
Article

Aerodynamic-Torque Induced Motions of a Spinning Football
and Why the Ball’s Longitudinal Axis Rotates with the Linear
Velocity Vector

John Dzielski 1,* and Mark Blackburn 2

����������
�������

Citation: Dzielski, J.; Blackburn, M.

Aerodynamic-Torque Induced

Motions of a Spinning Football and

Why the Ball’s Longitudinal Axis

Rotates with the Linear Velocity

Vector. Dynamics 2022, 2, 27–39.

https://doi.org/10.3390/

dynamics2010002

Academic Editor: Christos Volos

Received: 27 November 2021

Accepted: 18 January 2022

Published: 26 January 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Civil, Environmental and Ocean Engineering, School of Engineering and Science,
Stevens Institute of Technology, 1 Castle Point, Hoboken, NJ 07030, USA

2 Systems Engineering Research Center, School of Systems and Enterprises, Stevens Institute of Technology,
1 Castle Point, Hoboken, NJ 07030, USA; mblackbu@stevens.edu

* Correspondence: jdzielski@stevens.edu; Tel.: +1-201-216-8782

Abstract: This paper presents an explanation of why a spinning football rotates so that the spin
axis remains nearly aligned with the velocity vector, and approximately parallel to the tangent to
the trajectory. The paper derives the values of the characteristic frequencies associated with the
football’s precession and nutation. The paper presents a graphical way of visualizing how the
motions associated with these frequencies result in the observed ”wobble” of the football. A solution
for the linearized dynamics shows that there is a minimum amount of spin required for the motion
to be stable and for the football not to tumble. This paper notes the similarity of this problem to that
of spun projectiles. The results show that the tendency of a football to align itself with and rotate
with the velocity vector is associated with an equilibrium condition with a non-zero aerodynamic
torque. The torque is precisely the value required for the football to rotate at the same angular rate as
the velocity vector. An implication of this is that a release with the football spin axis and velocity
vector aligned (zero aerodynamic torque) is not the condition that results in minimum motion after
release. Minimum “wobble” occurs when the ball is released with its symmetry axis slightly to the
right or left of the velocity vector, depending on the direction of the spin. There are additional forces
and moments acting on the football that affect its trajectory and its stability, but it is not necessary to
consider these to explain the tendency of the ball to align with the velocity vector and to ”wobble.”
The results of this paper are equally applicable to the spiral pass in American football and the screw
kick in rugby.

Keywords: football; football dynamics; spiral pass; rugby football; rugby ball dynamics; spiral pass;
screw kick

1. Introduction

This paper will use the generic term “wobble” to describe the general angular motion
of the football until we can be precise about what is causing the motion. The term “spin”
refers to rotation of the football about its axis of symmetry, and “rotation” refers to angular
motion about an axis perpendicular to the spin axis. Because there is no possibility of
confusion, angular momentum will be referred to simply as “momentum” The term ball
or football will be used interchangeably, and the terms spiral pass or American football,
and screw kick or rugby football, will be used when the discussion applies exclusively to
only one case. Brancazio [1] suggests that the observable wobble of the American ball in
a spiral pass is an example of precession. The author assumes the motion is torque-free;
however, there is an aerodynamic torque acting on the football that cannot be neglected if
the ball’s velocity-vector-following motion is to be explained. That torque, interacting with
the momentum of the spin, is an essential part of the rotational dynamics of the ball. The
same author revisits the problem in a later publication [2] assuming the spiral pass is like a

Dynamics 2022, 2, 27–39. https://doi.org/10.3390/dynamics2010002 https://www.mdpi.com/journal/dynamics

https://www.mdpi.com/journal/dynamics
https://www.mdpi.com
https://orcid.org/0000-0002-7931-076X
https://doi.org/10.3390/dynamics2010002
https://doi.org/10.3390/dynamics2010002
https://doi.org/10.3390/dynamics2010002
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/dynamics2010002
https://www.mdpi.com/journal/dynamics
https://www.mdpi.com/article/10.3390/dynamics2010002?type=check_update&version=1


Dynamics 2022, 2 28

“sleeping-top” where the assumption is that the torque is very small; however, the author
incorrectly asserts that in the case of a spiral pass, there is no aerodynamic torque and the
analysis cannot explain the velocity-following motion. In their introduction, Price et al. [3]
observe that the axis of the ball tends to align itself with the tangent to its trajectory, which
is equal to the instantaneous velocity of the ball. They reason that since the momentum is
predominantly due to spin, the ball’s angular momentum also stays nearly aligned with
the velocity. They correctly conclude that because the velocity vector rotates, beginning
pointed upward at the release and downward at the catch (or drop), that there must be a
torque acting on the ball to cause the angular momentum to change.

