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Abstract: In recent years the use of Unmanned Aerial Vehicles (UAVs) has considerably grown in
the civil sectors, due to their high flexibility of use. Currently, two important key points are making
them more and more successful in the civil field, namely the decrease of production costs and the
increase in navigation accuracy. In this paper, we propose a Kalman filtering-based sensor fusion
algorithm, using a low cost navigation platform that contains an inertial measurement unit (IMU), five
ultrasonic ranging sensors and an optical flow camera. The aim is to improve navigation in indoor
or GPS-denied environments. A multi-rate version of the Extended Kalman Filter is considered
to deal with the use of heterogeneous sensors with different sampling rates, and the presence of
non-linearities in the model. The effectiveness of the proposed sensor platform is evaluated by means
of numerical tests on the dynamic flight simulator of a quadrotor. Results show high precision and
robustness of the attitude estimation algorithm, with a reduced computational cost, being ready to be
implemented on low-cost platforms.

Keywords: sensor fusion; kalman filtering; attitude estimation; UAV navigation

1. Introduction

In the last two decades, the use of small and micro-UAVs has considerably spread,
with the increased level of autonomy and the development of low cost electronics devices,
i.e., microcontrollers, sensors, etc. [1]. In particular, the possibility of multi-rotors (quad-
copter, hexacopeter, etc.) to take off and land vertically, to move in any direction and hover
over a fixed position gives them employment for reconnaissance missions in hostile and
hazardous environment [2,3], where other aircraft and robots cannot be used. However,
their use requires the solution of different technological problems, first of all the need of
a robust and reliable attitude estimator, possibly executable on low-cost computational
hardware and using only measurements from light-weight sensors.

Nowadays the most widely used platforms for UAV navigation are based on the
Global Positioning System (GPS) [4] and the Inertial Navigation System (INS) [5] including
an IMU with magnetic, angular rate, and gravity sensors (MARG). However, GPS is able to
provide data about position by receiving information from a network of several satellites,
resulting unusable in indoor environment, due to the loss of signal.

MARG sensors consists of Micro Electro-Mechanical Systems (MEMS) based on gyro-
scopes, accelerometers and magnetometers which can provide the orientation of a rigid
body with respect to a fixed reference system. Unlike GPS sensors, they can provide atti-
tude information in indoor environment too, since they do not use signal from external
sources. Moreover, the growing success of these sensors in many applications [6], is due to
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their low-weight, low-cost, low power consumption and relatively high performance in
real-time [7].

Being an essential task, the problem of attitude estimation on the basis of sensor
measurements can be non-trivial [8,9].

Most of the recent sensor fusion algorithms provide orientation estimation in quater-
nion form [10,11]. Quaternions are a useful mathematical tool that does not result in
singularity configurations as the Euler representation.

Over the years, several solutions have been developed to solve the problem of attitude
estimation and different sensor data fusion algorithms have been implemented and tested
on-board [12]. The most famous techniques make use of complementary filters [13–17],
thanks to their low computational burden. In [13], a constant gain filter is considered to
estimate the attitude of a rigid body. Such method ensures good attitude estimation at low
computational cost, but it has a drawback related to the local magnetic disturbances. In [14],
a nonlinear explicit complementary filter is proposed, improved with an anti-windup
nonlinear integrator that allows an effective gyro-bias compensation. To increase robust-
ness to magnetic disturbances, a decoupling strategy was implemented to make roll and
pitch estimates not dependent on magnetometer. In [17], a complementary filter provides
a quaternion estimation like the algebraic solution of a system from inertial/magnetic
observations. Tilting and heading estimation are separately obtained to avoid the impact of
magnetic disturbances on roll and pitch.

However, despite the effectiveness and the computational performances of such
techniques, more effective solutions have been based on Kalman Filtering (KF) with
the increase of computational power in low-cost electronic boards. Such techniques
are widely used in human motion analysis [18–22], robotics [23,24] and in aerospace
applications [25,26]. Most UAV attitude estimation algorithms are based on the Extended
Kalman Filter (EKF) [27–29] and the Unscented Kalman Filter (UKF) [30,31].

At the cost of a further increase in computational burden, in literature several examples
based on Particle Filtering (PF) [9,32–34] exist.

