
����������
�������

Citation: Wilson, D.C.; Deo, R.K.;

Corcoran, J. Assessment of

Differential Forest Growth Following

Disturbance in Minnesota, USA.

Earth 2022, 3, 76–92. https://doi.org/

10.3390/earth3010006

Academic Editor: Tommaso Caloiero

Received: 24 November 2021

Accepted: 13 January 2022

Published: 16 January 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Article

Assessment of Differential Forest Growth Following
Disturbance in Minnesota, USA
David C. Wilson 1,* , Ram K. Deo 2 and Jennifer Corcoran 2

1 Minnesota Department of Natural Resources, Division of Forestry—Guideline Monitoring Program,
Grand Rapids, MN 55744, USA

2 Minnesota Department of Natural Resources, Division of Forestry—Resource Assessment, St. Paul,
MN 55155, USA; ram.deo@state.mn.us (R.K.D.); Jennifer.Corcoran@state.mn.us (J.C.)

* Correspondence: David.C.Wilson@state.mn.us

Abstract: We used LiDAR metrics and satellite imagery to examine regeneration on forested sites
disturbed via harvest or natural means over a 44-year period. We tested the effectiveness of older
low-density LiDAR elevation data in producing information related to existing levels of above
ground biomass (AGB). To accomplish this, we paired the elevation data with a time series of wetness
and greenness indices derived from Landsat satellite imagery to model changes in AGB for sites
experiencing different agents of change. Current AGB was determined from high-density LiDAR
acquired in northern Minnesota, USA. We then compared high-density LiDAR-based AGB and
estimates modeled using Landsat and low-density LiDAR indices for 10,068 sites. Clear differences
were found in standing AGB and accumulation rates between sites disturbed by different agents of
change. Biomass accumulation following disturbance appears to decrease rapidly following an initial
spike as stands 1asZX respond to newly opened growing space. Harvested sites experienced a roughly
six-fold increase in the rate of biomass accumulation compared to sites subjected to stand replacing
fire or insect and disease, and a 20% increase in productivity when compared to sites subjected to
wind mediated canopy loss. Over time, this resulted in clear differences in standing AGB.

Keywords: LiDAR; Landsat; imagery; random forest; canopy disturbance; regeneration; above
ground biomass; forest management

1. Introduction

A question that has long been pondered by foresters, biometricians, and ecologists
is whether harvested sites regenerate similarly to sites disturbed by natural agents [1–4],
or if there are important post-disturbance structural and compositional differences that
should be considered [5,6]. The rate of stem growth [3], density of stems, and species mix in
regenerating stands is related to different intermediate silvicultural treatments [6]. Because
of these and other disturbance factors, the potential net carbon sink [3,7,8] and economic
values that forests represent will vary by site. While prior research has assessed recovery
of forest canopy cover following disturbance [3,9,10], alternative metrics incorporating
information on canopy height, tree density, and vertical and horizontal structure of the
canopy hold the potential to enhance our understanding of forest resilience and recovery.
Above ground biomass (AGB) provides a reliable metric related to these forest characteris-
tics [11,12]. Individual stand-level estimates can be calculated from field inventory data
alone (design-based), whereas landscape-scale spatial estimates would require a combina-
tion of plot-based inventory (PBI) and remotely sensed data such as satellite imagery and
LiDAR [13].

Standing biomass is the summation of biomass accumulation over time, plus any initial
AGB remaining after the disturbance. Current standing biomass is our best indication
of differences in stand conditions following disturbance and gives us an estimate of the
absolute level of productivity if we know the level of standing biomass immediately
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following a disturbance. Here, we focus on developing methodology needed to provide
temporally specific site level estimates of AGB across a forested landscape subjected to
a variety of canopy disturbances over many years. A better understanding of site- and
landscape-scale differences in AGB storage and development with respect to disturbance
agents may facilitate forest management for a multitude of interests, ranging from recreation
and timber production to long-term carbon sequestration and management for forest
resiliency in a changing climate [13,14]. Because the approach described herein is novel and
leverages a wide range of data sources and analytical methods, very few comparable studies
exist with which to compare our results. Nonetheless, a range of research foundational to
our approach is described herein.

The present research is closely related to our understanding of how forests (an im-
portant form of green infrastructure) relate to climate change, and our results may inform
potential management decisions needed to address this issue. However, our present focus
is on understanding potential differences in forest regeneration following various types
of disturbance. We do not specifically explore interactions between climate change, natu-
ral and anthropogenic disturbance, or resiliency of forest ecosystems in the face of such
changes. Instead, we refer readers to the growing body of work related to these important
issues [8–10,15–20].

