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Mirela Kundid Vasić 1,*,† and Vladan Papić 2,†
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Abstract: Recent results in person detection using deep learning methods applied to aerial images
gathered by Unmanned Aerial Vehicles (UAVs) have demonstrated the applicability of this approach
in scenarios such as Search and Rescue (SAR) operations. In this paper, the continuation of our
previous research is presented. The main goal is to further improve detection results, especially in
terms of reducing the number of false positive detections and consequently increasing the precision
value. We present a new approach that, as input to the multimodel neural network architecture, uses
sequences of consecutive images instead of only one static image. Since successive images overlap,
the same object of interest needs to be detected in more than one image. The correlation between
successive images was calculated, and detected regions in one image were translated to other images
based on the displacement vector. The assumption is that an object detected in more than one image
has a higher probability of being a true positive detection because it is unlikely that the detection
model will find the same false positive detections in multiple images. Based on this information, three
different algorithms for rejecting detections and adding detections from one image to other images in
the sequence are proposed. All of them achieved precision value about 80% which is increased by
almost 20% compared to the current state-of-the-art methods.

Keywords: search and rescue; aerial images; convolutional neural networks; displacement vector

1. Introduction

The goal of a search and rescue (SAR) operation is to find a lost person alive and to
provide the necessary assistance as soon as possible. Therefore, time is a key factor in
this step. Reducing the search duration can be significantly achieved by using Unmanned
Aerial Vehicles (UAVs or drones) for automated and reliable recording of the search area.
In order to exploit the full potential of drones in this context, it is necessary to properly use
the data from their sensors. This implies the need to develop a system that would allow
automatic person detection in images collected using drones during SAR operation.

Thus, the main goal of this research is to develop a model for person detection in
aerial images that could be used as a support method in real SAR operations, and that
achieves better results than currently used or proposed models. Research presented in this
paper is based on the previous research presented in [1], which uses static aerial images
and contextual information as the input to the multimodel neural network architecture that
is used for person detection in aerial images of non-urban terrain gathered by an UAV. This
model achieved a recall value of 94.66% and a precision value of 68.90%. However, these
results could be further improved, especially in terms of precision value. Indirectly, a lower
precision value is caused by a larger number of false positive detection. Hence, our further
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research is focused on reducing the amount of false positive detection and increasing the
precision value. Thus, we propose an approach that uses image sequences as the input to
the system. The proposed approach is based on the fact that an object detected in multiple
consecutive images is more likely a true positive detection, while those objects that are
detected in only one of consecutive images is probably a false positive detection. Three
different types of algorithms based on person detection in image sequences are proposed,
and all of them achieved improved results compared to the model presented in [1].

This model was trained and tested on the HERIDAL database (http://ipsar.fesb.unist.
hr/HERIDAL%20database.html, accessed on 18 November 2021), specially designed for
the purpose of detection of humans and other targets in aerial images and presented in [2].
The HERIDAL dataset contains 1684 aerial images of nonurban areas taken with drones in
a simulated scenario of SAR operation at different locations. All images contain at least
one person in different poses. A total of 1583 images were used for model training, while
101 images were used for testing purposes. Due to the lack of image sequences in the
HERIDAL database, which is crucial for this part of the research, a new set of aerial images
that simulate situations in SAR operations has been collected. These new images were
grouped in sequences and then used for the testing of the original model. This model has
not been retrained, so the improvement of the results of person detection in aerial images
is a consequence of the new algorithms that are proposed and presented in this paper.
Therefore, our main contributions are as follows:

1. A new, improved model for person detection in aerial image sequences for a SAR scenario;
2. A model that uses the information about the location of an object detected in consecu-

tive images in order to retain or discard the detected region;
3. By this approach, improved results in comparison with current state-of-the-art meth-

ods for person detection in aerial images.

This paper is organized as follows. Section 2 describes literature related to this specific
problem. Section 3 presents a state-of-the-art model for person detection in aerial images of
wilderness: RFCCD—RPN+FPN+Classification+Context +Deviation [1]. The application
of this model on the HERIDAL database along with the results obtained is also presented
in this section. This model serves as the basis for this research. Therefore, in Section 4,
the results of this model used in a completely new set of image sequences collected for
the testing purposes of this research are presented. The following section presents the
algorithm for improving the results of the RFCCD model using information about vector
displacement between detected objects in two consecutive images. Section 6 contains
the results obtained using different types of proposed algorithms, along with a detailed
description. The last section provides the overall conclusion.

2. Related Work

SAR operation is a process that aims to find and provide adequate assistance to a lost
person. This process consists of four basic steps: locate, access, stabilize, and transport
the lost person [3]. There are several categories of SAR, depending primarily on the
geography or terrain, which could be roughly classified as urban search and rescue (USAR)
or wilderness search and rescue (WiSAR). USAR involves rescuing from demolished
buildings or other urban facilities, where persons are often trapped underneath collapsed
structures. The reason may be various natural disasters (earthquakes, floods, tornado,
hurricane, etc.), but also those caused by humans (war, terrorist attacks, etc.). Another type
of SAR operation (WiSAR) involves searching for a missing person in a non-urban area
(in caves, at sea, in the mountains, in a lowland area, etc.). This paper is concerned with
wilderness SAR.