Price et al. [3] start with general equations for the angular motion. Rather than derive
a solution from those equations, the authors assume a solution based on characteristic
frequencies that are not correct for the physical model and do not satisfy the equations of
motion. Consequently, their quantitative results are incorrect. This paper derives the correct
frequencies from the mathematical model. The explanation in [3] for the velocity-following
motion draws on intuition, and the paper does not show that the assumed mathematical
model predicts the motion, nor state any necessary conditions that must be satisfied for
their explanation to hold. Furthermore, if their intuitive explanation is applied to the case
where the nose of the ball is released below the plane of the velocity vector, the explanation
predicts that the ball will rotate in a direction opposite from what it actually does. The
results in [4] begin by assuming the incorrect characteristic frequencies from [3], and claims
to derive a model for ”first-order differences between the direction of the velocity, the
orientation of the long axis, and the direction of the total angular momentum.” If this is
understood to mean linear dynamics near an equilibrium point, then this paper presents
the correct solution to that problem.

The dynamics of a spinning football do not represent a type of problem that is new
to study. The study of ballistics has led to an understanding of how spin can be used to
improve both distance and accuracy of artillery projectiles and rifle bullets. The paper [5]
provides a description of the physical mechanism resulting in stable flight, the tendency of
a spinning projectile to align with the velocity vector and the cause of the necessary torque,
and the resulting tendency of a right-handed spin to cause a drift to the right. Rae [6]
identifies these same characteristics associated with the spiral pass in his experimental
and analytical results for an American football. The paper [5], published over 100 years
ago, describes itself as a “non-technical introduction” to other work that details the state of
understanding of the dynamics of spun projectiles. Perhaps the original written reference
to discuss the essential physics associated with the trajectory-following behavior is [7], and
that author does not claim originality for the ideas in the paper. While there is likely a
great deal of additional information accessible on the Internet and stored in government
archives, there are two good books [8,9] that present detailed descriptions of how to model
the aerodynamic forces and moments on a spun projectile and the resulting dynamics.

The following section derives equations of motion for a spinning football assuming the
ball is acted on by only gravity and an aerodynamic torque. The torque acts to turn the nose
of the ball away from the direction of flight. In a frame of reference defined by the velocity
vector, the equations of motion are approximately linear and can be solved analytically.
This solution provides a stability condition in terms of a relationship between the spin
momentum and the rate of change of aerodynamic torque with respect to angle relative to
the velocity vector. The solution also identifies two characteristic frequencies associated
with the motion. The next section provides an interpretation of the analytical solution in
terms of a way to visualize the time-varying solution and in terms of quantitative examples.
This section focuses on the spiral pass, and presents quantitative results and interpretations
of those results that differ from the results in [3]. Whenever this occurs in this paper, the
differences are identified and explanations for the differences are provided. A following
shorter section considers similar examples for the screw kick. The rugby screw kick differs
primarily in the smaller magnitudes of the spin and linear velocities. The conclusions note
that this paper only considers one aspect of the problem, and that a more general physical
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model in line with Rae [6] needs to be considered to fully describe the motion. The results
are summarized in a conclusion section which ends by describing the similarity between
the dynamics of a football and a terrestrial gyroscope.

2. Modeling the Torque-Induced Dynamics of the Spinning Football

This section describes a mathematical model for the dynamics of a spinning football,
derives equations for the linear dynamics, and solves those equations. The section begins
with the definition of reference frames. Figure 1 shows a pair of right-handed frames.
The larger set of axes is fixed to the field with the X-axis oriented down the field. The
model does not include lift, so the ball will remain in the plane defined by X and the axis
Y oriented vertically, normal to the playing surface. The Z-axis is oriented to complete a
right-handed frame. The dashed line denotes the trajectory of the ball. The smaller frame
has its origin at the geometric center of the ball with its 1-axis tangent to the trajectory and
its 3-axis perpendicular to the plane containing the trajectory. The small reference frame,
with its 1-axis aligned with the velocity, will be the reference frame in which the equations
of motion will be solved.

Figure 1. Definition of reference frames used in the mathematical model.