Importantly, White et al. [3] confirmed the utility of time-series Landsat spectral data in
assessments of post-disturbance recovery from wildfire and harvest at the landscape level.
Recent advances in the availability of moderately high-resolution satellite imagery coupled
with the enhanced processing capabilities of super-computers or cloud platforms provides
an opportunity to use broad-scale remote sensing approaches to detect forest canopy change
and regeneration. Vogeler et al. [21,22] have detailed an approach utilizing the LandTrendr
algorithm [1,23] on the Google Earth Engine (GEE) platform with 97.2% ± 1.9% validation
accuracy for change vs. no change. This method maps forest canopy change (i.e., “change
polygons”) at the landscape scale and estimates the timing and type of disturbances
taking place between growing seasons (e.g., fast change). LandTrendr is based on the
pixel-level trajectory of annual spectral reflectance values from forest canopies observed
through Landsat time-series imagery collected during the peak growing seasons. The
Minnesota Department of Natural Resources (MNDNR), Division of Forestry, Guideline
Monitoring Program (GMP) has transitioned to using this method for harvest detection
and site selection prior to field monitoring of the implementation of sustainable forest
management practices. Although Vogeler et al. [22] report high user’s accuracies for
disturbance agent classifications (80.0%, 89.6%, 89.7%, 90.2%, 92.9%, and 95.6% accuracy
for wind, other disturbances (e.g., insect, disease, drought, or unspecified), flood, fire,
conversion, and harvest, respectively), the GMP is currently assessing the spatial, temporal,
and classification accuracy of this GEE approach to change detection via an independent
use case related to timber harvest monitoring in Minnesota, USA. A raster version of these
fast change data, covering 44 years from 1974 to 2018 with a minimum mapping unit of
one hectare, can be found on the Minnesota Geospatial Commons website [24].

Increasing acquisitions of LiDAR, an advanced remote sensing technology able to
accurately characterize forest structure, and recent advances in analytical capabilities have
provided powerful means for assessing AGB in forested settings [25–28]. The LiDAR-based
forest inventory still requires sample plot measurements on the ground, and multi-temporal
LiDAR collections can provide the basis for development of growth and yield models [28].
MNDNR initiated LiDAR acquisitions suitable for several natural resource applications in
Minnesota in 2008. However, these initial statewide acquisitions were low point density
and did not include a PBI component. High density LiDAR acquisitions paired with
PBI for parts of Cass and Lake counties were initiated in 2017, enabling development of
LiDAR-based inventory metrics for these areas, and providing LiDAR point cloud data
for two points in time. These multi-temporal LiDAR datasets provide important baseline
information across large landscapes and administrative areas. Implementation of the
Minnesota LiDAR Plan has begun and, if successful, will result in acquisitions of high-
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density LiDAR statewide. This new statewide high-density LiDAR dataset paired with PBI
fieldwork will enhance state forest inventories [29,30]. When combined with temporally
referenced spectral indices, these data have the potential to provide important information
related to forest composition, structure, growth, and productivity across substantial spatial
extents (e.g., management units to ecological landscapes).

Here, we test the hypothesis that statewide low-density LiDAR acquired in Minnesota
from 2008 to 2012 (circa 2010), paired with Landsat-derived spectral indices for growing
seasons between 1974 and 2018 can be used in a modeling environment to create accurate
estimates of standing biomass over time (past, present, and future) with ground truth
referenced to AGB estimates derived from high-density LiDAR and PBI datasets acquired
in 2017 and 2018 in Cass and Lake Counties. In doing so, we test the ability of satellite-
derived spectral indices to supplement, augment, and correct for potential misinformation
represented in older LiDAR acquisitions (resulting from ongoing disturbance and growth
since time of acquisition). We also examine differential forest growth after canopy distur-
bance. Specifically, we test the null hypothesis that there is no significant difference in mean
biomass accumulation over time among different disturbance agents on change polygons
identified by Vogeler et al. [21]. This work combines and builds on multiple lines of inquiry
related to forest inventory [3,28,31], remote sensing [1,3,21–23], and forecasting [28,31,32]
methodology to illustrate a means of producing time series estimates of AGB for forested
regions of the world where the necessary data resources exist.