All types of SAR operations have the following requirements in common: they must
be addressed quickly and efficiently to prevent further injury or death because any delay
can have direct, dramatic consequences for human life [4]. In many cases, rescue efforts
are hampered by the simple inability to pinpoint the location of the lost person, which

http://ipsar.fesb.unist.hr/HERIDAL%20database.html
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means that the first step of this process (locating the missing person) results in valuable
time being wasted.

As time is a crucial factor, it is necessary to continuously develop new techniques to
speed up the search process. For this purpose, the use of Unmaned Aerial Vehicles (UAVs)
is becoming an integral strategic part of SAR operations [5,6]. UAVs can provide detailed
aerial imagery quickly and efficiently and thus directly enable advance decision making
processes, which provides considerable support for an SAR team [7].

Many published papers in the field of UAVs used for SAR purposes are based on
the use of thermal cameras that can detect the human body, due to the difference in
temperature between the human body and the background [8–10]. The authors in [10] used
a combination of two cameras, thermal and colour, and performed detection aboard UAVs.
They first analyzed infrared images in order to find a human silhouette and then used colour
image regions to classify human bodies. Images collected during the SAR operation should
be processed aboard the UAV or forwarded for further processing. However, processing
high-resolution images causes high computational complexity, which is difficult to perform
on the UAV due to the limited computational resources. While transferring images from
the UAV to the ground station, the images should not be compressed because compression
causes a loss of information, which can have negative impacts in that it requires further
processing to find a very small object of interest. Although lossless compression techniques
exist, they also demand significant computing power on the UAV to execute a compression
algorithm on high-resolution images, which is often impractical and requires additional
time. Therefore, it is more applicable to transfer original images from the UAVs to the
ground station for further processing. An effective system for the transmission of high-
resolution images is presented in [11].

The problem of person detection in aerial images of non-urban terrain can be classified
as a problem of small object detection due to the high altitude of recording. Flying at a
higher altitude allows a wider shooting area, so it takes less time to capture the entire
geographical area which needs to be searched. These images contains extremely complex
background where person covers less than 0.1% of the whole image, which requires high
resolution images. In this case, images are 4000 × 3000 px. In general, the term “small
objects” refers to those objects that are represented by a very small number of pixels in the
image (less than 1% of the image). In recent years, small object detection has attracted much
attention from researchers in the field of computer vision precisely, because it is widely
applied in everyday life, e.g., autonomous driving [12], traffic monitoring [13], landfill
monitoring [14], robotics [15], and video surveillance [16]. However, object detection in
aerial images is not an ordinary problem of small object detection. It is a challenging task
primarily because of the small size of objects, but also because of the densely distributed
different objects (objects that are not of interest, such as stones and vegetation), variations
in the viewing angle and lighting, and often the partial or complete concealment of objects
of interest. Observing the development of methods for object detection throughout his-
tory [17], we can say that one of the major milestones was made with the rapid development
of deep convolutional neural networks. The use of non-neural-network-based approaches
requires first the use of techniques to extract the features (such as edges, corners and shapes)
and then the classification techniques, while approaches based on neural networks are able
to do end-to-end object detection, without specifically extracting features, so the latter are
also commonly used for small object detection [18–21].

Various deep-learning-based approaches for object detection use foundational layers
of the Convolutional Neural Network (CNN)—convolutional layers and pooling layers.
A convolutional layer generates a feature map that records the precise position of the feature
in the input. This means that the minor changes of the feature in the input image (e.g.,
rotation, cropping, etc.) would generate a different feature map. Pooling layers are used to
generalize by summarizing the features from one region in a feature map. A new feature
map contains all important elements, while fine details are discarded. This leads to down-
sampling, which reduces the number of parameters that need to be learned. However,
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this could be a problem in small object detection. For example, an object of 32 × 32 pixels
in an original image after five pooling layers with a stride of 2 would be represented by
only one pixel, which often causes a failure in the detection of such objects. To better
understanding down-sampling, an example of a typical CNN architecture, VGG16 [22], is
shown in Figure 1. This architecture contains five pooling layers with a stride of 2, which
means that the last feature map is downsampled five times to the first.

Figure 1. CNN architecture: VGG16.

This is also the reason why even the performance of state-of-the-art methods for
object detection such as Fast Region-Based Convolutional Neural Network (RCNN) [23]
and Faster RCNN [24] often have a problem with small object detection [25]. To address
this problem, standard deep learning methods are often modified in various ways to
be able to perform small object detection and thus achieve noticeable results [26–28].
A comprehensive review of recently developed deep learning methods for small object
detection is presented in [29]. In the particular task of object detection in an aerial image,
one of the challenges is to recognize the object from a different aerial perspective and angles,
in various poses, even when it is partially occluded or while it is in motion. Human can
recognize an object in an image even if it is rotated, scaled, translated, or partially obstructed
from view. However, this task is far more complex in computer vision systems because of
the way computers handle this problem. Additionally, human detection in aerial images
can result in significant number of false positive detections. Since captured images during
SAR operation are sequential, continuity of detected object in more than one image could
be used to eliminate false positive alarms [30,31]. Image sequence analysis is widely used
in computer vision due to the fact that the sequence of images contains more information
than a single image, including dynamic aspects. This is useful especially in video object
detection [32], autonomous vehicles [33], object tracking [34,35], etc. However, there are
some differences between aerial target tracking technology and standard ground target
tracking technology because of small number of pixels that represent the object, occluded
targets, weak contrast between background and targets features, etc. [36]. In order to reduce
false alarms, some authors proposed a moving object detector using spatial and temporal
information. In [37], temporal saliency is used to get a coarse segmentation, and spatial
saliency is used to obtain object details in candidate motion region. However, this method
still has high false alarm rate in complicated conditions such as cluttered-background,
occlusion and illumination. The approach in [38] also consists of two stages—the first stage
combines the motion and appearance information within the CNN and proposes a regions
of interests which are in the second stage processed to localize the vehicles. This approach
is powerless for smaller targets because visual features such as color, shape, and texture are
difficult to identify.
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3. RFCCD Model for Person Detection