Since attitude estimation depends on sensors accuracy and can suffer from the pres-
ence of fast dynamics, the integration of INS, based on a sensor fusion algorithm and an
IMU, with other kinds of sensors can be useful. Speed and position can be also obtained
implementing an integration of IMU and GPS sensors [35] which has been used in the field
of autonomous vehicle only recently [36]. Thanks to the complementary characteristics of
GPS and IMU sensors, in [37] the author developed an integrated and advanced GPS/IMU
system to estimate the attitude and position of a rigid body in 3-D space. Attitude estima-
tion is obtained comparing the acceleration vector, implicitly available in the derivative of
the GNSS velocity, with measurements provided by accelerometers. In [38], authors present
a nonlinear observer for estimating position, velocity, attitude, and gyro bias by combining
a GNSS receiver with an INS. The presented navigation equations take into account the
Earth rotation and curvature, to improve accuracy. In [39], authors exploited the GPS
Precise Point Positioning (PPP) on a fixed-wing UAV for photogrammetric mapping with
centimeter-level precision on the horizontal plane.

Such solutions are not effective in indoor scenarios or in absence of GPS signal and
the only MARG-based dead reckoning results in poor position estimates. To improve
attitude and position estimation, several solutions based on vision and sound propagation
techniques have been proposed over the years.

In low-cost and commercial drones, one of the most popular solutions makes use of
the visual odometry. Optical flow is a naturally inspired technique, introduced in 1950s
by the american psychologist Gibson [40] to describe the animal visual perception of the
world. It can be considered as the projection of the 3D world apparent motion of objects
caused by the relative movements between an observer and the scene.

The concept of optical flow has been widely used in many fields and different types
of algorithms have been developed over the years. The Lucas-Kanade algorithm [41] and
the Horn-Schunck method [42] are based on the gradient descent approach. In [43], a
method for object recognition is presented based on the image features, while in [44] the
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author used the interpolation technique for the computation of optical flow information
and ego-motion.

Starting from the experience of pioneers in this discipline, many researchers have
involved optical flow algorithms in conjunction with inertial platforms for navigation and
obstacle avoidance purposes in the UAV field [45–49].

From the hardware point of view, several kinds of optical sensors were involved on
small and micro-UAVs. Optical mouse based sensors were firstly used thanks to their
very low cost, but the need of a strong lighting limited their success. Being more sensitive,
CMOS image sensors can alleviate the problem, allowing operations in indoor environment
without using an artificial lighting as in [50].

Another solution to improve indoor navigation is the Simultaneous Localization and
Mapping (SLAM) [51–59]. However, although SLAM techniques are extremely useful in
unknown environments, their cost in terms of weight and computational burden is usually
high, making it difficult to be implemented on micro and mini UAV.

In this paper, we propose a novel technique to compute accurate attitude and altitude
estimation, by fusing data from an IMU, a downward oriented optical flow and five
downward oriented distance sensors based on ultrasonic or time of flight (TOF) devices.
Being placed in different points, distance sensors can improve attitude estimation accuracy
in addition to UAV altitude. One of the scopes of this work is to show the benefits of the
presence of more distance sensors in attitude estimation as well as in velocity and altitude
measurement. Furthermore, the presence of a downward oriented optical flow gives the
ability to estimate the velocity vector in the horizontal plane as well as to correct attitude in
fast maneuvers.

Since the involved sensors run at different sampling rates, the proposed algorithm
makes use of a multi-rate EKF [60–62]. A campaign of numerical simulations is carried
out to prove the effectiveness of the idea, comparing results obtained with several sensor
fusion schemes. Two configurations are available: one involving a single TOF sensor and
one with 5 TOF devices. Each configuration is presented in two possible architectures: a
tightly coupled and a loosely coupled scheme.

The paper is organized as follows: Section 2 defines the UAV attitude and altitude
estimation problems; Section 3 presents the multi-rate EKF approach and, finally, Section 4
describes the proposed testing platform and it shows the numerical results obtained by
integrating the system on a quadrotor dynamic simulator.

2. UAV Attitude and Altitude Estimation Problem

To define the UAV position and orientation, two reference frames are considered:

• North-East-Down (NED) Reference Frame, located on the earth surface, with:

– XE-axis points north, parallel to the earth surface;
– YE-axis points east, parallel to the earth surface;
– ZE-axis points downward, toward the earth surface.

• Body Reference Frame, centred in the Center of Gravity (CG) of the quadrotor, with:

– XB-axis points along the arm 1–3, positive forward;
– YB-axis points along the arm 2–4, positive rightward;
– ZB-axis points downward, to form a right-handed reference frame.

as shown in Figure 1.
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Figure 1. Definitions of NED and Body Reference frames.