The differential equation describing the motion of the velocity-fixed frame relative to
the field-fixed frame is

~̇v =

 0
−g
0

→
v1(t)

v2(t)
v3(t)

 =

 V0 cos Φ0
V0 sin Φ0 − 9.81t

0

. (1)

This equation is readily solved given initial velocity V0 and angle Φ0. Φ denotes the
angle between the velocity vector and the horizontal, and g denotes the local acceleration
of gravity. The corresponding angular velocity of this frame about the Z or 3-axis is

~ωv = v̂× ˙̂v = [0, 0, ωV ]
T → ωv = − g cos Φ

V
(2)

where V and ωv denote the magnitudes of the corresponding vectors, and tan Φ = v2/v1 is
the tangent of the angle between the 1-axis of the velocity-frame and the horizontal plane.
Note that Φ is not related to the orientation of the ball.

Following the example of Price et al. [3], our equations use not the momentum, but the
momentum divided by the transverse moment of inertia It. We will denote this modified
momentum~h and have for Newton’s Second Law

~̇H
It

= ~̇h =
τ

It
(3)
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where τ is an aerodynamic torque defined shortly. The symbol ŝ = [s1, s2, s3]
T denotes a

unit-vector oriented along the spin-axis of the football. The differential equation for ŝ is

˙̂s =~h× ŝ. (4)

Since ŝ is a unit vector, we can compute s1 from the other two values, so the first
equation in Equation (4) is not strictly necessary. These are the equations of motion that
have been used in the previously cited references on football dynamics. They are defined in
the field-fixed frame of reference in Figure 1. The term rotation always refers to the motion
of the unit vector described by Equation (4), spin always refers to the angular motion of
the ball about ŝ. The reference frame moving with the ball in Figure 1 is defined to follow
the dashed line in the figure. The 1-axis of this frame remains tangent to the dashed line.
Writing Equations (3) and (4) in this velocity-fixed frame rotating at angular velocity ~ωV
yields [10]

~̇h + ~ωV ×~h =
τ

It
(5)

and

˙̂s + ~ωV × ŝ =~h× ŝ =

h2s3 − h3s2
h3s1 − h1s3
h1s2 − h2s1

. (6)

The advantage of writing the equations of motion in this frame is that small angle ap-
proximations apply, and the equations for the rotation of the ball can be solved analytically.
In these equations, ŝ and~h are defined in the 1–2–3 frame, and if the initial conditions are
not too large, these vectors will remain close to the velocity vector.

Using the notation in McCoy [8], the aerodynamic torque associated with the over-
turning moment is

τ = 1
2 ρSD‖~v‖CMα ~v× ŝ = 1

2 ρSDV2CMα v̂× ŝ = It Mα[0,−s3, s2]
T

Mα =
ρSDV2CMα

2It

(7)

where D is the maximum diameter of the ball, S is the area π
4 D2, and v̂ = [1, 0, 0] is the unit

vector corresponding to ~v. Note that Equation (7) implies that the torque is perpendicular
to both the velocity and the spin-axis. The symbol CMα denotes the slope at the origin of
the aerodynamic coefficient associated with the overturning moment. This implies that a
linear approximation is made. In the general case, the torque coefficient would be modeled
using a Taylor series (analytical model for CM) [11], a power series (polynomial fit to data),
or a table lookup that are functions of the angle between v̂ and ŝ, δ, where sin δ = v̂× ŝ.

Combining these last three equations, eliminating the equation for ṡ1, and assuming
ωVh2 � ωVh1, which implies h1 is constant, yields in the rotating frame

ṡ2
ṡ3
ḣ2
ḣ3

 =


0 −h1 0 s1
h1 0 −s1 0
0 −Mα 0 0

Mα 0 0 0




s2
s3
h2
h3

+


−ωVs1

0
−ωVh1

0

. (8)

If the angle between the spin or longitudinal axis of the ball and the velocity vector
is small, then we may also assume that s1 ≈ 1. Differentiating the first two equations in
Equation (8) with respect to time, and using the second two to substitute for ḣ2 and ḣ3 in
those equations yields a pair of coupled second-order equations.

s̈2 + h1 ṡ3 −Mαs2 = 0
s̈3 − h1 ṡ2 −Mαs3 = −ωVh1

. (9)
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Multiplying the second equation by i =
√
−1, substituting x = s2 + is3, and −ix =

−is2 + s3 yields the single equation

ẍ− ih1 ẋ−Mαx = −iωVh1. (10)

The solution of this linear constant coefficient equation consists of a particular and a
complementary part. A particular solution can be obtained by simple inspection as

−Mαxp = −Mα(s
p
2 + isp

3 ) = −iωVh1 → −sp
3 Mα = −ωVh1 → sp

3 =
g cos Φh1

MαV
. (11)