Person detection in aerial images in an SAR scenario is very specific problem, and pub-
licly available datasets suitable for use for this purpose are limited. Therefore, the authors
in [2] developed a new dataset named HERIDAL, which contains aerial images of non-
urban terrain. To collect images that simulate real SAR scenarios, the authors used statistics
and expert knowledge in SAR operations [39]. This dataset was also used in our previous
research, in which the main goal was to develop a multimodel deep learning approach
for human detection in aerial images for supporting SAR operations. For this purpose,
different deep learning methods were used, and a completely new approach was proposed.
The new approach consists of multiple neural networks in the region proposal stage as well
as in the classification stage. The approaches were as follows:

• RPNC (RPN+Classification)—a standard RPN (Region Proposal Network) model [24]
used in the region proposal stage, and regions proposed by the RPN model were
classified using a new neural network for binary classification, which is trained and
tested on patches from the HERIDAL dataset;

• FPNC (FPN+Classification)—a similar approach to RPNC with a difference in the
region proposal stage where FPN (Feature Pyramide Network) [40] was used;

• RFC (RPN+FPN+Classification)– a new proposed multimodel approach where both
architectures, RPN and FPN, are used in the region proposal stage;

• RFCC (RPN+FPN+Classification+Context)—a new proposed multimodel approach
like RFC but with an addition in the classification stage, which is, in this approach, also
multimodel—proposed regions were classified using two different neural networks;

• RFCCD (RPN+FPN+Classification+Context+Deviation)—a new proposed multimodel
approach that uses RFCC and additionally rejects regions with a low standard devia-
tion value in order to reduce the number of false positive detections.

To evaluate the results of all used methods, standard measures of precision and
recall were used. Precision is a measure that expresses the ratio of the number of true
positive detections to the number of total detections (both false positives and true positives).
Recall is a measure that expresses the ratio of true positive detections in relation to the
total number of objects of interest from ground truth labels, i.e., objects that should be
detected. Equations for the calculation of these measures are given in Equation (1), in which
True Positive (TP) represents the number of true positive detections (detected objects that
correctly represent an object of interest), False Positive (FP) is the number of false positive
detections (objects that are detected but are not actually objects of interest), and False
Negative (FN) is the number of false negative detections (objects of interest that are not
detected).

Precision =
TP

TP + FP
; Recall =

TP
TP + FN

(1)

A higher recall value implies a larger number of TP detections (a smaller number of
FN detections), while a higher value of precision implies a smaller number of FP detections.
Due to the specificity of this research, where the focus is on finding a lost person in an image
and any FN detection means that the person in the image is not detected, undoubtedly
the number of TP detections is the most important. On the other hand, any FP detection
directs rescuers to the wrong location, which wastes time and human resources. Hence,
the mail goal is to achieve results with some sort of balance between recall and precision
measures. For this purpose, the F score measure is used in order to show how precise and
how robust the system is. This measure is an aggregated indicator that actually represents
the harmonic mean of the precision and recall measures in the way shown in Equation (2).

F = 2 ∗ (precision ∗ recall)
(precision + recall)

(2)

The standard F measure is often called the F1 measure, where the number 1 denotes the
equal importance of the precision measure and the recall measure. However, it is possible
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to assign greater importance to one of these measures by using a more general formula
for the Fβ measure, as shown in Equation (3), where the parameter β shows the extent to
which the recall measure is more important than the precision measure.

Fβ = (1 + β2) ∗ precision ∗ recall
(β2 ∗ precision) + recall

(3)

If a higher value of the precision measure is the main goal, it is better to have a
low total number of detected objects rather than more FP detections. On the other hand,
a higher recall issues a large number of TP detections regardless of the amount of FP
detections. Since TP detections implies found persons, undoubtedly it can be concluded
that the recall measure is more important in this specific task, but it’s hard to determine
the extent. Therefore, in addition to the standard F1measure, measures F2, F5, and F10 were
used to present the results (even if the recall measure is 2, 5, or 10 times more important
than the precision measure). The complete results for all used methods on images from the
HERIDAL dataset are shown in Table 1, where GT represents Ground Truth (the number of
people in the images that need to be detected).

Table 1. Results of the detection in a new set of images using different models presented in [1].