Vehicle attitude is defined as its orientation with respect to a reference frame and its
accurate estimation is an important topic in the robotics and aerospace fields.

At the initial time, NED and body reference frames can be overlapped at the UAV
departing point.

After that, the transformation from NED to body frame can be obtained as a sequence
of three ordered rotations (Figure 2), called 3− 2− 1 [63]:

• a rotation around the ZE axis by the yaw angle ψ, from OXEYEZE to OX′Y′Z′;
• a rotation around the Y′ axis by the pitch angle θ from OX′Y′Z′ to OX′′Y′′Z′′;
• a rotation around the X′′ axis by the roll angle φ from OX′′Y′′Z′′ to OXBYBZB.

Figure 2. Rotations needed for the transformation from NED to Body reference frames.

Euler angles ψ, θ and φ describe the aircraft attitude. An alternative representation
makes use of the quaternion definition [17,64], considering q = [q0, q1, q2, q3]

T as the unit
quaternion vector associated to RBE(q) from the NED reference frame to the body frame:

RBE(q) =

 q2
1 − q2

2 − q2
3 + q2

0 2(q1q2 − q3q0) 2(q1q3 + q2q0)
2(q1q2 + q3q0) −q2

1 + q2
2 − q2

3 − q2
0 2(q2q3 − q1q0)

2(q1q3 − q2q0) 2(q2q3 + q1q0) −q2
1 − q2

2 + q2
3 + q2

0

 (1)
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Gyroscope model. If gyroscope was not affected by noise and uncertainties, the atti-
tude could be estimated by integrating the angular velocity ω = [p, q, r]T from a known
initial condition. In fact, quaternion vector shows the following dynamics:

q̇(t) =
1
2

Q(ω(t)) · q(t) (2)

where the matrix Q(ω(t)) is

Q(ω(t)) =


0 −p(t) −q(t) −r(t)

p(t) 0 r(t) −q(t)
q(t) −r(t) 0 p(t)
r(t) q(t) −p(t) 0

 (3)

However, the gyroscope output is affected by noise with zero mean and given standard
deviation. In steady state conditions, a straightforward integration would lead to a non-zero
final angle due to the so called Angular Random Walk (ARW) [65,66].

To compensate this effect, a gyro drift model is introduced, whose sensed angular
speed vector ωS(t) differs from ω(t) due to a bias bg(t) = [bp(t), bq(t), br(t)]T and a
stochastic zero-mean noise υω(t) = [υp(t), υq(t), υr(t)]T :

ωS(t) =

ps(t)
qs(t)
rs(t)

 = ω(t) + bg(t) + υω(t) (4)

Therefore, by computing ω(t) from (4), the equation describing attitude dynamics
becomes

q̇(t) =
1
2

Q
(
ωS(t)− bg(t)− υω(t)

)
· q(t) (5)

Usually, in slowly varying conditions, the accelerometer and the magnetometer can
be used to estimate the gyroscope biases and compensate the attitude drift, being their
measurements dependent from the UAV orientation [67–69]. The gyroscope bias is com-
monly modeled as a first-order Gauss-Markov process [70,71], with a first-order stochastic
differential equation given by

ḃg(t) = −
1
τg

bg(t) + υb (6)

where τg is the correlation time of the process and υb is the associated white Gaussian
noise [72–76].

Accelerometer model. A tri-axial accelerometer measures the forces, per unit mass,
acting on the body along three specific orthogonal directions. The inertial acceleration
depends on these forces and the gravity acceleration g =

[
0 0 g

]T . The specific force in
the body reference frame is:

FB(t) = −aB(t) + RBE(q(t)) · g (7)

The acceleration in the inertial reference frame aE(t) depends on aB
t (t) as follows

aE(t) = aB
t (t) + ω(t)×ω(t)× LB + ω̇(t)× LB (8)

where LB is the distance vector between the center of gravity and the accelerometer.
The acceleration in the body reference frame can be then written as follows:

aB(t) = RBE(q(t)) · aE(t) = RBE(t)
(

q(t)) · (aB
t (t) + ω(t)×ω(t)× LB + ω̇(t)× LB

)
(9)
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In the absence of noise and uncertainties, the velocity in the inertial frame could be
obtained by integrating (8). However, to compensate the drifting integration of the accelera-
tion, a bias ba(t) = [bax(t), bay(t), baz(t)]T and a stochastic zero-mean noise
νa(t) = [νax(t), νay(t), νaz(t)]T are considered:

aB
S (t) =

aB
xS
(t)

aB
yS
(t)

aB
zS
(t)