The real part of the particular solution sp
2 = 0. For small angles, s3 is the angle between

the vertical plane of the trajectory and the axis of the ball, so −sp
3 It Mα is the torque about

the 2-axis in the velocity-frame. The term −ωV Ith1 is the rate of change of the spin angular
momentum of the football as it follows the trajectory. This demonstrates that the physical
model Equations (5) and (6) predicts that the paradoxical behavior described in Price
et al. [3] occurs. The condition where the ball is rotated away from the velocity vector
by sp

3 and rotating at an angular velocity ωv corresponds to the equilibrium state of the
physical model expressed as any of Equations (8)–(10). The equilibrium condition does not
correspond to a condition where the aerodynamic torque is zero.

Using the quadratic formula to determine the roots of the characteristic equation
associated with the left-hand side of Equation (10) yields the complementary solution.
Adding the complementary solution to the particular solution Equation (11) yields

x(t) = s2 + is3 + isp
3

= C1 exp0.5
(

ih1+
√
−h2

1+4Mα

)
t
+C2 exp0.5

(
ih1−
√
−h2

1+4Mα

)
t
+i g cos Φh1

MαV .
(12)

where the complex constants C1 and C2 are chosen to satisfy the initial conditions. The
complementary solution of the above equation consists of two complex exponential parts

with time constants equal to 0.5
(

ih1 ±
√
−h2

1 + 4Mα

)
. The roots will be purely complex

if h2
1 > 4Mα, and any solution of these differential equations will have finite values;

otherwise, one pair of roots will have a positive real part and the solution will be unstable.
This inequality is the necessary and sufficient condition to ensure that the solution of
Equations (5) and (6) is stable. Assuming this “gyroscopic stability“ criterion is satisfied,
the coefficients multiplying time are purely complex numbers and the complementary
solution is the sum of a pair of harmonic oscillators at two different frequencies. Letting
the symbols ω f and ωs denote the values of the larger (fast) and smaller (slow) frequencies
corresponding to first and second exponents in Equation (12), the equations for the values
of the complex constants are

C1

(
ω f −ωs

)
= ṡ3 − iṡ2 −ωss2 − iωs

(
s3 − sp

3

)
(13)

and
C2

(
ω f −ωs

)
= −ṡ3 + iṡ2 + ω f s2 + iω f

(
s3 − sp

3

)
(14)

The solution Equation (12) can be applied at any point along the trajectory of the ball
to understand the local (in time) behavior of the pass. The wobble is composed of the
sum of a pair of complex oscillators with the frequency dependent on the velocity and the
physical characteristics of the ball. These oscillations are centered in the state-space about
a point that is slightly offset from the origin in a direction perpendicular to the direction
of flight. The location of this point depends on the velocity vector in such a way that the
average torque (as the ball wobbles about this point), is exactly the amount required for
the average rotation rate of the ball to match the rotation rate of the velocity vector. The
state (0, sp

3 ) is an equilibrium point. Note that a ball thrown with this initial condition and
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˙̂s = 0 corresponds to C1 = C2 = 0 and the ball will exhibit no wobble. The next section
will discuss a way to visualize these solutions.

At this point it is possible to discuss some of the shortcomings of the explanation for
the velocity-tracking behavior of the ball in Price et al. [3]. That explanation requires an
initial angle of attack in the vertical plane. The torque associated with this angle of attack
causes a torque that results in the nose of the ball rotating to the left or right of the plane
of the trajectory depending on the spin. It is argued that this is what causes the sideslip
angle that results in the torque Equation (11). It is also argued that this necessarily results
in precession and nutation. The solution above shows that none of this is necessary. The
necessary sideslip will develop even if the angle of attack is zero and there is no wobble. If
the initial condition of the ball is such that the nose of the ball is below the velocity vector
or the initial angular velocity is large enough for the angle of attack to become negative,
the argument provided in [3] will cause the sideslip to have the opposite sign, the torque
will have the opposite sign, and the explanation predicts the angular rotation of the ball
will be in the incorrect direction.