Algorithm GT TP FP FN Precision Recall F1 F2 F5 F10

RPNC 337 322 453 15 41.55% 95.55% 57.91% 75.84% 91.00% 94.34%

FPNC 337 292 88 45 76.84% 86.65% 81.45% 84.49% 86.22% 86.54%

RFC 337 322 259 15 55.42% 95.55% 70.15% 83.46% 92.96% 94.87%

RFCC 337 320 163 17 66.25% 94.96% 78.05% 87.38% 93.40% 94.55%

RFCCD 337 319 144 18 68.90% 94.66% 79.75% 88.07% 93.32% 94.31%

Observing the obtained results, it is noticeable that the RPNC method achieved better
results in terms of recall, but still yielded a large number of FP detections and consequently
a low value of precision. Oppositely, the FPNC method yielded a more optimal number of
FP detections and thus predominated in terms of precision. However, it simultaneously
reduced the number of TP detections (increasing the number of FN detections). Due to
the specificity of this problem, where the focus is on finding a lost person in an image and
any FN detection means that the person in the image is not detected, undoubtedly the
number of TP detections is the most important. Therefore, it cannot be argued that this
method is the best choice for use in actual SAR operations. On the other hand, any FP
detection directs rescuers to the wrong location which wastes time and human resources.
Thus, the main goal is to obtain results with a maximized number of TP detections but also
a minimized number of FP detections.

To keep the benefits of the RPNC method, which achieves a large number of TP
detections, as well as the FPNC method, which reduces the number of FP detections,
we proposed a new multimodel approach named RFC. The proposed model takes full
advantage of the RPNC model; it results in the same number of TP detections as RPNC
and, equally important, reduces the number of FP detections thanks to the FPNC method.
Since the achieved value of the recall measure is high enough, further research is aimed
at reducing the number of FP detections. Accordingly, an RFCC approach is proposed in
which contextual information is used in addition to the RFC approach in the classification
stage. This is performed by the use of a pixel-based context [41]. The obtained results show
that including contextual features of the surrounding regions in the classification stage
significantly reduced the number of FP detections while maintaining the maximal number
of TP detections, achieved using RPNC. Furthermore, an additional reduction in the number
of FP detections was achieved by discarding detected regions that have a low standard
deviation at the pixel level (RFCCD model). Although the number of TP detections
was slightly reduced, due to an improvement in the value of the precision measure, this
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approach achieved the most optimal results. Therefore, it can be concluded that, among all
proposed methods, RFCCD is the most suitable for use in real SAR operations.

3.1. RFCCD Architecture

A diagram of the proposed multimodel approach is shown in Figure 2 and can be
summarized in a few steps:

1. Input images are divided into blocks of 500 × 500.
2. RPN and FPN methods are applied to image blocks to propose regions of interest.
3. Intersection over Union (IoU) metrics (area of the overlap of two bounding boxes,

divided by the area of union) are calculated between all regions from the set of regions
proposed by the RPN model and the set of regions proposed by the FPN model. If the
IoU measure is greater than 0.5, those regions are rejected from the set of regions
proposed by the RPN model, since they are similar to those from another set. This is
done in order to avoid double detections of the same objects (true positive or false
positive detection). Other regions from this set along with all regions proposed by the
FPN model are combined into a unique set for further use.

4. Once the set of proposed regions is completed, the regions are forwarded to the
classification stage.

5. From the central pixel of the proposed region, a square region measuring 81 × 81 is
generated, and it is classified with the help of a neural network specially designed for
this task. The first layer is convolutional with 32 filters followed by a pooling layer
(3 × 3 with Step 3), then another convolutional layer with 32 filters, and then another
pooling layer (3 × 3 with an offset of 3). This is followed by two convolutional layers
with 64 filters and then a fully connected layer. This neural network is empirically
designed, trained, and tested on patches from the HERIDAL dataset and achieved an
accuracy of 99.21%.

6. In parallel, a region of dimensions 243 × 243 (also based on the central pixel of the
proposed region) is generated, which also contains contextual information in the
form of the environment of the detected object, and it is classified with the help
of the VGG16 network, with the use of transfer learning. Transfer learning is a
technique where stored knowledge is gained during the training network for one
problem and can be used as a starting point for a training network for another task.
In this case, we used weights from the VGG16 network trained on the ImageNet
dataset [42] for the task of person classification as a basis for training the same
network for the classification of our contextual regions. This improved the results of
the classification stage.

7. Both classifications are executed only up to the step of the feature vector, and the
feature vector obtained from both classification networks is then merged into one,
followed by a fully connected layer and a softmax classification layer.

8. In the last step, for all regions classified as positive, the standard deviation at the
regional level is calculated. All regions with a standard deviation of less than 15 are
discarded, and all others represent detected objects.
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Figure 2. RFCCD architecture diagram.

4. Application of RFCCD Model in Image Sequences

The RFCCD model is evaluated in a new set of image sequences in order to properly
compare gained results with those achieved using new models that are presented below.

4.1. Acquisition of the Testing Data

As the HERIDAL database does not contain sequences of images at the same location,
a crucial step of this part of the research is gathering new aerial images in situations
simulating real SAR operations. It is important to emphasize that the RFCCD model
presented in Section 3 was not retrained with new images. The model obtained by training
neural networks on the HERIDAL database is still used. In order to evaluate this model
in new images, a new set of images that contains sequences of three consecutive images
of the same area was gathered. Three was empirically defined as the optimal number of
consecutive images. Two consecutive images would not be enough to determine detection
accuracy. For example, if an object is detected in the first image and not detected in the
second (or vice versa), it is difficult to conclude whether it is more likely to be an accurate
detection or not. Therefore, at least three consecutive images are required so that objects
detected in at least two of three images can be considered as true positive detections.
Detections found in only one image would be considered false positive detections and
therefore discarded from the set of detected objects.

