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Abstract: This paper focuses on safe navigation of an unmanned surface vehicle in proximity to
a submerged autonomous underwater vehicle so as to maximise short-range, through-water data
transmission while minimising the probability that the two vehicles will accidentally collide. A sliding
mode navigation law is developed, and a rigorous proof of optimality of the proposed navigation
law is presented. The developed navigation algorithm is relatively computationally simple and easily
implementable in real time. Illustrative examples with extensive computer simulations demonstrate
the effectiveness of the proposed method.

Keywords: autonomous navigation; autonomous underwater vehicles; unmanned surface vehicles;
AUVs; USVs; marine vehicles; cooperative control; sliding mode control; collision avoidance; acoustic
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1. Introduction

Recent technological developments have made autonomous and unmanned maritime
vehicles realistic alternatives to traditional vessel-based survey and monitoring systems [1].
Potential benefits of using unmanned maritime vehicles include reduced operational costs,
improved safety and reliability, longer monitoring durations and mission repeatability.
Two important vehicle classes are unmanned surface vehicles (USVs) and autonomous
underwater vehicles (AUVs). Teams consisting of collaborating vehicles of both types can
be used in applications that include safety and rescue missions, environmental disaster
assessment, underwater geology, marine archeology, military survey, and detection and
monitoring of marine fauna [2]. The latter area includes population surveys, migration
tracking and vocal animal monitoring [3]. Some applications of AUVs and USVs for ocean
wildlife monitoring and mapping are given in [4,5].

In this paper, we address the problem of a USV and an AUV navigating collaboratively
to exchange data at close range. Under the considered scenario, the AUV collects some
information in the submerged mode, e.g., from a seabed survey in a disaster assessment
application, or intelligence information in military applications, with remote supervision
from a USV. It must periodically rendezvous with the USV to offload a summary that the
USV can transmit for operator inspection. The AUV could come to the surface for data
transmission via one or more terrestrial communication systems (e.g., Wi-Fi), but in doing
so it would lose most of its control authority while being exposed to rapidly changing sea
surface conditions and the risk of collision with vessels [6]. We leave this difficult problem for
future investigation and consider a different scenario; transmission of data while the AUV
remains submerged, noting however that underwater data exchange using acoustic modems
is notoriously slow, unreliable and range-dependent [7]. We are therefore motivated to find a
solution that minimises the separation between the AUV and the USV to maximise the data

Drones 2022, 6, 27. https://doi.org/10.3390/drones6010027 https://www.mdpi.com/journal/drones

https://www.mdpi.com/journal/drones
https://www.mdpi.com
https://orcid.org/0000-0001-9390-6634
https://orcid.org/0000-0001-8642-0441
https://doi.org/10.3390/drones6010027
https://doi.org/10.3390/drones6010027
https://doi.org/10.3390/drones6010027
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/drones6010027
https://www.mdpi.com/journal/drones
http://www.mdpi.com/2504-446X/6/1/27?type=check_update&version=1


Drones 2022, 6, 27 2 of 22

transmission rate, while remaining sufficiently far apart to avoid the risk of collision with the
supervising USV if the AUV is unexpectedly forced to come to the surface.

We state a constrained optimal control problem in which the AUV and USV navigate
collaboratively to maximise the amount of data transmitted while keeping the probability
of collision between them sufficiently small. We prove that the optimal solution to this
problem is delivered by a navigation algorithm belonging to the class of sliding mode
control laws [8,9].

Various problems of controlling multi-vehicle systems to achieve a certain objective
are referred to as cooperative control; see, e.g., [10,11]. Thus, the problem studied in this
paper falls into the domain of collaborative control.

The remainder of the paper is organised as follows. In Section 2, we give a brief survey
of relevant publications in the field. In Section 3, we present the system model and state
the problem under investigation. In Section 4, we present the proposed navigation law
together with its theoretical analysis. Computer simulations illustrating the developed
navigation method are conducted in Section 5 to show the performance of the proposed
algorithm. Finally, a brief conclusion and possible directions for future research are given
in Section 6.

2. Related Work

In recent years, research publications on using collaborating autonomous unmanned
vehicles in monitoring applications have concentrated on unmanned aerial vehicles (UAVs);
in particular, a review of recent results on deployment and navigation of teams of collabo-
rating UAVs for surveillance can be found in the survey paper [12].