3. Explaining the Torque-Induced Motion of the Spiral Pass

This section examines the motion of a spiral pass by introducing into the mathematical
model the physical characteristics of an American football. The section introduces a
method for the reader to visualize how the two oscillators in the solution combine to
produce the observed motion. The wind-tunnel measurements [12] seem to be the only
available data for the American football’s overturning moment and suggest a value of
CMα = 0.33 rad−1. The units are added to the aerodynamic coefficient to indicate it is the
slope of the non-dimensional moment-coefficient curve. Rae and Streit [12] suggests using
CM = 0.165 sin(2δ) for angles up to 50 deg. The inertia properties of the football [6] are
It = 0.00321 kg m2 and Is = 0.00194 kg m2. These values are reported as measured, but the
citation is a personal communication. The nominal release velocity considered is 27.4 mps
which is slightly over 60 mph, an angle of 30 deg above the horizontal, and a spin rate of
600 rpm. Using this information yields Mα = 191 and h1 = 38, which in combination with
Equation (12) yields a differential equation for the rotational motion of a football

x(t) = C1 e32.01 i t + C2 e5.958 i t + 0.0617 i ≈ C1 e(2π)5 i t + C2 e(2π) i t + 0.06 i. (15)

In the above equation on the right, the two natural frequencies of the football are
expressed in Hertz. The fast mode, ω f , has a frequency of about 5 Hertz and the slow mode,
ω f , has a frequency of about 1 Hertz. For a long pass lasting about 3 s, there will be 15 orbits
of the fast mode and 3 of the slow-mode. The fast-mode frequency of 32 rad s−1 differs
from the value ωwob = 38 given in Table 1 of Price et al. by about 20%; however, the slow-
mode frequency of the actual solution is 2.4 times the value of ωgyr = 2.52. The formula
the authors use to compute ωgyr can be found in the paper by Soodak [13]. Soodak’s
Equations (1) and (1a) are identical to Equations (4) and (3), respectively, except with the
added assumption that the torque τ is constant. Price et al. do not apply the formula
for ωgyr in Soodak [13] correctly. According to their Equation 3, the symbol τ∗ must be
multiplied by the sine of the angle between the spin axis and the velocity vector to obtain
the torque. There are two angles that could be used. One of those is zero, corresponding to
alignment with the velocity vector, in which case ωgyr = 0. This corresponds to torque-free
motion, and it is evident their paradox cannot be resolved under this assumption. The
other possibility is to use the angle sin−1 sp

3 ≈ sp
3 in which case ωgyr = |ωV |, namely, the

angular rotation of the velocity vector. This choice is consistent with the assumptions
associated with Equation (1a) in Soodak [13]. that requires that the torque be constant,
which is contradictory to how it is used in [3]. While the error in the frequency ωwob could
be argued to not be significant, this error effectively invalidates the quantitative results
in [3,4].

Before discussing additional solutions of Equation (15), it is useful to introduce a way
to visualize the motion of the football implied by the equation. Figure 2 shows two axes
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(solid lines) of the velocity-fixed frame of Figure 1. The view in this figure is along the
1-axis of the velocity vector. The 2-axis corresponds to the real component of the solution
x and the 3-axis the complex part. Recalling that ŝ is a unit vector along the ball’s spin-
axis, plotting the components s2 and s3 correspond to plotting the projection of ŝ on this
coordinate plane. Solutions of Equation (15) will typically have the characteristic that the
slow-mode has a larger amplitude than the fast mode when the magnitude of ẋ(0) is equal
to or smaller than x(0) because of the differences in magnitudes of the constants in the
exponents. Stated differently, if |C1| ≈ |C2|, then the initial magnitude of ẋ will be about
five times larger than the magnitude of x, which likely corresponds to a badly thrown pass.
Note that if ẋ = ṡ2 = ṡ3 = 0, it follows from Equations C1 and C2 that |C1| cannot be larger
than |C2|. Assume for a moment that C1 = 0 and only the slow-mode is evident in the
solution. The long arrow in Figure 2 represents the value of the complex solution for this
case. As time moves forward, this arrow traces out the large dashed circle at the slow-mode
frequency, clockwise for a right-handed pass. The figure indicates that the center of this
circle is not the origin of the frame, but is shifted slightly to the right due to the particular
solution sp

3 . The center of rotation associated with this motion is the primed reference frame
with dashed axes. In the illustrated case, the passer is right-handed because this shift is
positive. When C1 is not zero, its contribution to the complex solution is also a circular
orbit except at the fast frequency. This can be visualized as the shorter vector added to the
slow-mode vector. The fast mode traces out the small dashed circle at the fast frequency,
clockwise for a right-handed throw. The origin of this point of rotation for the fast mode
moves along the circle defined by the vector associated with the slow-mode at the slow
frequency. The combined effect is well-characterized by the word wobble.

Figure 2. Two-bar linkage analogy for visualizing precession and nutation.