 = −aB(t) + RBE(q(t)) · g + ba(t) + νa(t) = RBE(q(t)) · g + ȧ′B(t) + νa(t) (10)

In case of slowly varying maneuvers, vector a′B(t) = −aB(t) + ba(t) can be estimated
using a first-order dynamics:

ȧ′B(t) = − 1
τa

a′B(t) (11)

where τa is a time constant related to the UAV dynamics.
The velocity in the inertial frame can be then obtained by integrating a′b

V̇ E(t) = RT
BE(q(t)) · a′B(t) (12)

Altitude zE is related to VE as follows:

żE(t) = [0, 0, 1] · V E(t) (13)

Magnetometer model. Magnetometer measures the local magnetic field in a given
direction, which is a combination of both the Earth magnetic field and the magnetic field
due to the presence of ferro-magnetic material [77]. The horizontal component of the local
Earth magnetic field points towards the Earth magnetic north pole, while the ratio between
the horizontal and vertical components depends on the location on the Earth.

Assuming that the sensor does not travel over significant distances and the local
magnetic sources are weak and not moving, such that a preliminary calibration can estimate
the constant magnetic field they induce, the local magnetic field MB in the body reference
frame can be expressed as follows:

MB(t) = RBE(q(t)) ·ME (14)

where ME is the Earth’s magnetic field. However, at the time instant t, magnetometer
measurements MS(t) are affected by sensor noise νM.

MS(t) =

Mx,S(t)
My,S(t)
Mz,S(t)

 = RBE(q(t)) ·ME + νM(t) (15)

Here, the presence of additional fields due to ferro-magnetic material in an indoor
environment was neglected, considering the problem independently handled in litera-
ture [78–82].

Optical Flow model. Optical flow is the distribution of apparent velocities about the
movement of brightness patterns in an image [42]. It can be due to the relative motion
between objects and the viewer [40]. According to the pinhole image modelling approach,
that defines a relationship between the 3D motion field and the 2D image camera plane,
the sensed optical flow [46,50] is:

VS(t) =
[

uS(t)
vS(t)

]
=

−u(t)·β
zE(t) − q(t) · β + r(t)dy(t) + νOx (t)
−v(t)·β

zE(t) + p(t) · β− r(t)dx(t) + νOy(t)

 (16)

where u(t) and v(t) are the components of the velocity vector in the body frame at the
time instant t, β is the focal length, zE(t) is the altitude of the UAV, dx(t) and dy(t) are the
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components on the horizontal plane of the distance vector between the center of gravity of
the UAV and the camera, νOx (t) and νOy(t) represent the sensor noise on x and y axes.

Time-of-flight sensor model. The primary function of a time-of-flight sensor is to
measure the distance between the transmitter and the objects in its field of view. The princi-
ple is based on the speed of the light: the distance is evaluated by measuring the time it
takes for the transmitted signal to travel to and from the object.

The use of several devices allows to measure the distance to ground from several points
on the vehicle, resulting useful to improve attitude estimation. Consider nTOF TOF devices
mounted on the UAV structure and pointed towards the positive zB axis direction. Let
ξB

i =
[
xB

i , yB
i , zB

i
]T , ∀i = 1, ..., nTOF be the position of the i-th device in the body reference

frame. During the flight, the position of the sensor ξE
i (t) =

[
xE

i (t), yE
i (t), zE

i (t)
]

in the
inertial reference frame is

ξE
i (t) = RT

BE(q(t)) · ξB
i (17)

The vector of the sensed distance measurements is

DS(t) = [dS,1(t), ..., dS,nTOF(t)]
T

where dS,i(t) =
[0,0,1]ξE

i (t)
cos φ(t) cos θ(t) + νTOFi (t) ∀i = 1, ..., nTOF

(18)

with νTOFi (t) is the sensor noise on the i-th device (see Figure 3).

Figure 3. TOF sensors arrangement on the quadrotor structure.