Research concerning autonomous marine vehicles working in collaboration has been
more limited, possibly due to the relatively high cost associated with acquiring and operat-
ing such systems. However, the literature associated with this field is increasing.

Recent reviews of path planning for AUVs can be found in [13–15]. Teams of collabo-
rating AUVs are studied in [16], where issues of navigation, localisation and underwater
communication are analysed and various types of missions for AUV teams are discussed.
Another approach for cooperative navigation of teams of AUVs was developed in [17].

Navigation of USVs is studied in [18]. The paper [19] addresses navigation of collabo-
rating USVs for intruder interception on a marine region boundary. The publication [11]
addresses a problem of path planning for a team of collaborating vehicles in marine safety
and rescue missions.

Collision avoidance problems for various types of unmanned vehicles have attracted a
lot of attention in recent decades; see, e.g., the survey papers [20,21]. Most of this research has
concentrated on two-dimensional problems, usually for ground mobile robots [22]; however,
many proposed collision avoidance algorithms may be extended to obstacle avoidance for
USVs; see, e.g., [23,24]. Three-dimensional collision avoidance problems are also attracting
attention; see, e.g., [25–28]. Most of the research on 3D collision avoidance concentrates
on UAV navigation; however, many developed methods can be extended to collision-free
navigation of AUVs [29,30]. Furthermore, some machine-learning-based approaches to AUV
path planning with obstacle avoidance were recently proposed in [31,32].

At present, there are relatively few examples of systems involving collaborating AUVs
and USVs [33,34], although Ocean Infinity used USV-AUV teams extensively for search
operations connected with the disappearance of Malaysian Airlines flight MH370 [35].
This is a quite novel research area. The paper [6] addresses a navigation problem for an
AUV-USV system for ocean sampling, environmental monitoring and providing real-time
pollution measurement data. The paper [36] develops a method for a team of collaborating
robots to sample primary production in the ocean. Furthermore, [37] addresses a control
problem for a USV that deploys a remotely operated vehicle (ROV); however, unlike the
current paper, [37] does not study a scenario with acoustic underwater communication,
because the USV and the ROV are connected by an underwater cable. Finally, a problem
involving collaboration between a UAV and an AUV was studied in [38].
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3. Problem Statement

We consider an autonomous underwater vehicle (AUV), submerged in a 3D halfspace.
Let p(t) = [x(t), y(t), z(t)] be the AUV’s coordinates at time t, where x(t) and y(t) are
the coordinates in the horizontal plane parallel to the ground and z(t) is the depth. We
consider the following well-known model for the motion of the AUV:

ẋ(t) = v(t) cos(θ(t)),
ẏ(t) = v(t) sin(θ(t)),
θ̇(t) = ω(t),
ż(t) = u(t),
−Vmax ≤ v(t) ≤ Vmax,
−Wmax ≤ ω(t) ≤Wmax,
−Umax ≤ u(t) ≤ Umax.

(1)

Here θ(t) is the heading of the AUV; v(t), ω(t) and u(t) are its linear horizontal,
angular and vertical speeds, respectively; and Vmax, Wmax and Umax are given positive
constants indicating the maximum linear, angular and vertical speeds, respectively. The
linear horizontal speed v(t), angular speed ω(t) and the vertical speed u(t) are the control
inputs of the system (1). Furthermore, the AUV depth z(t) should satisfy the constraints:

Zmin ≤ z(t) ≤ Zmax (2)

where 0 < Zmin < Zmax are given constants. Furthermore, there is a moving unmanned
surface vehicle (USV), with motion described by the following equations:

ẋs(t) = vs(t) cos(θs(t)),
ẏs(t) = vs(t) sin(θs(t)),
θ̇s(t) = ωs(t),
−Vmax

s ≤ vs(t) ≤ Vmax
s ,

−Wmax
s ≤ ω(t) ≤Wmax

s .