2. Materials and Methods
2.1. Research Landscape and Data Preparation

The climate in Minnesota (north-central United States of America) is humid continental
with summertime high temperatures averaging ~25 ◦C in the north and ~30 ◦C in the south
with extremes as high as 46 ◦C. Winters in Minnesota are cold with average temperatures
well below freezing (extremes may reach −51 ◦C). Average annual precipitation ranges from
890 mm in the southeast to 510 mm in the northwest with substantial snow accumulation
during winter months. The average growing season ranges from 90 days in the north to
160 days in the southeast [33]. The glacial till plain landscapes in the study areas (Figure 1)
are composed substantially of southern boreal forest and mixed hardwood forest (dense
conifer and mixed conifer–deciduous), interspersed with significant numbers of wetlands
and glacial lakes. Timber harvest, fires, windstorms, floods, insect infestations, and diseases
continue to shape Minnesota’s forested landscape (Table 1).

The acquisition areas for two high density LiDAR pilot sites in Cass and Lake Coun-
ties (total about 600,000 hectares) in northern Minnesota (Figure 1) were selected as the
areas of interest for this study. LiDAR-derived AGB was considered as the response vari-
able, which is assumed to be related to regeneration of forest stands disturbed by various
agents of change. The high-density LiDAR for Cass and Lake Counties, acquired during
autumn 2017 and 2018 using different sensors, contained an average of 32 and 54 points
per square meter, respectively. The results of LiDAR dependent inventory models in-
cluding AGB are unpublished but reported to the Legislative Citizens Commission on
Minnesota Resources [34]. The initial analysis for model accuracy is based on pixel/plot
level comparisons of predictions and field observations.

The Landsat family of satellites has been collecting earth imagery continuously since
1974 using various sensors. Currently, Landsat 8 collects earth imagery at 15 m and 30 m
resolutions with a 16-day repeat observation cycle. Current collections include 11 bands
of visible, near-infrared, short-wave infrared, and thermal infrared light [35]. Recently,
the full collection of Landsat data has become available for public use via the GEE cloud
computing environment. We use this rich library of earth imagery to produce time-series of
tasseled cap [36] brightness and greenness indices using cloud free season-averaged images
(9–10 observations per growing season) for years between 1974 and 2018. These methods
followed intermediate steps used by Vogeler et al. [21] employing the ee-LandsatLinkr [37]
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and LandTrendr [1,14] algorithms, available via GEE, to detect changed/disturbed areas
(polygons), along with classification of change agents over time.

Earth 2021, 2, FOR PEER REVIEW 4 
 

 

 
Figure 1. Cass and Lake County Minnesota study sites (yellow) with statewide forest canopy (green) 
and disturbed areas (black). Coordinate system: North American Datum of 1983, Universal Trans-
verse Mercator Zone 15 North. For reference, 1 degree is equivalent to approximately 110 km in the 
north to south direction, or 78 km in the east to west direction. 

Table 1. Area disturbed (hectares) within the study area (Figure 1) displayed by year of disturbance 
(1975–2017) and disturbance agent. This table includes areas corresponding to overlapping disturb-
ances where more than one change event has occurred. 

Year Conversion Fire Flood Harvest Other Wind Total 
1975 2.61 - - 6.57 - 2.52 11.7 
1976 - - 10.89 54.54 - 11.7 77.1 
1977 - 1.08 11.34 432 23.67 52.2 520.3 
1978 - - 81.36 879.87 4.23 40.68 1006.1 
1979 - 11.07 123.57 1330.68 6.03 374.31 1845.7 
1980 4.05 - 100.71 260.35 - 7.47 372.6 
1981 - - 83.24 506.76 - 17.1 607.1 
1982 - - 5.94 325.26 - 17.37 348.6 
1983 - - 15.66 400.11 - 38.07 453.8 
1984 - - 4.32 96.95 - - 101.3 
1985 - 2.07 125.31 2052.88 5.4 183.6 2369.3 
1986 6.46 15.03 50.85 676.92 - 39.96 789.2 
1987 7.02 1.26 154.8 1785.24 - 291.01 2239.3 
1988 - - 26.19 606.51 - 79.11 711.8 

Figure 1. Cass and Lake County Minnesota study sites (yellow) with statewide forest canopy
(green) and disturbed areas (black). Coordinate system: North American Datum of 1983, Universal
Transverse Mercator Zone 15 North. For reference, 1 degree is equivalent to approximately 110 km in
the north to south direction, or 78 km in the east to west direction.

Table 1. Area disturbed (hectares) within the study area (Figure 1) displayed by year of distur-
bance (1975–2017) and disturbance agent. This table includes areas corresponding to overlapping
disturbances where more than one change event has occurred.