On the other hand, using more than three images would also be unacceptable. Namely,
during real SAR operation, a suspicious area is often a wide geographical area that needs
to be recorded. Consequently, the result of this recording is a very high number of images.
A higher frequency of shooting implies a larger area of “overlap” in two consecutive images.
If the distance between two consecutive images is constant, making one object possibly
visible in four consecutive images, the overlap between adjacent images should be at least
75%. In this case, overlap between the first and fourth image would be 25%. Even then, it is
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very unlikely that the object will be visible in all four images. This way of shooting would
result in a very high number of total images. A larger total number of images implies more
time to process them, and since time is a key factor in the process of SAR operations, the goal
is to minimize processing time as much as possible. Because of this, it was concluded that a
sequence of three consecutive images is optimal for the implementation of an approach
based on the analysis of detections in consecutive images.

Thus, a set of new images collected in this research consists of a total of 99 images,
or 33 sets of three consecutive images, and each set of three images is from a different
location. All images were collected in a non-urban area in two different seasons (some
images were collected in summer when green is the predominant colour due to the trees
and low vegetation, and some were collected in the autumn when grey and brown tones
predominate) in order to make the overall set of images as different as possible. The images
were collected using DJI Spark equipped with a 12MP camera during free flight so that
the overlap between consecutive images on each set of images, and thus the correlation or
displacement vector, would be different. An example of several sets of consecutive images
is shown in Figure 3.

Figure 3. Examples of three image sequences.

4.2. Results of the RFCCD Model in a New Set of Image Sequences

As we used a completely new set of images that do not belong to the HERIDAL
database, it was necessary to evaluate the proposed RFCCD model on this set. Obtained
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results are shown in Table 2. It is important to mention that the model was not trained
on these images; we used the model trained on the HERIDAL database and tested it on
new images. With this model, 330 of 339 people were successfully detected, which means
that the recall measure is 97.35%. As the precision is lower, because of the relatively large
number of false positive detections, it could be still improved. The idea is to reduce the
number of false positive detections and improve the results by using an algorithm based
on calculating vector displacement between consecutive images in one set.

Table 2. Results of the detection in a new set of images using the RFCCD model.

Algorithm GT TP FP FN Precision Recall F1 F2 F5 F10

RFCCD 339 330 176 9 65.22% 97.35% 78.11% 88.61% 95.54% 96.87%

5. Proposed Algorithms for Improving Results of the RFCCD Model

In order to improve results obtained with the RFCCD model, in this paper, three types
of algorithm are proposed. All of them are based on the correlation between consecutive
images. In accordance with the detected objects in one image and the calculated correlation
between images, the algorithm predicts the location of those objects in the next image using
displacement vector estimation. Therefore, calculation of the correlation is the first step.

After calculating the correlation, detected regions in one image are translated to the
other two consecutive images based on the displacement vector. The IoU measure is then
calculated between real detections in one image that are the product of the RFCCD model
and those detections that are translated from another image. If the IoU is greater than
0.5, it is considered that the detected regions overlap, which means that the same object
is detected in both images. Additionally, due to the possibility of error in calculating
the correlation between images, it was necessary to add tolerance, which actually means
expanding the area within detected objects in successive images are considered the same.
In this case, the tolerance was empirically determined to be 200 px.

The assumption is that a detected object in at least two of three consecutive images is
most likely a true positive detection because it is unlikely that the detection model will find
the same false positive detection in both images. Based on this assumption, we proposed
three types of algorithms that could improve the results obtained with the RFCCD model.
Algorithms differ in the way they reject or add a detected object as follows:

1. RFCCD + Displacement Vector (RFCCD+DV)—discarding detected regions that ap-
pear in only one of three consecutive images;

2. RFCCD + Displacement Vector and Adding (RFCCD+DVA)—discarding detected
regions that appear in only one of three consecutive images and adding detected
regions that appear in two consecutive images to the third consecutive image;

3. RFCCD + Displacement Vector and Adding with Classification (RFCCD+DVAC)—
discarding detected regions that appear in only one of three consecutive images
and adding detected regions that appear in two consecutive images to the third
consecutive image, but only if the detected object is located in an area covered with
trees or forest shrubs.

The proposed methods are explained in more detail below.

5.1. Calculating the Correlation between Consecutive Images

If S = [I1, I2, I3] represents a set of consecutive images, and Ii, i = [1, . . . , 3] represents
images contained in the set, the algorithm takes pairs of images ccor(In, Im), n 6= m, n ∈
i, m ∈ i and calculates the displacement vector presented in the form of the distance and
direction of displacement. In the first step of this algorithm, the transformation of a higher
spectral image is performed in the form of a two-dimensional matrix Ii = M[r, c], where
the three-dimensional vector pk,j ∈ Ii, pk,j =

[
rk,j, gk,j, bk,j

]
represents the light intensity

over a given spectrum with RGB components rk,j, gk,j, bk,j in the interval [0, . . . , 255] ∈ N
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into the one-dimensional vector gk,j ∈ Gi, gk,j =
[
ek,j

]
, ek,j ∈ R. The process of converting

a multi-spectral image into an intensity image is shown in Equation (4).

ek,j =
rk,j + gk,j + bk,j

∑r
k=0 ∑c

j=0 pi,j ∗ 1
r∗c

(4)

A convolution operator is applied on both images (Gn, Gm). F is defined as an
operator of the Fourier transform, and according to the convolution theorem, Equation (5)
is valid.