(3)

Here θs(t) is the heading of the USV; vs(t) and ωs(t) are its linear horizontal and
angular speeds, respectively; Vmax

s and Wmax
s are given positive constants indicating the

maximum linear and angular speeds of the USV.
Typically, AUVs are battery-powered devices that move slowly—most cruise at be-

tween 1.5 and 2 ms−1 and have limited acceleration. In contrast, USVs that are used for
supervision typically move and accelerate more quickly and have much better situational
awareness. Therefore, we assume that it is appropriate to minimise the requirement for the
AUV to manoeuvre; the USV is responsible for controlling its position relative to the AUV
at all times.

The AUV collects some information while submerged, which it must periodically trans-
mit to the USV. The USV (or surface vessel under autopilot control) informs the AUV that it is
ready to exchange acoustic messages. The submerged AUV comes sufficiently close to the
USV for acoustic communication and maintains a steady course, speed and depth.

In this scenario, we assume that at least one and potentially two sets of acoustic
modems are transmitting data between the USV and the AUV: medium-range acoustic
modems that transmit control instructions and telemetry and optionally short-range acous-
tic modems operating in a higher frequency band that transmit data at a higher rate. We
assume that telemetry and control messages can be short and infrequent, but data trans-
mission is an extended operation that is sensitive to the separation and relative position
of the two vehicles; thus, it is advantageous that they maintain a constant separation and
mutual orientation while data transmission is underway.
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Because the telemetry channel has very low bandwidth, we assume that the AUV
periodically transmits its state information to the USV, but it relies on the USV to manoeuvre
safely during data transmission and does not monitor state transmissions from the USV.
Thus, the USV can maintain an estimate of the coordinates, speed and heading of the AUV,
but the AUV does not know, or does not react to, the state of the USV.

In this paper, we seek to develop an optimal strategy for reliably transmitting the data
from the submerged AUV to the USV while avoiding collisions between the vehicles.

We consider a time interval [t0, t0 + T]. Let N > 0 be a given integer. We divide
[t0, t0 + T] into N equal intervals of length δ, δ := T

N . At any time instant
t0, t0 + δ = δ, t0 + 2δ, . . . , t0 + T, the AUV with probability p transmits some messages to
the USV using an acoustic communication system. Here p is a given constant such that
0 < p ≤ 1. The probability of successful reception of the message by the USV is described
by a given decreasing function P(d(t0 + kδ)) such that 0 < P(d(t0 + kδ)) < 1, where d(t)
is the distance between the AUV and the USV at time t. Here we consider the problem
of missed reception as the probability of successful reception is P(d(t)), where d(t) is the
distance between the autonomous vehicles. Since P(d(t)) < 1 for all d(t) > 0, with some
non-zero probability the signal will be missed. Moreover, the USV needs to avoid collision
with the AUV. Let D2 > D1 > 0 be given constants. We assume that to avoid collisions, the
distance d(t) between the AUV and the USV at time t should always satisfy the constraint:

d(t) ≥ D1. (4)

Furthermore, we assume that any distance d(t) ≥ D2 is totally safe; however, it is
desired that the USV would be at distances between D1 and D2 from the AUV in as short
time as possible to minimise the risk of errors in mutual position estimates causing a
collision between the USV and the AUV. More precisely, we introduce some function C(d)
defined for d ≥ D1 and decreasing such that C(d) = 0 for all d ≥ D2. We need to satisfy
the following requirement: ∫ t0+T

t0

C(d(t))dt ≤ ε, (5)

where ε > 0 is a given small probability, and the integral in (5) describes the probability
of collision between the vehicles at a distance between D1 and D2 over the time interval
[t0, t0 + T].

Furthermore, the motion of the AUV and the USV should satisfy the following safety
requirement that guarantees smooth enough changes of the distance between the vehicles:

− h ≤ ḋ(t) ≤ h, (6)

where h > 0 is a given constant.
Now, let N(t0, t0 + T) be the number of messages from the AUV successfully re-

ceived by the USV over the time interval [t0, t0 + T], and let E(·) denote the mathematical
expectation of a random variable.

Problem Statement: To construct control inputs v(·), ω(·), u(·), vs(·), ωs(·) for the
AUV (1) and the USV (3) so that the optimal control problem

E(N(t0, t0 + T))→ max (7)

subject to the constraints (2), (4)–(6).

4. Navigation Law

We propose the following navigation law: at time t = 0, the USV selects some heading
θ0 and follows in this direction using the following sliding mode controller:

ωs(t) = −Wmax
s sgn[θs(t)− θ0] (8)
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where sgn[·] is the sign function defined as follows:

sgn[x] :=


1 i f x > 0,
0 i f x = 0,
−1 i f x < 0.