Overall mathematical model. Equations (5), (6), (11)–(13) can be expressed in the
state-space form:

ẋ(t) = γ(x(t), u(t), υ(t)) (19)

where x(t) =
[
q(t)T , bg(t)T , VE(t)T , aB(t)T , zE(t)

]T is the state vector, u(t) = ωS(t) is the
input vector, and υ = [υT

ω, υT
b ]

T is the process noise. Similarly, Equations (10), (15), (16)
and (18) can be written in the following form:

y(t) = g(x(t), v(t)) (20)

where y(t) =
[
aS(t)T , MS(t)T , V T

S (t), DT
S (t)

]T is the output vector and ν(t) =
[
νa(t)T , νM(t)T ,

νTOF(t)T]T is the measurement noise vector.
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3. Multi-Rate Extended Kalman Filtering Approach

In order to fuse raw data and obtain a reliable estimation of attitude and vertical
position with respect to the ground, a sensors fusion algorithm must be adopted. Since
sensors work at different asynchronous sampling rates, a multi-rate version of the EKF,
hereinafter referred to as MR-EKF, is needed.

Let us consider the nonlinear discrete dynamic model of our system:

xk = f (xk−1, uk−1, υk−1) (21)

yk = g(xk, uk, νk) (22)

where x is the state, u is the input, y is the measured output, and υ and ν are the process and
measurement noises, respectively. This discrete time system can be obtained by applying
Euler’s discretization to (19) and (20) where ζk = ζ(tk) and tk = kTS is the k-th sampling
time instant.

Assume a zero-mean Gaussian distribution for the noises υk−1 and νk, with known
covariance matrices Qk−1 and Rk:

υk−1 ∼ (0, Qk−1) νk ∼ (0, Rk) (23)

The estimation algorithm is composed of two distinct phases, namely prediction and
correction phase.

At each time step, the prediction phase provides the a-priori state estimation x̂−k
and the state covariance matrix P−k = E((xk − x̂−k )(xk − x̂−k )

T), whereas the update phase
computes the a-posteriori state estimation x̂+k and the state covariance matrix P+

k = E((xk−
x̂+k )(xk − x̂+k )

T).
According to the KF approach, at each time instant k the current state can be estimated

by using the previous a-posteriori estimation x̂+k−1 and the last acquired set of measures
ym,k depending on the frequency rate of each sensor.

Therefore, the a-priori estimation of the state x̂−k , is computed by using the Equa-
tion (21) with null process noise (υ = 0):

x̂−k = f (x̂+k−1, uk−1, 0) (24)

The a-priori state covariance matrix P−k is computed as follows:

P−k = Ak−1P+
k−1 AT

k−1 + Υk−1Qk−1ΥT
k−1 (25)

where

Ak−1 =

(
∂ f
∂x

)
x̂+k−1,uk−1,0

Υk−1 =

(
∂ f
∂υ

)
x̂+k−1,uk−1,0

are the Jacobian matrices of function f (·), and the P+
k−1 is the a-posteriori state covariance

matrix at the time instant k− 1.
Consider n sensors that provide measurements with different sampling rates

ρ1 ≥ ρ2 ≥ ... ≥ ρn i = 1, ..., n . (26)

To perform the update process of the a-priori state estimation, assume the minimum
sample time TS = 1

ρ1
, to obtain the discrete time model (21), (22).

The update process must be executed taking into account the available measure-
ments at the time k. Measurements available at k can be denoted as a vector ỹmk ,k with a
variable size.

To take into account missing measurements at some discrete time, in the update phase,
only a partial measurement model can be adopted.
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Let’s define ∆k a diagonal matrix with ∆jj
k = 1 if the j− th output is available, ∆jj

k = 0
otherwise.

The partial estimated output is obtained by using the output Equation (22) and ne-
glecting the measurements noise.

ŷ′
k = ∆kg

(
x̂−k , uk, 0

)
. (27)

Once a new measure has been acquired, the a-posteriori state estimation can be
computed updating the a-priori state estimation with a feedback term that depends only
on the active measurements:

x̂+k = x̂−k + L̃k

(
y′

m,k − ŷ′
k

)
(28)

where the gain L̃k is given by the following equation:

L̃k = P−k C̃T
k

(
C̃kP−k C̃T

k + ÑkR̃k ÑT
k

)−1
(29)

with

C̃k = ∆k

(
∂g
∂x

)
x̂−k ,uk ,0

Ñk = ∆k

(
∂g
∂ν

)
x̂−k ,uk ,0

Finally, the a-posteriori state matrix is updated as follows:

P+
k =

(
I − L̃kC̃k

)
P−k (30)

where I is the identity matrix.