Precession can be defined as an Euler angle associated with a vector rotated about
an axis. In the case here that would be the angle of x measured about the 1′-axis in
Figure 2 and referenced to either the 2 or 3 axes. Nutation can be defined as the Euler angle
between the 1′-axis and the point ŝ(t); the sine of this angle is equal to the magnitude of the
complementary part of the solution of x(t). Note that as long as sp

3 is small, the distinction
between angles measured in the two frames is not significant. Based on the discussion
of the previous paragraph, the precession mode will be associated with the frequency
associated with the larger of |C1| or |C2|. Price et al. [3] repeatedly assert that precession
occurs at the fast frequency. This seems to be an assumption on their part, as it is clear that
this depends on the initial conditions. Experience with solutions of Equation (12) suggests
that for the spiral pass, the precession frequency is always the slow mode frequency for a
well-thrown football and that large values of ṡ2(0) and ṡ3(0) (relative to s2 and s3) need to
be assumed to change this. This statement might be formalized given a definition of a well
thrown pass in terms of the absolute magnitude of x(0) and its magnitude relative to ẋ(0).
If the torque on the ball were suddenly removed, the precessional motion associated with



Dynamics 2022, 2 34

the longer vector in Figure 2 would abruptly cease and that vector would stop rotating.
The shorter vector would continue to rotate about the stationary tip of the longer vector
except at the torque-free frequency h1 It/Is.

The image in Figure 3 shows a solution of Equation (15) under the assumption that
the ball is released with its symmetry axis and the velocity vector initially aligned, and
the symmetry axis is not rotating relative to the field. This corresponds to C1 = 0.002214
and C2 = −0.06339. Since C1 is much smaller than C2, the solution will be dominated by
the slow mode. These initial conditions have been associated with a notion of a perfect
pass, ref. [3] and correspond to the results in Figure 3 of that reference. The red lines in the
figure are data digitally sampled from that figure. The same 2.8 s duration of the simulation
was also used in Equation (15) and are plotted in blue. It is evident that there is a significant
difference in the frequency of the motion computed in Price et al. and that predicted by the
analytical solution of the equations. This is evident in all of the quantitative results of Price
et al. The predicted lateral offset associated with the mean value of SY is also much larger
that the value computed analytically. This suggests that the torque coefficient used may
have been too small, but that is not the only possibility.

Figure 3. Comparison of time series in Price et al. with analytical solution; initial conditions have
ball-axis aligned with velocity and not rotating relative to the field [3].

A different comparison with the analytical solution to this result in Price et al. is
given in Figure 4. The solid blue and red circles are the same data as in Figure 3, and
correspond to the analytical solution here and the data from Price et al., respectively. This
figure also includes data sampled from Figure 9 of Rae [6]. We do not agree with the claim
by Price et al. that their results compare favorably with Rae. The apparent agreement
with the solution computed here and Rae suggested by Figure 4 is possibly misleading. A
comparison of time-series is required to determine if there is agreement. This difference is
expected though. The problem solved by Rae is substantially different than the one solved
here. The dashed line in the figure was computed using the analytical solution but with
a value of Mα = 89; namely, half the correct value. The small red circle indicates where
that solution ends at 2.8 s, close to where the solution by Price et al. ends. This change
yields a result more similar to Price et al., but is not sufficient to explain how their results
were actually computed. The value 89 is based on using half the value of τ∗ = 0.308 from
Table 1 in Price et al. While the difference is not significant, the value used by Rae [6] is
0.33. Since the physical model assumed in this paper and [3] are the same, the results of the
last two figures indicate that the numerical method used by Price et al. contains an error.
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Figure 4. Comparison of angle between ball and velocity axes in Price et al. and Rae, with analytical
solution; initial conditions have ball-axis aligned with velocity and not rotating relative to the
field [3,6].

In the paper by Price et al., the authors do not make the proper distinction between
the terms pitch angle and yaw angle, and the terms angle of attack (α) and sideslip angle
(β) [14]. They incorrectly state that Rae uses the term slideslip [sic], suggesting that no
distinction is in fact being made. Price et al. use the terms pitch and yaw in place of the
correct aerodynamic terms; for example, after Figure 4 in their paper. Pitch angle and yaw
angle refer to the orientation of the axis of the ball relative to a reference frame fixed to
the field. These are Euler angles associated with their vector ŝ relative to the field-fixed
frame. Angle of attack and sideslip are Euler angles associated with the orientation of
the ball relative to the velocity vector and are associated with their vector components
SX and SY. These four angles are all independent variables of the motion in the three
dimensional case. The sideslip and yaw angle are equal in this paper and the paper by
Price et al. only because the motion is constrained to be in a vertical plane; in general,
they will be different. In the paper by Rae [6] they are different, and the distinction is
evident in the results. In Rae’s paper, Figures 5, 7 and 9 plot the angle of attack vs. sideslip,
and Figures 6, 8, and 10 plot pitch angle (θ) vs. yaw angle (ψ). Each pair of plots is very
different. If the angle between the axis of the ball and the velocity vector is small, then
α ≈ SX = s2 and −β ≈ SY = s3. It is essential when instructing students on material like
this to make the proper distinction between pitch/yaw and angle of attack/sideslip. In
many cases they are identical (e.g., in a wind tunnel), and failure to recognize the difference
can lead to confusion. It is also essential to clear communication.