(9)

Furthermore, the USV transmits this direction θ0 to the AUV, which uses an
analogous controller:

ω(t) = −Wmaxsgn[θ(t)− θ0]. (10)

It is obvious that after some time t0 ≥ 0, both vehicles will have headings θs(t) = θ(t) = θ0
for all t ≥ t0 with any control inputs v(t), u(t), vs(t). Notice that the controllers (8) and (10)
belong to the class of sliding mode controllers [8] or switched controllers [39].

Let ne and Ne be given positive integers. We consider the following class of piecewise
constant functions e(t) that can change values at discrete time instants t0, t0 + δe, t0 + 2δe, . . .
where

δe :=
T
Ne

. (11)

Moreover, e(t) takes values only in the discrete set of 2ne + 1 numbers:{
jeh
ne
∀je = −ne,−ne + 1, . . . , ne

}
. (12)

Now, we propose the following optimisation scheme. We take all possible piecewise
constant functions e(t) with values from the set (12) changing values at discrete time
instants t0, t0 + δe, t0 + 2δe, . . . and introduce the functions

D(t) := d(t0) +
∫ t

t0

e(τ)dτ (13)

for all t ∈ [t0, t0 + T].
Furthermore, we consider only pairs (e(t), D(t)) such that d(t) := D(t) satisfies the

constraints (4) and (5). Let S denote the set of all such pairs. Now, we select (e0(t), D0(t))
such that D0(t) delivers the maximum of the cost function

F (d(·)) :=
N

∑
k=0

P(D(t0 + kδ)) (14)

over all (e(t), D(t)) ∈ S .
In other words, we select the function e(t) using the brute force method, i.e., complete

search in the set of all possible piecewise constant functions e(t) taking values from the
set (12). Note that at any discrete time instant, there are (2ne + 1) options of values of e(t).
Then, for Ne instants, there are (2ne + 1)Ne possible functions e(t). However, in practice, as
we only employ functions e(t) that meet the constraints (4) and (5), we get a much smaller
number of elements in the set S , which greatly reduces the computational complexity of
this optimisation scheme.

Now we consider the following navigation law over [t0, t0 + T]:
NL1: The AUV chooses an arbitrary control input 0 < v(t) ≤ V̂, where 0 < V̂ ≤ Vmax

some given constant, and the control input ω(t) is defined by (10). Furthermore, the AUV
chooses the control input u(t) defined by u(t) = 0.

NL2: The USV applies the control inputs vs(t) defined by

vs(t) = v(t)− e0(t)
cos(α(t))

, (15)
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where α(t) is the angle between the heading θ0 and the line connecting the current positions
of the AUV and the USV. Furthermore, the control input ωs(t) is defined by (8).

Our main theoretical result requires some assumptions.

Assumption 1. The following inequalities hold:

Zmin ≤ z(t0) ≤ Zmax, (16)

d(t0) ≥ D1. (17)

(2) and (4) hold at time t = t0.

Assumption 2. The following inequality holds:

V̂ +
D1h√

D2
1 − z(t0)2

≤ Vmax
s . (18)

Theorem 1. Consider the optimisation problem (7) for the AUV (1) and the USV (3) subject to the
constraints (2), (4)–(6). As ne → ∞ and Ne → ∞, the value of the cost function (7) delivered by
the navigation law NL1, NL2 converges to the global supremum in (7).

Proof. Under the navigation law NL1, NL2, the AUV is moving in a plane that is parallel
to the surface, so z(t) is constant; therefore, Assumption 1 implies that the constraint (2)
always holds. Furthermore, under the navigation law NL1, NL2, the AUV and the USV are
moving along two parallel straight lines with the direction θ0. Since the AUV and the USV
are moving in the direction θ0, it follows from (8) and (10) that ωs(t) = ω(t) = 0 for all
t ∈ [t0, t0 + T]. This implies that the derivative ḋ(t) of the distance d(t) between the AUV
and the USV satisfies

ḋ(t) = −v(t)cos(α(t)) + vs(t)cos(α(t)); (19)

see, e.g., [22]. Moreover, (19) implies that if the USV’s control input vs(t) is defined by (15)
with some function e0(t), then