Year Conversion Fire Flood Harvest Other Wind Total
1975 2.61 - - 6.57 - 2.52 11.7
1976 - - 10.89 54.54 - 11.7 77.1
1977 - 1.08 11.34 432 23.67 52.2 520.3
1978 - - 81.36 879.87 4.23 40.68 1006.1
1979 - 11.07 123.57 1330.68 6.03 374.31 1845.7
1980 4.05 - 100.71 260.35 - 7.47 372.6
1981 - - 83.24 506.76 - 17.1 607.1
1982 - - 5.94 325.26 - 17.37 348.6
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Table 1. Cont.

Year Conversion Fire Flood Harvest Other Wind Total
1983 - - 15.66 400.11 - 38.07 453.8
1984 - - 4.32 96.95 - - 101.3
1985 - 2.07 125.31 2052.88 5.4 183.6 2369.3
1986 6.46 15.03 50.85 676.92 - 39.96 789.2
1987 7.02 1.26 154.8 1785.24 - 291.01 2239.3
1988 - - 26.19 606.51 - 79.11 711.8
1989 - 9.27 12.03 935.97 - 225.54 1182.8
1990 - - 10.98 1044.52 1.17 291.05 1347.7
1991 1.25 1.8 33.21 2203.68 1.08 387.06 2628.1
1992 - - 71.46 896.04 - 180.77 1148.3
1993 - - 53.73 892.68 - 232.75 1179.2
1994 5.58 - 199.98 1654.21 3.06 550.5 2413.3
1995 - - 103.13 979.2 - 78.94 1161.3
1996 - 7.74 32.13 1007.00 1.08 75.03 1123.0
1997 - 2.34 593.51 1497.26 - 391.03 2484.1
1998 - - 221.95 1531.17 12.54 162.42 1928.1
1999 - - 87.93 1528.44 18.27 831.02 2465.7
2000 26.82 - 139.41 782.71 46.26 355.82 1351.0
2001 2.52 11.79 102.42 1416.46 89.46 697.52 2320.2
2002 1.08 3.78 97.38 668.49 - 168.57 939.3
2003 - - 232.2 591.33 - 39.42 863.0
2004 1.89 1.89 42.57 733.4 - 450.48 1230.2
2005 2.52 1.44 57.74 969.21 - 124.2 1155.1
2006 2.88 13.5 74.52 578.56 - 73.71 743.2
2007 4.23 17.73 66.69 814.59 3.15 233.2 1139.6
2008 - 16.47 20.38 1096.24 - 140.19 1273.3
2009 5.94 51.72 110.97 1567.99 5.58 287.55 2029.8
2010 31.95 24.75 50.58 1077.25 - 69.75 1254.3
2011 - 4.77 23.22 450.26 - 20.07 498.3
2012 30.18 383.49 423.09 1571.16 - 756.24 3164.2
2013 - 117.54 340.17 1104.55 - 250.55 1812.8
2014 4.05 121.5 177.2 834.22 - 134.72 1271.7
2015 31.32 123.21 292.53 1919.08 4.86 251.23 2622.2
2016 16.75 18.63 27.41 714.84 8.82 1342.41 2128.9
2017 - - 2.61 17.91 - 8.55 29.1
Total 189.1 963.9 4495.3 40,493.1 234.7 9965.4 56,341.4

We used change polygons produced by the full process as test subjects for AGB mod-
elling, incorporating both satellite-based spectral indices and LiDAR-derived information
as predictive variables. Low-density LiDAR from Minnesota’s first ever statewide collect
(circa 2010—hereafter called statewide 2010) was processed to produce a digital terrain
model (DTM—ground surface returns), digital surface model (DSM—top of canopy re-
turns), a canopy height model (CHM = DSM − DTM), and several other grid metrics
(Table 2). Zonal statistics (mean, minimum, maximum, standard deviation, majority, etc.)
derived from LiDAR and satellite imagery were then calculated for the change polygons
and used as predictors in our AGB modelling effort (Table 2).



Earth 2022, 3 81

Table 2. Descriptions for spectral indices and LiDAR data used as predictors in models of above
ground biomass.