Gn ∗ Gm = F−1{F{Gn} ∗ F{Gm}} (5)

In order to obtain a similarity measure of two images, it is necessary to calculate cross-
correlation. Considering that cross-correlation is a convolution in which the second signal is
mirrored horizontally and vertically, we rotated the second image by 180◦. To calculate the
distance between two images in the form of displacement D and the angle of displacement
θ, it is necessary to calculate the measure of auto-correlation or self-similarity Gn ∗M(Gn)
and then the cross-correlation between two images Gn ∗M(Gm). An example of the results
of these two measured is shown in Figure 4, along with images used to calculate these
measures. An example of the auto-correlation is shown above, while the measure of
cross-correlation between two images is shown below.

Figure 4. Example of auto-correlation (above), cross-correlation (below), and displacement D (red arrow).

The first step in obtaining the displacement D and the angle of displacement θ
between two images Gn ∗M(Gn) and Gn ∗M(Gm) is to find the point of highest inten-
sity. This point is obtained by calculating the Euclidean distance of the maximum ar-
gument function for the auto-correlation function L1 = argmax(Gn ∗M(Gn)), where
L1 =

(
Lx1 , Ly1

)
represents the point of maximum intensity. The same applies for the

cross-correlation L2 = argmax(Gn ∗M(Gm)). The calculation of the distance of points L1
and L2, which represents the displacement D and the angle of displacement θ, is shown
in Equations (6) and (7). This calculation of D and θ is performed for all pairs of images
within the set of images S.

D =
√
(Lx2 − Lx1)

2 + (Ly2−Ly1
)2 (6)
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θ = tan−1(Lx2−Lx1
, Ly2−Ly1

)− Π
2

(7)

Based on these parameters, the translation of detected regions from one image to
another was performed. The detected regions are actually regions of interest defined as
ROI(Ii) = [roi1, . . . , roiw], roiu = [xu, yu, wu, hu], u ∈ [1, . . . , s] ⊂ N, where s is the total
number of proposed regions in one image. After this, we can check which regions of
interest match in images I1 and I2 by calculating the cross section between all pairs of
regions of interest. The operator for validating the cross section is defined with a function
that translates all regions of interest from one image to another using the displacement
vector, as shown in Equation (8).

tran(roiu) = [xu + D1 ∗ sinθ1, yu + D1 ∗ cosθ1, wu, hu] (8)

It is also important to define the distance of the two regions using the Euclidean dis-
tance of the point of the upper left corner of the region of interest, as shown by Equation (9).

dist(roi1, roi2) =
√
(x2 − x1)2 − (y2 − y1)2 (9)

Applying this function to all regions from the set of ROI(I1) yields an approximation
of the regions of interest that should be in the figure ROI(I2). A key role in finding overlaps
between regions have a cross-section operator shown in Equation (10).

ROI(I1) ∩ ROI(I2) =

{
roi1u i f dist(tran(roi1u), roi2k ) < 200

∅ else
(10)

5.2. Using Correlation for Estimating Detection Accuracy

Based on the assumption that detections that appear in only one of three consecutive
images are most likely false positive detections, the first idea was to reject those detections
from the set of detected objects. This approach is called “RFCCD+DV” (RFCCD + Displace-
ment Vector). On a set of detected objects using the RFCCD model, this algorithm applies
the correlation calculation between consecutive images as described in Section 5.1. It is
important to mention that the correlation is calculated between all pairs of images from
one set (the first and second images, the second and third images, and the first and third
images). Translation of the detected objects in one image to other images is then applied,
followed by a calculation of the overlap with the tolerance between those translated de-
tections and the real detections from that image. If overlap exists in at least two of three
images, it is considered that it is the same object. Those detections are retained, while all
others that appear in only one image are rejected from the set of detected objects. This is
the simplest and at the same time optimal solution that significantly reduces the number of
false positive detections while maintains true positive detections at the same level. This
can be seen in the results presented in Section 6.

During the implementation of this algorithm, it is noticed that some objects that are
detected in two of three consecutive images are actually persons that are not detected
in the third image. Therefore, we proposed a new algorithm, RFFCD + Displacement
Vector + Adding (RFCCD+DVA), that works as the previous one, but with one addition—
namely, due to the assumption that the objects detected in two images are true positive
detections, it is possible to add those detections in the third image in order to increase
the number of true positive detections as well as the recall measure. For this purpose,
information about vector displacement is also used in the step of adding detections in the
third image. Based on the values of the displacement vector between the first and second
images or between the second and third images, translations of the detection are performed
from one image to another, and this actually determines the location where the object
should be in the third image. This location is added to the set of detected objects. Using
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this algorithm, the recall measure is increased, but the precision is reduced, as shown
in Section 6. The reason for the decreased precision is the high number of added false
positive detections.