ḋ(t) = e0(t), D(t) = d(t) (20)

where D(t) is defined by (13) with e(t) = e0(t). Furthermore, in this case, the cost
function (7) is equal to the function (14). It is also obvious that the cost function (7) and the
constraints (4)–(6) depend only on d(t). Therefore, the navigation law NL1, NL2 delivers
the maximum in the optimisation problem (7) subject to the constraints (2), (4)–(6) in the
class of control inputs such that ḋ(t) is piecewise constant with constant values on each
of Ne intervals from the class (12). Any ḋ(t) can be approximated with an arbitrary small
precision by piecewise constant functions. Therefore, we can build a sequence of e0(t) from
the above class for which the cost function (14) converges to the global supremum in (7) as
ne → ∞ and Ne → ∞. Finally, Assumption 2 obviously guarantees that the control input
v(t) of the AUV defined by (15) satisfies the constraint −Vmax ≤ v(t) ≤ Vmax.

Remark 1. It should be pointed out that the proposed algorithm produces an asymptotically
accurate approximation of the global optimum in the sense that as the parameters ne and Ne are
large enough, the obtained trajectories converge to the optimum.

Remark 2. A physical interpretation on the inequalities (16) from Assumption 1 is quite clear.
They guarantee at the initial time that the AUV satisfies the depth constraint (2) and the safety
constraint (4). Furthermore, a physical interpretation of the inequality (18) from Assumption 2 is
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that the maximum linear speed of the USV is larger than the current linear speed of the AUV with
some margin that allows the USV to perform its manoeuvre as the USV is responsible for controlling
its position relative to the AUV. Notice also that Assumption 2 is an assumption of a technical
nature guaranteeing that the control input vs(t) of the USV defined by the navigation law NL1,
NL2 satisfies the constraint −Vmax

s ≤ vs(t) ≤ Vmax
s . The requirement (18) is quite conservative,

and in practice, the constraint −Vmax
s ≤ vs(t) ≤ Vmax

s often holds even when Assumption 2 is
not satisfied.

Remark 3. Notice that in practice, due to lack of communication and/or loss of data transmitted
from the AUV to the USV, the USV would model the position of the AUV with a robust Kalman
filter [40], algorithms of state estimation over communication channels [41] or similar techniques as
uncertainty would increase whenever there was a significant period when the USV did not receive a
state transmission from the AUV. However, we do not study this issue in this paper.

5. Illustrative Examples and Computer Simulations

In this section, we present results of computer simulation that illustrate the perfor-
mance of the navigation NL1, NL2. Simulations are performed in MATLAB software.
We take times t0 = 20 s and T = 50 s. Then we apply the navigation law NL1, NL2
ten times over the time intervals [20 s, 70 s], [70 s, 120 s], . . . , [470 s, 520 s]. The val-
ues of the parameters used in simulations are Ne = 5, ne = 5, N = 50, D1 = 10 m,
D2 = 110 m, vs(t) = 1.7 ms−1, h = 0.3 ms−1, θ0 = 60◦, t0 = 20 s, Vmax = 2.24 ms−1,
Wmax = 0.12 rads−1, Zmin = 2 m, Zmax = 150 m, Umax = 2 ms−1, Vmax

s = 2.74 ms−1,
Wmax

s = 0.12 rads−1, T = 50 s, δ = 1 and δe = 10. Initially, the AUV and USV are at
different coordinates and have different headings. The position of the AUV is [0, 0,−5]
with initial heading 25◦, while the USV is at [27, 46.75, 0] with initial heading 0◦. The de-
creasing function used for the Equation (5) is defined as C(d) = 1/d and the cost function
for the Equation (14) is described as P(d) = 1/(1.2 + d). The simulation runs for 520 s.
Initially, in the first 20 s, both vehicles steer the same course θ0. Thereafter, in the next 500 s,
the AUV sends data to the USV. This interval is split into 10 equal intervals of 50 s each.
The navigation algorithm is tested in three different scenarios as follows. Except where
indicated, the parameters and initial conditions remain the same.

