3 6 46 145 11 3 0 214

Ground Cover 27 17 68 1 377 71 90 651
Deciduous/Dead

Pine 3 6 39 2 20 70 0 140

Shrub Layer 10 20 10 2 26 2 105 175

Total 365 393 656 377 569 301 205 2866

Producer Accuracy 0.7205479 0.7226463 0.369 0.3846154 0.6625659 0.2325581 0.5121951
User Accuracy 0.3704225 0.4194978 0.8093645 0.6775701 0.5791091 0.5 0.6

Overall Accuracy 0.5184927
Kappa Index 0.432

Table A6. Support Vector Machine confusion matrix and classification results in eCognition.

Class Overstory Regeneration Overstory
Scorched

Regeneration
Scorched Ground Cover Deciduous/Dead

Pine Shrub Layer Total

Overstory 103 72 406 186 175 131 90 1163
Regeneration 36 77 4 1 0 1 10 129

Overstory Scorched 18 0 2 0 0 1 0 21
Regeneration

Scorched 0 0 1 1 0 0 0 2

Ground Cover 0 0 0 0 0 0 0 0
Deciduous/Dead

Pine 201 240 243 189 393 167 100 1533

Shrub Layer 7 4 0 0 1 1 5 18

Total 393 365 656 301 656 377 205 2866

Producer Accuracy 0.2821918 0.196 0.00304878 0.0026252 0 0.5548173 0.024390244
User Accuracy 0.8856405 0.5968992 0.09523809 0.5 undefined 0.109 0.27777778

Overall Accuracy 0.123866
Kappa Index 0.0086215
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