Obviously, some of the detected objects in two consecutive images are not true positive
detections, so marking these objects in the third image also increases the number of false
positive detections. It is assumed that the results of the above approach could be further
improved if we take into account the type of the environment of the detected object.
To address this problem, we proposed a new algorithm, RFFCD + Displacement Vector
+ Adding with Classification (RCFFD+DVAC). The idea is to classify the environment
of the detected object. The assumption is that the person found in clear terrain would
be detected using the proposed RFCCD model, but if the terrain is forested, there is a
possibility that the person is covered by the tree and is not visible in one of the consecutive
images from the set (i.e., the system does not detect it). That is why we need to determine if
the environment of the detected object is forest or clear terrain. The decision about adding
detections in the third image depends on the results of classification. Accordingly, the idea
is to not add detections to the third image if it appears in the other two images unless the
environment of the object is a forest. Therefore, it is necessary to develop a precise model
for the classification of the environment and to define the architecture of the neural network
that will perform this task optimally.

It is important to emphasize that the model must primarily be fast and simple because
a complex architecture would further slow down the system and make this approach
unusable. Therefore, the classification problem is simplified as a binary problem, where
one class is “forest” and the other one is “other”. The class “forest” includes all regions that
contain a large number of trees or something similar (shadows, etc.) that might cover an
object of interest (person), while the second class “other” includes all other regions that
cannot camouflage the object of interest (low vegetation, meadows, roads, etc.).

5.3. Classification of the Detected Object Environment

A neural network that has already shown good results in the task of binary classi-
fication is explained in Section 3.1, Step (5). Due to the good results it achieves in the
problem of classifying, and due to its simplicity, it was used in this part of the model
as well. The first step was to define a dataset for training and testing. For this purpose,
different aerial images were divided into blocks with dimensions of 300 × 300 px. From the
obtained set of blocks, 4857 blocks were selected for use. These blocks were divided into
two groups: a training set and a validation set. In the training set, 1886 blocks were in the
class “forest”, while 2028 of them were in the class “other”. In the validation set, 472 blocks
were in the “forest” class, and 471 were in the “other” class. The proposed network is
relatively shallow, and as input it receives image blocks with dimensions of 300 × 300.
The network consists of convolutional filters and a ReLu nonlinear activation function [43].
At the output of the neural network are two fully connected layers where one uses ReLu
activation and the other uses sigmoid activation function. The neural network was trained
in 50 iterations. During each iteration, a batch size of 32 images was used. The binary cross
entropy loss function [44] was used. After training the neural network, a gained model
was used to test it on blocks from the validation set. The achieved precision measure was
82%, while the recall measure was 79%. The reason for the somewhat worse results is that
there is no clear boundary between these two defined classes. Namely, very often an image
showing lower vegetation has the same features as the one with higher vegetation, so it is
difficult even for the human eye to distinguish to which class each block belongs.

This model was further used in the step of adding the detected region to the third
image. When the RFCCD model yields a detection of the same object in two consecutive
images, it is necessary to add this detection to the third image if the object environment is
classified as “forest”. For this purpose, it is necessary to classify eight regions surrounding
the detected region. This process is implemented by calculating the central pixel of the
detected region, also in dimensions of 300 × 300 px. The central pixel moves 450 pixels to
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the left and 450 upwards, which marks the initial window of the environment in which
the translated region is located, and the moving window generates nine regions (3 × 3).
Eight of the proposed 9 regions are classified because the central region is excluded from
the classification (it is actually a detected region). If any of the regions are classified as
“forest”, then that region is added to the third image where it is not detected because there
is a possibility that the object of interest is located there, but it is not detected because it
is sheltered by the trees. Although the classification model does not yield approximately
the same results as the person classification model, it has been experimentally determined
that this approach nevertheless improves the results. Namely, compared to the previously
proposed model in which the region was added to the third image regardless of its environ-
ment, this model results in a smaller number of false positive detections, which was the
primary goal.

6. Results Obtained with the Proposed Algorithms

Table 3 shows the results obtained with the proposed algorithms based on the vector
displacement in image sequences. For comparison, the table also shows the results obtained
using the RFCCD model on this set of images. The RFCCD model yields many false positive
detections, which means that further improvement is desirable. For this purpose, three
different algorithms based on the displacement vector of consecutive images are proposed.
The obtained results show that all three proposed algorithms improve the results in relation
to those obtained with the RFCCD approach. The first proposed algorithm is “RFCCD+DV”,
in which all detections that do not appear in at least two of three consecutive images are
discarded. Compared with RFCCD, this model achieved a significant improvement in
the precision, while the recall measure was not decreased. Accordingly, F-measures were
also improved. This means that this algorithm eliminates all false positive detections that
appear in only one images. Since detected objects that appear in at least two images are
considered true positive detections, we could additionally improve recall by adding those
detections to the third image. Thus, the second algorithm is proposed, RFCCD+DVA,
where detections that appear in only one image are rejected, while those that appear in two
images are also added to the third image. An example of one added TP detection is shown
in Figure 5. Every image in this set contains three persons. The RFCCD model detected two
persons in all three images, while one person was detected in the second and third images,
but not in the first image. After performing the RFCCD+DVA algorithm, TP detection was
added to the first image.