Note that the probability function P(d) that we have assumed does not accurately
reflect the performance of any particular acoustic or other underwater communications
device, but the control law is not critically dependent on its particular form, so long as it is
monotonically decreasing. Better models of particular modems could be included through
the use of an underwater communication simulation system such as AquaSim NG (see, for
example, [42]). The same is true for the function C(d), as the proposed control law is not
critically dependent on its particular form, so long as it is monotonically decreasing.

5.1. Scenario I

The AUV is travelling at a constant speed vs = 1.7 ms−1, and the USV transmits a new
direction angle θ0 = 60◦ to the AUV at time t = 0. Once the AUV obtains information, both
vehicles travel in the same direction. Within 20 s, both of them achieve the same heading
angle; see Figures 1 and 2. The chattering visible in the figures is due to the presence of a
sign function in the controller. At the end of 20 s, Assumption III.1 is verified; subsequently,
the value of the e(t) function is generated for the next 50 s; see Figure 3. Once calculated,
the navigation law NL2 applies to the USV, controlling the speed of the USV; see Figure 4.
It also causes the value of d(t) to fluctuate as shown in Figure 5. In a nutshell, at the end of
each interval, d(t) is calculated to compute e(t) for the next interval. The whole process
is repeated until the end of the simulation. In each interval, the piecewise constant ε has
to be selected carefully before calculating e(t); see Figure 6. In general, the distance is
increased to avoid collision and decreased to improve data transmission. As observed from
Figure 5, over ten intervals, the separation between the AUV and the USV decreases, and
the probability of collision increases slightly. The total amount of data sent from AUV to
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USV until time t, where t ∈ [t0, t0 + 10T], is illustrated in Figure 7. As seen from the figure,
when NL1 and NL2 are active, the cumulative number of data packets received by USV at
time t is greater than when only NL1 is active. The trajectory of both vehicles looks straight
after the first 20 s. The AUV follows the USV as shown in Figure 8.

Figure 1. Scenario I: Variation of AUV’s heading angle with time.

Figure 2. Scenario I: Variation of heading angle of USV with time.
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Figure 3. Scenario I: Variation of function e(t) with time.

Figure 4. Scenario I: Variation of speed of AUV and USV with time.
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Figure 5. Scenario I: Variation of d(t) with time.

Figure 6. Scenario I: Variation of ε with time.
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Figure 7. Scenario I: Cumulative data packets received by USV.

Figure 8. Scenario I: Trajectory of AUV and USV in 3D space.

5.2. Scenario II

White noise is added to the motion models of the USV and the AUV. A normally distributed
random signal W(t) = [w1(t) w2(t) w3(t) w4(t)]T and N(t) = [n1(t) n2(t) n3(t) n4(t)]T with
zero mean is added to the motion model of the AUV and the USV. The variance of W(t) is
[1.5 1.5 0.001 0.009]T and N(t) is [2.5 2.5 0.001 0.1]T, respectively. As a result, d(t),
the relative speed and bearing angles of the AUV and the USV, has noise components; see
Figures 9–12. Overall, the system is stable in the presence of uncertainty in the model. In
comparison with the previous scenario, trajectories of variables, such as d(t), constant ε, speed
of USV and e(t) are different. The values of d(t) are distinct at each time interval. The e(t)
function depends on d(t) while the other parameters are constant. Therefore, the noisy model
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leads to different d(t) from Scenario I after the initial 20 s. Dissimilar e(t) functions are computed
for subsequent intervals. Hence, by the end, completely different trajectories of d(t), e(t), ε and
the speed of the USV are observed in Figures 9, 10, 13 and 14. The paths of the AUV and USV
during the simulation time are shown in Figure 15. The uneven motion is due to the noise. The
amount of data transmitted from AUV to USV at time t is similar to Scenario I as seen from
Figure 16.

Figure 9. Scenario II: Variation of d(t) with time.

Figure 10. Scenario II: Variation of speed of AUV and USV with time.
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Figure 11. Scenario II: Variation of AUV’s heading angle with time.

Figure 12. Scenario II: Variation of USV’s heading angle with time.
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Figure 13. Scenario II: Variation of function e(t) with time.

Figure 14. Scenario II: Variation of ε with time.
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Figure 15. Scenario II: Trajectory of AUV and USV in 3D space.

Figure 16. Scenario II: Cumulative data packets received by USV.