Index (Predictor) Description (with Reference to Individual Change Polygons)

cvTCW Coefficient of variation for tasseled cap wetness values (of all 30-m pixels)
majorityTCG Majority of tasseled cap greenness values (of all 30-m pixels)

maxTCG Maximum of tasseled cap greenness values (of all 30-m pixels)
maxTCW Maximum of tasseled cap wetness values (of all 30-m pixels)

meanTCW Mean of tasseled cap wetness values (of all 30-m pixels)
minTCG Minimum of tasseled cap greenness values (of all 30-m pixels)
minTCW Minimum of tasseled cap wetness values (of all 30-m pixels)

stdTCG Standard deviation of tasseled cap greenness values (of all 30-m pixels)
stdTCW Standard deviation of tasseled cap wetness values (of all 30-m pixels)

SumGreen Sum of mean tasseled cap greenness index since time of disturbance (of all 30-m pixels)
maxElevAv_LowDensity Maximum of average elevations (of 20-m statewide LiDAR grids/pixels)

maxElevMax_LowDensity Maximum of maximum elevations (of 20-m statewide LiDAR grids/pixels)
maxElevP50_LowDensity Maximum of 50th percentile elevations (of 20-m statewide LiDAR grids/pixels)
maxPcCOV_LowDensity Maximum of percent cover (of 20-m statewide LiDAR grids/pixels)

meanElevAv_LowDensity Mean of average elevations (of 20-m statewide LiDAR grids/pixels)
meanElevMax_LowDensity Mean of maximum elevations (of 20-m statewide LiDAR grids/pixels)
meanElevP50_LowDensity Mean of 50th percentile elevations (of 20-m statewide LiDAR grids/pixels)
meanPcCOV_LowDensity Mean of percent cover (of 20-m statewide LiDAR grids/pixels)

minElevAv_LowDensity Minimum of average elevations (of 20-m statewide LiDAR grids/pixels)
minElevMax_LowDensity Minimum of maximum elevations (of 20-m statewide LiDAR grids/pixels)
minElevP50_LowDensity Minimum of 50th percentile elevations (of 20-m statewide LiDAR grids/pixels)
minPcCOV_LowDensity Minimum of percent cover (of 20-m statewide LiDAR grids/pixels)
stdElevAv_LowDensity Standard deviation of average elevations (of 20-m statewide LiDAR grids/pixels)

stdElevMax_LowDensity Standard deviation of maximum elevations (of 20-m statewide LiDAR grids/pixels)
stdElevP50_LowDensity Standard deviation of 50th percentile elevations (of 20-m statewide LiDAR grids/pixels)
stdPcCOV_LowDensity Standard deviation of percent cover (of 20-m statewide LiDAR grids/pixels)

time Count in years since disturbance

2.2. Data Analysis and Modelling Framework

Landsat time series and LiDAR-derived predictors (all LiDAR indices were derived
using FUSION software [38]) were summarized within the boundary of each change
polygon (minimum, maximum, mean, majority, standard deviation, coefficient of variation,
and sum over time since disturbance) by running zonal statistics in a GIS environment
to merge predictors with the corresponding polygon-level AGB for regression modeling
(Supplementary Materials). The tasseled cap greenness index was also summarized over
time for each polygon to provide a statistic closely related (R-squared = 0.86) to net CO2
uptake by the forest [39]. We also used the disturbance agent and year of change identified
by Vogeler et al. [21] for change polygons as model predictors.

We considered two samples of the data (i.e., number of change polygons with mini-
mum size of one hectare) for AGB modeling within the high-density LiDAR acquisition
areas. These samples correspond to 7996 and 10,068 sites experiencing disturbance before
2011 and 2018, respectively.

In both samples, statewide 2010 LiDAR and time-series Landsat variables from 1974
to 2018 were used as predictors. One sample (79.4% of sites) represented all canopy
disturbances prior to initial statewide LiDAR acquisition (circa 2010), while in the other
sample, 20.6% experienced disturbance after the initial statewide LiDAR acquisition.

Because standing biomass is relevant to our understanding of site-level differences
resulting from various disturbance agents, we examined this metric with additional de-
tail. We used all available spatial predictors including high-density LiDAR and the full
suite of spectral indices for the comparison of mean standing biomass across agent-wise
disturbances for the time since disturbance (n = 10,068).

Time since disturbance was calculated annually for every change polygon as the
difference between the date of disturbance and the appropriate date (year) of observation
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after disturbance (1974–2018 for Landsat indices, 2011 for the low-density LiDAR, and 2017
or 2018 for the high-density LiDAR). In total, changes in 31 unique predictor variables
(Table 2) were considered across 44 years. All data were processed and assembled into
a modeling data frame (Supplementary Data) using R [40]. The sum of accumulated
greenness since time of disturbance was also summarized for each polygon using the dplyr
package [41] from the tidyverse suite of data manipulation tools [42] in R.

The initial set of predictors was reduced using a variable selection process to identify
and remove multi-collinear predictors. This selection process used a multivariate variable
screening method based on QR-matrix decomposition [26]. Subsequently, a randomFor-
est [43,44] (RF)-based model selection procedure was applied to obtain a parsimonious set
of predictor variables. The set of predictors obtained from the RF model selection procedure
was also subjected to forward and backward methods of stepwise regression [45] to identify
statistically significant predictors.