This algorithm improved the recall measure, but precision was lower because the
algorithm added 30 false positive detections. Thereby, all F-measures, except F10, were
decreased. In order to address the problem of adding false positive detections, a third
algorithm is proposed, RFCCD+DVAC. The idea is to add to the third image only detections
of those objects that are surrounded by forest, large trees, or similar features, since, in such
an environment, those objects could be obstructed in one or more consecutive images.
Therefore, the environment of the detected object is classified, and those objects surrounded
by forest are added to the third image, while other objects are not. This algorithm achieved
a better precision than RFCCD+DVA, while recall was slightly worse (1 more missed true
positive detection).

Table 3. Results obtained with algorithms based on displacement vector.

Algorithm GT TP FP FN Precision Recall F1 F2 F5 F10

RFCCD 339 330 176 9 65.22% 97.35% 78.11% 88.61% 95.54% 96.87%

RFCCD+DV 339 330 59 9 84.83% 97.35% 90.66% 94.56% 96.80% 97.20%

RFCCD+DVA 339 333 89 6 78.91% 98.23% 87.52% 93.64% 97.31% 97.99%

RFCCD+DVAC 339 332 71 7 82.38% 97.94% 89.49% 94.37% 97.23% 97.75%
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Figure 5. Example of a set of three images with one missed detection in the first image using the
RFCCD model (above), an enlarged missed detection with the RFCCD model (below, left), and an
enlarged added TP detection in this image using RFCCD+DVA model (below, right).

Observing these results, it can be noticed that the first proposed approach, RFCCD+DV,
retains the same number of TP detections as the RFCCD and hence the value of the recall
measure. At the same time, it also significantly reduces the number of FP detections
by 65% and consequently significantly improves the precision measure by almost 20%.
FP detections that are not discarded using this algorithm are detected in at least two
consecutive images with a high probability score. These are actually objects which, in aerial
images, look almost the same as the person. Some of them are hard to distinguish from TP
detections, even by ocular observation. Examples of FP detections are shown in Figure 6.
Additionally, Figure 7 shows all 9 FN detections. It can even be observed that some FP
detections are more similar to the human shape then some FN examples. This is due to the
variations in occlusion, viewpoint, shape, and illumination.

Figure 6. Examples of FP detections (rocks, birds, shadows, bags, etc., detected as a person).

Figure 7. All FN detections (persons that are not detected).

Additionally, it is noticeable that this algorithm achieves the same or only slightly
reduced values of all F measures compared to the other proposed algorithms. Regarding
the F-score values, Figure 8 shows that all three proposed algorithms achieved more
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optimal values of the F-score (for each value of the parameter β) compared to the RFCCD
approach. It is also noticeable that the most stable growth of the F-score values for different
parameters β was achieved using the RFCCD+DV algorithm. As it is difficult to determine
which β parameter is optimal, this stable growth contributes to the advantage of this
algorithm because it shows its low dependence on the value of the β parameter (for each β
parameter, the F score value is quite high). Furthermore, the advantage of this algorithm is
in its simplicity of execution, because any further analysis of the detected objects and its
environment is not required, thereby reducing execution time, which plays a crucial role in
saving lives [4]. Thus, it can be concluded that the proposed algorithm RFCCD+DV is the
most optimal for use in SAR operations.

Figure 8. The value of F-score depending on the parameter β.

7. Summary and Conclusions

In this paper, we propose a set of algorithms for improving the results of person
detection in aerial image sequences in an SAR scenario. All proposed algorithms are based
on the use of displacement vector information in order to reduce the number of false
positive detections. During real SAR operations, false positive detections direct rescuers
to the wrong location and thus waste time. In real SAR operation this method could be
used as an auxiliary method which means that all processed images should be visually
inspected in order to check potential location of the lost person. If there is a lot of FP
detections in one image, it would cause additionally waste of time for visual inspection
because every FP detections needs to be checked. These aerial images are very specific high
resolution (4000 × 3000) images with complex content and there is a lot of potential FP
detections (rocks, shadows, birds, etc. that from aerial perspective from high altitude looks
like person). The RFCCD model provided quite good results with 176 FP detections in
99 images (around 1.7 FP per image in average) which means that is possible to relatively
fast execute visual inspection. However, considering the fact that many images are collected
in real SAR operations due to the wide geographical area that needs to be searched, the goal
is to reduce the number of false positive detections in an image as much as possible in
order to save time.

The algorithms proposed in this paper successfully and significantly reduce the num-
ber of false positive detections to less than 1 per image while maintaining the number of
true positive detections. Although all three proposed algorithms increase precision and
keep recall at the same or higher level, the RFCCD+DV algorithm is still considered the
most acceptable. There are two reasons for this. The first reason is that this algorithm
reduces the number of false positive detections by the most, and the second reason is



Drones 2022, 6, 19 17 of 19

that it is computationally the simplest. Simplicity is most evident in the time required to
process a single image, which needs to be reduced as much as possible. The application of
the RFCCD+DV algorithm requires a minimum of additional time compared to the other
proposed algorithms. Therefore, we believe that this algorithm may be applicable in actual
SAR actions as an additional method. Due to the complexity of the proposed algorithm, it is
not applicable for real-time use aboard UAVs. Since in SAR operations, the most important
requirement for proposed solutions is to find a lost person, the focus of this paper was to
achieve the most accurate results. However, this process needs to be completed as soon as
possible, so increasing processing speed is our future research goal.
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