4. Results

To validate the proposed algorithm, numerical results have been obtained on a quadro-
tor dynamic simulation environment including sensors dynamics and measurement noise.
Such uncertainty was simulated by adding a bias and a white Gaussian noise to every
sensor output. The main simulation parameters are summarized in Table 1.

The idea is to test the algorithm in view of its implementation on a low-cost embed-
ded board.

Although the navigation system has the objective of acquiring, filtering and fusing sen-
sors data to extract information about UAV and surrounding environment states, the same
electronic board can be used also for guidance and control tasks.

The sensors platform involves a low-cost IMU consisting of a 3-axis accelerometer,
a 3-axis gyroscope and a 3-axis magnetometer, an optical flow and 5 time-of-flight distance
sensors. Four of them can be installed below every arm and the fifth at the centre of the
structure. The Optical flow and the time-of-flight devices are oriented downwards in
order to measure the velocity vector in the horizontal plane and the relative distance to
the ground.

The proposed simulation campaign considers as available sensors a tri-axial accelerom-
eter, a gyroscope, a magnetometer, an optical flow, and two possibilities for TOFs: five
or only a single device (see Figure 4). Sensor fusion algorithm is implemented using two
different architectures: a tightly coupled scheme (A) and a loosely coupled scheme (B).

According with a tightly coupled approach, measurements are fused together by using
the same EKF (see Figure 5), whose model is defined by state Equations (5), (6), (11)–(13),
and output Equations (10), (15), (16) and (18).

The loosely coupled scheme involves two separated filters (see Figure 6): the for-
mer EKF is based on the IMU and TOF devices, to estimate the attitude on the basis of
Equations (5), (6), (10), (15), (18); the latter MR-EKF, is based on the TOF plus the optical
flow, to estimate altitude and velocity by means of Equations (11)–(13), (16) and (18).

Hence four possibilities are analysed:
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A5 nTOF = 5 and tightly coupled EKF architecture;
A1 nTOF = 1 and tightly coupled EKF architecture;
B5 nTOF = 5 and loosely coupled EKF architecture;
B1 nTOF = 1 and loosely coupled EKF architecture;

where two of them, A5 and B5, use more than one TOF to augment attitude estimation,
while A1 and B1 schemes are typical architectures, used to compare results with the state of
the art.

Figure 4. Simulation scheme. Closed Loop Quadrotor Dynamics module includes the aircraft and its
flight control system, Sensors blocks include sensors dynamics and noise.

Figure 5. Tightly coupled architecture model Aη .

Figure 6. Loosely coupled architecture model Bη .
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Table 1. Quadcopter and sensors main parameters. IN denotes the identity matrix N × N.

Parameter Value

Arm length—[m] 1
Mass—[kg] 0.6
Gyroscope sampling frequency—[Hz] 103

Accelerometer sampling frequency—[Hz] 103

Magnetometer sampling frequency—[Hz] 102

Optical Flow sampling frequency—[Hz] 10
TOF sampling frequency—[Hz] 50
Gyroscope bias—[rad/s] [0.1, 0.08, 0.11]T

Accelerometer bias—[m/s2] [0.1, 0.15, 0.2]T

Magnetometer bias—[G] [0.05, 0.02, 0.06]T

Optical Flow bias—[m/s] [−0.1, 0.07]T

TOF bias—[m] [1.0, 0.7,−0.5,−0.1, 0.2]T ∗ 10−3

Gyroscope noise covariance—[(rad/s)2] 8.0 · I3 · 10−8

Accelerometer noise covariance—[(m/s2)2] 1.0 · I3 · 10−4

Magnetometer noise covariance—[(G)2] 4.0 · I3 · 10−8

Optical Flow noise covariance—[(m/s)2] 1.0 · I2 · 10−6

TOF noise covariance—[(m)2] 2.6 · I5 · 10−8

As shown in Figure 4, the quadrotor dynamics includes attitude and altitude control.
Simulation starts at t = 0 from an equilibrium condition in hovering at the altitude h = 10 m.
Roll and pitch maneuvers are imposed by applying two reference doublet signals having a
duration of 16 s and an amplitude of 24 degrees on the roll angle at tφ = 2 s, and on the
pitch angle at tθ = 30 s. A yaw maneuver is carried out by applying a trapezoidal signal
with a duration of 7 s and an amplitude of 12 degrees to the yaw reference signal. Finally a
variation in altitude is simulated using a ramp reference signal, passing from 10 m to 11 m.