Figure 5 shows the solution of Equation (15) assuming the nose of the football is
released 10 deg above the velocity vector and not rotating relative to the field. This
corresponds to C1 = −0.03990 + 0.002214i and C2 = 0.2144 − 0.06394i. These results
correspond to the less than perfect pass in Figure 7 [3] and Figure 5 [6]. This example
provides an opportunity to demonstrate how to apply the interpretation of the motion
in terms of the discussion associated with Figure 2. The long arrow associated with the
slow-mode rotates with its tip midway between an inner-circle defined by the cusps, and a
circle that just contains the entire motion. The tip of this arrow transcribes that circle from
its center at s3 = 0.063. The tip of the short arrow associated with the fast mode follows
the line shown in the figure. The effect of this motion includes a component toward and
away from the center and this is nutation. In this case, the angular velocity associated
with nutation is nearly constant, but the angular velocity associated with precession varies
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substantially. It is larger when the tip of the fast mode frequency is moving in the same
direction as the slow-mode, and slower otherwise.

Figure 5. Rotation of the football assuming initial conditions have the initial ball-axis 10 deg above
the velocity and not rotating relative to the field.

The result in Figure 6 corresponds to the ball being released with the ball-axis aligned
with the velocity vector and not rotating vertically. The initial value of ṡ3 is chosen to
correspond to the ball’s nose rotating to the right at a rate of 30 deg/s. As with the previous
example, the ball’s nutation angle has an approximately periodic character as it moves
toward and away from the axis of rotation. The precession angle occasionally moves back
upon itself. For this to happen, the angular velocity associated with the precession Euler
angle must occasionally be negative for short periods of time.

Figure 6. Rotation of the football assuming initial yaw angle aligned with the velocity vector, not
rotating about the Z axis, but with ṡ3 corresponding to a value of 30 deg/s.

4. Examples Considering the Rugby Screw Kick

Thy physical model presented here is equally applicable to the motion of the screw
kick, if the physical parameters for a rugby ball are used in the equations. The rugby
ball is similar in size and shape to the American football. The paper [15] reports a value
CMα = 0.147 for the lift coefficient slope. The aerodynamic data in [15] is normalized by
the volume of the ball. The value of 0.147 was obtained by multiplying the reported value
by the ratio of maximum cross-section to volume so that the value is comparable to the
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value reported by Rae and Streit [12]. The resulting value is less than half that reported
for the American football. This difference seems large given the similarity in shapes of the
ball. There does not seem to be any obvious systematic error in either paper other than
to observe that these measurements are difficult to make in a wind tunnel. The difficulty
arises from the need to attach the model to a sting, and there is no good way to remove the
effect of the sting on the measurements.

The paper [15] uses a formula from [2] for a thin-walled ellipsoid to calculate values of
Is = 0.0026 kg-m2 and It = 0.0033 kg-m2 for the moments of inertia of the rugby football.
The paper [6] compares measured inertia values with the results using the formula, and the
agreement is good; especially, for the ratio of the two moments of inertia. The paper [16]
suggests ranges for the velocity of the screw kick of 15–25 mps and for the spin rate of
60–600 rpm. For the analysis presented here, a velocity of 20 mps and spin rate of 300 rpm
are used. Under these conditions, the time-of-flight is just over 2 s. Note that the the stability
criterion for the ball in the screw kick fails to be satisfied for a spin rate of about 131 rpm.
For the selected velocity and spin rate, the frequencies associated with the complimentary
solution are ω f = 22.1 rad s−1(3.52 Hz) and ωs = 2.65 rad s−1(0.422 Hz). Assuming the
screw kick leaves the foot with the symmetry axis and the velocity vector aligned, the
solution of the linearized dynamics is plotted in Figure 7. This initial condition corresponds
to the conditions of Figure 3, except that the spin rate and velocity are slower for the rugby
ball. The results show that for the 2 s time-of-flight the total precession is slightly less than
one rotation. Like the spiral pass of the American football, this initial condition results in
little nutation. This figure also shows that the average value of s3 is around 10 deg. This is
the angle required to yield an average aerodynamic torque large enough to cause the ball
to rotate with the velocity vector. The result in Figure 8 is for an initial condition with the
symmetry axis of the ball initially 10 deg above the velocity vector. This release is the same
as that in Figure 5, except for the spin rate and velocity. Note that the maximum amplitude
of s3 is over 20 deg, which is around the limit where we would expect the small angle
assumption made to begin to be inaccurate. Equation (11) indicates that the magnitude
of sp