5.3. Scenario III

This scenario tries to mimic real-life conditions and test the performance of the algo-
rithm. White noise is added to the speed of the USV and the motion models of both vehicles.
Like the previous case, noise signals W(t) and N(t) are added to the motion models. More-
over, M(t) is added to the speed of the USV. The variance of W(t) is [1 1 0.001 0.01]T ,
N(t) is [1.5 1.5 0.002 0.005]T and M(t) is 0.0001, respectively. A sinusoidal periodic
function is also added to vs(t) to replicate the effect of sea surface waves on the USV. The
amplitude of the wave is 0.2 ms−1 and its frequency is 0.07 rads−1. Graphs of v(t) and
vs(t) are shown in Figure 17. As observed, the speed of the USV varies sinusoidally. And
as expected, the distance d(t) in Figure 18, constant ε in Figure 19 and the function e(t) in
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Figure 20 have different trajectories compared to the previous two scenarios. However,
notice that in all the above scenarios, overall separation has decreased over the ten intervals.
Therefore, the amount of data transfer is overall similar to previous scenarios; see Figure 21.
The variation of the bearing angles of the AUV and the USV is similar to the previous case.
See Figures 22 and 23. The path followed by both vehicles during the complete simulation
shown in Figure 24 is similar to Figure 15.

Figure 17. Scenario III: Variation of speed of AUV and USV with time.

Figure 18. Scenario III: Variation of d(t) with time.
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Figure 19. Scenario III: Variation of ε with time.

Figure 20. Scenario III: Variation of function e(t) with time.



Drones 2022, 6, 27 18 of 22

Figure 21. Scenario III: Cumulative data packets received by USV.

Figure 22. Scenario III: Variation of AUV’s heading angle with time.
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Figure 23. Scenario III: Variation of USV’s heading angle with time.

Figure 24. Scenario III: Trajectory of AUV and USV in 3D space.

6. Conclusions and Future Work

A novel navigation problem for two collaborating marine unmanned vehicles was
introduced. In this problem, a submerged autonomous underwater vehicle acoustically
transmits collected data to an unmanned surface vehicle. The aim is to navigate two
autonomous vehicles so that the amount of data successfully transmitted between them
using underwater acoustic communications is maximised while collisions between the
vehicles are avoided. We proposed an easily implementable, real-time navigation algorithm
belonging to the class of sliding mode control laws. Moreover, the developed autonomous
navigation algorithm is asymptotically optimal in the sense that as the interval subdivision
parameters of the algorithm tend to infinity, the value of the cost function describing the
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amount of successfully transmitted data converges to the global maximum. Illustrative
examples and computer simulations showed the efficiency of the proposed approach.

There is considerable scope to improve the results from this preliminary investigation,
particularly in regards to improved models for the system dynamics and the underwater
communication systems. The models (1) and (3) studied in this paper are well-known
kinematic models. An important direction for future research is to study more advanced
models, taking into account the vehicles’ dynamics, hydrodynamic effects and underwater
acoustic communications characteristics. Then the navigation laws developed in this paper
will be supplemented with robust controllers such as H∞ controllers (see, e.g., [43] and
references therein) that will stabilise vehicle motion and reduce fluctuations in vehicle
headings. Moreover, the next stage of research will involve implementation and testing the
developed control algorithms with real marine vehicles in a real environment. We hope to
pursue these directions in future work.

In this paper, we have considered the case of a USV operating in proximity to a
submerged AUV. A more challenging scenario is the case of a USV operating in proximity
to a surfaced AUV. Under this scenario, the AUV has restricted or zero capability to
manouevre. It is also subject to wave motions and surface currents that may cause it to
sporadically submerge, at which times radio-frequency communications such as Wi-Fi will
be lost, while acoustic connectivity will be particularly unreliable. This is an important and
interesting direction for future research.

Finally, a challenging direction of future research is to extend the studied problem to
scenarios with a USV collaborating with a few AUVs and even further to teams consisting
of several USVs and AUVs. In such scenarios, we will need to develop some sophisticated
decentralised scheduling algorithms that decide how each AUV selects a suitable USV
and a time period for acoustic communication. Some existing algorithms for large teams
of cooperating UAVs (see [12] and references therein) might be modified for this class
of problems.
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