Figures 7 and 8 show sensors measurements.
Figures 9–11 show the results of the estimation process for every involved configura-

tion, while Tables 2 and 3 resume the performance of each model in terms of mean absolute
errors and standard deviations [13,83].
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Figure 7. Simulated sensors measurements.
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Figure 8. Simulated TOF sensors measurements.
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Figure 9. Estimated quadrotor attitude in terms of Euler angles.
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Figure 11. Estimated altitude zE.

Table 2. Models comparison in terms of Mean Absolute Error.

Model A5 Model A1 Model B5 Model B1

MAEφ [deg] 0.0066 0.7369 0.0063 0.2156
MAEθ [deg] 0.0098 0.6616 0.0096 0.0707
MAEψ [deg] 0.0179 0.2104 0.019 0.1572
MAEzE [m] 0.0012 0.084 0.0013 0.0899
MAEVEx [m/s] 0.0106 0.0149 0.0075 0.0594
MAEVEy [m/s] 0.0174 0.0089 0.009 0.0082
MAEVEz [m/s] 0.0055 0.017 0.0058 0.0055
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Table 3. Models comparison in terms of standard deviation of errors.

Model A5 Model A1 Model B5 Model B1

σφ [deg] 0.0619 2.8755 0.0640 3.0172
σθ [deg] 0.0730 3.0470 0.0770 3.0838
σψ [deg] 0.1949 1.5606 0.1979 1.66002
σzE [m] 0.0028 0.1627 0.0030 0.1851
σVEx [m/s] 0.1042 0.4232 0.1316 0.4406
σVEy [m/s] 0.1136 0.4255 0.1307 0.3780
σVEz [m/s] 0.0231 0.0858 0.0250 0.1941

Figure 9 shows the improvements obtained by the proposed technique over other
standard EKF based INS. Indeed, a standard INS neglects the term of pure linear accel-
eration, resulting in an over-estimation of pitch and roll angles due to the unobservable
body accelerations measured during a maneuver. Furthermore, the linear approximation
needed in the EKF formulation makes roll and pitch angles more sensitive to the vertical
component of acceleration, causing a coupling effect during the pitch maneuver at t = 30 s.
The use of a tightly coupled sensor fusion algorithm solves these issues (models A1 and
A5, using IMU, optical flow and TOF sensors together). Furthermore, the presence of five
TOF devices is the greatest improvement in terms of pitch and roll estimation (model A5).
Such improvement is visible also in the velocity vector estimation: while components on
the horizontal plane depend moreover on the optical flow and the increasing performance
affects the correction of relatively small errors, the greatest improvements is obtained in
the vertical component of speed and in the altitude estimation. It should be clear how the
presence of five TOF sensors permits to avoid errors on the attitude, making the altitude
estimation more reliable.

Table 4 resumes the computational load in terms of cpu occupancy, needed to execute
the proposed filters on a Intel core i7 10750H based laptop. Being a multi-rate EKF, it was
measured by computing the ratio (percentage) between the time spent to perform filtering
and the overall simulation time. As shown in the table, the introduction of the multi-rate
EKF limits the increase in the computational burden between model B1 and A5.

Table 4. CPU time (ratio between the time spent in the EKF function and the overall simulation time).

Model A5 Model A1 Model B5 Model B1

CPU % 3.34 3.15 3.03 1.9

5. Conclusions

Small unmanned aerial vehicles need an accurate attitude and position estimation in
order to deal with several application, where the risk of collision is high and the control
must be absolutely reliable.

With this aim, the paper deals with the design of a Kalman filtering based sensor fusion
algorithm to augment typical drone navigation, based on inertial sensors, accelerometers,
gyroscopes, magnetometers, with an optical flow camera and several time-of-flight distance
sensors, in order to improve attitude estimation while measuring distance to ground.

Results show the effectiveness of the proposed estimation procedure, comparing
several sensors configuration and highlighting typical issues of inertial navigation, subject
to attitude estimation errors in accelerated flight.

Currently, on commercial small drone the typical sensors configuration involves the
use of the optical flow and only one ground distance sensor (sonar or TOF). The cost of
adding more distance sensors is minimal in terms of weight and computational burden,
but it would permit a great improvement in the attitude estimation as well as in the velocity
and altitude measurement.
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