The optimal sets of predictors were then used in the RF modeling framework. The RF
method can estimate and rank the importance of predictors for each model. RF also gives an
unbiased estimate of mean squared error through internal cross-validation and hence does
not require a separate validation dataset. RF creates an ensemble of multiple regression tree
models (for continuous variables), each constructed from a bootstrap subsample (about
66%) of the training data frame, and estimates model mean squared error (MSE) as the
average value of the errors met with the out-of-bag data corresponding to approximately
33% of the plots that are withheld from the bootstrap subsample. Finally, AGB models were
fit for each disturbance agent and for all agents combined. All RF models were created
using a random subset of the data selected without replacement, selection of 2 random
predictors to be removed from consideration at each branch of the “tree” (e.g., mtry), and a
maximum of 501 trees generated for each model. See Figure 2 for a generalized overview
of the full data management and model development process.

Finally, we examined potential relationships between disturbance agent and post-
disturbance biomass accumulation rates. One necessary step to looking at biomass accumu-
lation over time was to model initial biomass remaining at the time/year of disturbance,
because the required formula for calculating net accumulation (e.g., growth − mortality)
is (StandingBiomass − InitialBiomass)/Time. For estimation of initial AGB, we used the
model and dataset from the RF modeling process using 7996 sites. The RF model was used
to make predictions of initial biomass for the year of disturbance. Hence, data used to
inform the estimate of initial biomass were selected from sites experiencing disturbance
prior to the date of low-density LiDAR collection (i.e., 2010). We use the 5–15-year window
following disturbance as a benchmark for biomass accumulation because initially high
variability related to recruitment is more stable by 5 years. In addition, this date range pro-
vides a large enough sample to assess error from our estimate of biomass post-disturbance.
In total, this means we have a chance to see the signal from biomass accumulation within
this window. Average modeled AGB accumulation at various times following disturbance
was graphed using a generalized additive (GAM) model within ggplot2 [46]. The term
GAM is taken to include any quadratically penalized generalized linear model (GLM).
The degree of smoothness is estimated as part of fitting. Smoothing terms are represented
using regression splines with parameters selected by Restricted Maximum Likelihood
(REML) [47]. Finally, we used a pairwise t-test to identify any significant differences in
biomass accumulation following disturbance by different agents.
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Figure 2. Flowchart of data management and model development process.

3. Results

Total forest cover in the two areas of interest (AOI) was 397,317 ha, with a total of
41,245 ha (11.46%) disturbed at least once over the period of observation (1974–2018). Only
the most recent disturbances at any site were included in the 41,245 ha figure. Change
polygons varied in shape and size between 1 and 234 ha with the average being 5 ha
(SD = 7.1 ha). Figure 3 shows the relationship between time since disturbance and accu-
mulated biophysical capacity for carbon dioxide uptake by the forest as captured by the
tasseled cap greenness index over time [39].
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Figure 3. Fitted (black line) and observed (gray dots) accumulated greenness index values over time
since disturbance for the six agents of change. Red lines represent 95% confidence intervals around
the fitted values. Greenness informs approximately 86% of observed variance in CO2 flux capacity
within the forest [39].

Models predicting AGB, given spectral indices observed since disturbance, and in-
termediate low-density LiDAR information where applicable, are shown in Table 3. The
amount of variance explained by each model and importance values (as percent increase in
mean squared error when a predictor is removed) are also shown. The combined and agent-
specific models could be reconstructed using each predictor containing an importance
value in the column for a given model. These results are summarized for the modeling
processes utilizing all sites, and using only sites disturbed prior to 2011.

Standing AGB for sites experiencing different disturbance agents is shown in Table 4
and Figure 4. In Table 4, Time represents the average time since disturbance for observations
corresponding to that agent of change. Time is related to the opportunity for regrowth
of AGB following loss to fire, wind, harvest, or other factors. Further, differences in
the average time since disturbance for various agents is an indication of the frequency
with which these events tend to occur across the bio-regional landscape. An ANOVA for
standing AGB using the full dataset indicated that there were significant differences in
AGB predictions for different agents (p-value < 2.2 × 10−16) (Figure 4). A pairwise t-test
(with Bonferroni adjustment) for the effect of inter-group variations showed that there were
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statistically significant differences (α = 0.05) between harvest and each other disturbance
type, as well as between wind and conversion.

Table 3. Percent increase in mean squared error when predictor is removed (RF) for agent specific
and combined above ground biomass models.