3 is proportional to the inverse of the cube of the velocity, so modest decreases in the
velocity will result in proportionately larger increases in the average sideslip angle. This
suggests that studies of rugby screw kicks should be performed with non-linear models.

Figure 7. Rugby screw kick with initial conditions having the ball-axis aligned with velocity and not
rotating relative to the field.
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Figure 8. Rugby screw kick with initial conditions having ball-axis 10 deg above the velocity and not
rotating relative to the field.

5. Conclusions

This paper addressed the question of why the symmetry-axis of a spinning football
tends to align itself with its velocity vector. Previous papers correctly hypothesized that
this was caused by a torque acting on the football, but did not provide mathematical
evidence derived from a hypothesized physical model that this should be the case. This
paper showed that a simple model including only gravity and an aerodynamic torque
predicted the phenomena. This paper showed that the equilibrium state of the physical
model is associated with a torque that exactly causes the required rotation and that the
ball’s precession and nutation is centered about this state. This paper also presented a way
of interpreting the interaction of the two harmonic modes of the football’s motion. The
paper also showed that the frequencies ωwob and ωgyr [3,4], assumed to be characteristic
of the motion of a spiral pass, are not correct for an American football. Finally, several
quantitative examples were discussed comparing our solutions with prior results, and
illustrating the character of the motion of the football when subject only to gravity and
an aerodynamic torque. Results were presented for both a spiral pass and a screw kick.
The results suggest that at the lower velocities of the rugby ball, a non-linear analysis may
be required.

It is important to realize that the equations described here and in the literature as-
sociated with the question of the paradox are a simplification of the motion. During the
pass considered in the examples, the change in velocity from release to the apex of the
trajectory results in a reduction of the moment coefficient by 25%. There are also other
forces and moments. The results of Rae [6] additionally consider lift, drag, and the Magnus
force. Rae and Streit [12] conclude that the Magnus moment is negligible relative to the
force. This may be correct, but it is counter to experience with projectiles [8]. The results of
this paper should be interpreted as approximating the behavior over short periods of time,
and not the entire trajectory. No prior works seem to consider the effect of aerodynamic
damping on the motion of the football during the spiral pass or screw kick. One of these
moments acts to reduce the spin-rate, and the other the precession and nutation rates.
Because of the higher angular velocities associated with the fast mode, this effect will tend
to have a stronger effect on that motion. It may be useful to revisit the modeling of the
general motion of the pass to validate the results of Rae [6] and to consider the impact
of the damping moments on the motion. It would also be useful to derive the sufficient
stability condition in the general case.
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Price et al. [3] in their paper explicitly reject that there exists an analogy between the
motion of a gyroscope and a spiral pass. Consider a frictionless gyroscope placed on a
frictionless table in a vacuum. The equations of motion of the football and the gyroscope
are nearly identical, the only difference is the physical origin of the torque; gravity in the
case of a gyroscope and air flow in the case of a football. If the table is sitting on the surface
of the Earth, the surface of the table will rotate. After an extended period of time, the axis of
the gyroscope will still be nearly perpendicular to the table. For this to happen, there must
be a torque acting on the gyroscope. This torque arises because the axis of the gyroscope is
on average tilted slightly to the south. A mathematical analysis of this problem will show
that essentially the same equations describe the terrestrial gyroscope as the spiral pass,
with the rotation of the gravity vector replacing the rotating velocity vector. A stability
criterion similar to the one derived here also arises in the solution of the equations for the
terrestrial gyroscope. In closing, we note that the papers [3,4] contain quantitative errors,
significant errors in interpretation, and incorrect use of terminology. The resolution given
for the paradox does not cover all possible situations, including the one where the nose
of the ball is released below the velocity vector. The papers are perhaps detrimental to
understanding the problem considered in this paper.
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