Predictor All * Pre-2011 Fire Flood Harvest Other Wind

cvTCW 0.6 - - - - 1.07 -
majorityTCG 1.13 1.1 - - 0.75 - 0.81

maxTCG 1.33 1.13 - 0.28 0.63 0.04 0.75
maxTCW 1.81 0.87 - - 0.72 0.25 0.97

meanTCW - 2.12 - - 1.91 - 1.26
minTCG - 1.7 - 0.14 1.07 0.23 1.32
minTCW - 1.17 - - 1.04 0.45 -
stdTCG - - 0.14 - - 0.72 -
stdTCW - - - - - 0.81 -

SumGreen 4.21 2.89 - 0.48 2.27 - 1.48
maxElevAv_LowDensity - - - 0.71 - 2.56 -

maxElevMax_LowDensity - - 0.27 - - 2.31 -
maxElevP50_LowDensity - - 0.54 - - - -
maxPcCOV_LowDensity - - 0.15 - - 0.85 -
meanElevAv_LowDensity 12.1 16.52 0.88 2.55 13.79 2.39 13.46

meanElevMax_LowDensity 8.84 10.48 0.26 2.56 10.11 - 5.69
meanElevP50_LowDensity - - - 1.35 - 1.42 9
meanPcCOV_LowDensity - - 0.28 1.37 - - -
minElevAv_LowDensity - - 0.4 - - 2.25 -

minElevMax_LowDensity - - - - - 3.35 -
minElevP50_LowDensity 2.33 - 0.46 - - 0.39 -
minPcCOV_LowDensity - - - - - 1.48 -
stdElevAv_LowDensity - - 0.32 0.67 - 0.15 -

stdElevMax_LowDensity - - - 0.27 - 0.69 0.66
stdElevP50_LowDensity 2.25 - 0.43 - - 0.18 -
stdPcCOV_LowDensity - - - 0.32 - - -

time 3.54 2.1 - 0.25 1.51 1.28 1.46

Sample Size 10,068 7996 31 557 5563 55 1781

% Variance Explained 85.14 ** 87.54 51.7 74.5 86.61 66.68 86.37

* Combined AGB model produced using all available data. ** An independent test for 54 harvests monitored by
GMP between 2000 and 2018 explained 90.09% of variance.

Table 4. Mean above ground biomass present on sites experiencing different agents of disturbance
(2017–2018).

Disturbance
Agent

Mean AGB
(kg/ha) StDev n

Time Since
Distur-

bance (Avg.
Years)

Hectares
Disturbed

% of AOI
Disturbed

(1974–2018)

Conversion 50,609 40,385 28 6.7 1556 0.43%
Fire 24,888 22,021 123 7.4 677 0.19%

Flood 24,576 26,557 716 19.5 2297 0.64%
Harvest 70,091 40,826 6488 22.4 26,239 7.29%
Other 102,041 41,542 60 19.9 318 0.09%
Wind 74,475 40,793 2521 16.3 10,158 2.82%
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Non-significant comparisons included conversion and fire, conversion and flood, and
fire and flood (Table 5). Statistics for estimates of productivity between 5 and 15 years
after disturbance are shown in Table 6. A pairwise t-test (with Bonferroni adjustment) of
between group differences in biomass accumulation over time showed that there was a
statistically significant difference (α = 0.05) between harvest and fire, between harvest and
flood, and between harvest and wind. Significant differences in biomass productivity over
time also existed between fire and other, flood and other, wind and other, and between
wind and flood (Table 7).
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Table 5. p-values for pairwise comparisons of standing above ground biomass among disturbance
agent combinations (α = 0.05).

Conversion Fire Flood Harvest Other

Fire 0.155630 - - - -
Flood 0.053590 1.000 - - -

Harvest 0.007160 <2 × 10−16 <2 × 10−16 - -
Other 0.000000 <2 × 10−16 <2 × 10−16 0.000000 -
Wind 0.000570 <2 × 10−16 <2 × 10−16 0.000023 0.000005

Table 6. Modeled above ground biomass accumulation (kg/ha/yr.) (5–15 years following disturbance).

Agent Mean ∆AGB StDev n Average
Time (Years)

Different from
Harvest

(α = 0.05)

Conversion 1001 1382 8 7.5 No
Fire 198 382 54 7.1 Yes

Flood 350 796 130 8.9 Yes
Harvest 1611 1791 1065 9.9 -
Other 610 229 2 10 No
Wind 1355 1717 456 9.1 Yes

Table 7. p-values for pairwise comparison of AGB accumulation among agents following disturbance
(α = 0.05).

Conversion Fire Flood Harvest Other

Fire 1.0000 - - - -
Flood 1.0000 1.0000 - - -

Harvest 1.0000 0.0000 <2 × 10−16 - -
Other 1.0000 0.0000 0.0000 0.6990 -
Wind 1.0000 0.0860 0.0000 <2 × 10−16 0.0000

4. Discussion

Substantial research over many years has provided a firm basis for our understanding
of forest growth and yield [48–60]. Although a full review of this research is beyond the
scope of the current manuscript, it is important to note that our expectations related to
development of AGB following disturbance are rooted in this body of literature.

Building on results from previous research comparing post-disturbance recovery from
wildfire and harvest [3], we find clear differences in standing AGB and stand regeneration
over time for different disturbance agents. Standing biomass and biomass accumulation
rates indicate different things related to disturbance severity and recovery from disturbance.
For example, wind and harvest disturbances often have more initial AGB relative to fire
and flood. This may be an indication that prevailing disturbance intensity from wind and
harvest are either less than that for fire and flood, or are more variable, with some sites
retaining substantial AGB or established seedlings following disturbance. Indeed, groups of
outliers observed for accumulated greenness associated with these disturbances (Figure 2)
may be explained by the presence of advance regeneration retained after variable levels of
disturbance. While White et al. [3] found higher variability in regrowth of forest canopy
after wildfire compared to harvest, little research exists for comparison of differences in
AGB development following the range of disturbances analyzed here.

Our comparison of differences in standing biomass among disturbance agents yielded
clear and significant results. This observation is an indicator that something different is
happening on sites experiencing different types of disturbance in the years following the
event and corresponds closely to the conclusions of White et al. [3]. Such differences are
expected to be cumulative over time, and to become more apparent as time goes on. Senf
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and Seidl [10] use Landsat time series to assess forest canopy disturbance and recovery
across Europe, but do not directly address the issue of AGB development. However,
mirroring the conclusions of White et al. [3], Senf and Seidl [10] point to fire disturbance as
a factor leading to slower canopy recovery. Research using tree ring analysis to examine
carbon storage, sequestration, and biodiversity on a longer timescale [17] also found that
the highest rates of carbon sequestration occurred on more recently disturbed plots. Our
results agree with these findings and suggest that sustainable timber harvest at levels below
the regional annual increment, and adjusted for natural disturbance, may contribute to
greater forest resiliency. AGB productivity following harvest is significantly different from
(greater than) that observed for wind, flood, and fire disturbance agents. Collectively, these
observations may have significant and substantial meaning for efforts to sequester carbon
from the atmosphere via forest management.

Biomass accumulation (an indicator of productivity) is the response of trees remaining
or growing onto a site following a disturbance. Established research leads to the expectation
that, initially, this response will be quite strong, but will moderate as competition effects
come into play following establishment of a cohort, e.g., saturation of the newly available
growing space. Initial AGB remaining after a disturbance will influence the path this
development takes. Indeed, the general trend of reduced biomass accumulation with time
since disturbance is both clearly apparent and expected in our results [16,17]. Harvest
appears to result in the largest and most consistent productivity response to disturbance,
with harvested sites experiencing roughly six times the rate of biomass accumulation seen
for sites subjected to stand replacing fire or flood (years 5–15 post disturbance), and a nearly
20% increase in productivity when compared to sites subjected to wind-caused canopy loss.

Essentially, our results indicate that harvest not only resets the accumulation rate of
biomass (productivity) to a higher level than other disturbance types but often leads to the
accumulation of larger biomass loads (standing biomass) with time. These observations
may be explained by intentional silvicultural strategies employed in conjunction with
timber harvest (e.g., seed tree retention, artificial regeneration/planting, site preparation,
and selection of high-quality sites with potential for rapid natural regeneration) or represent
a response to the large increase in available growing space and minimal disturbance of
the ground layer frequently resulting from these disturbances. When combined with the
potential for mid-term storage of carbon in timber products used for construction (housing,
commercial, and other structures) [61–63] or carbon offsets associated with biomass energy
production [64], this higher level of biomass production means that forest management for
timber and other uses can be a helpful tool for carbon sequestration in the effort to mitigate
anthropogenic climate change.

Because our estimates of initial AGB are modelled, results should be taken as a general
understanding of regrowth following disturbance, not as an absolute truth. However,
our independent test for 54 harvests monitored by GMP explained 90.09% of variance,
indicating good correspondence of the model to observations. It is also understood that
LiDAR data serve as a snapshot in time and do not represent true conditions before or
after the data are collected. This depreciation of information relevance is clearly mitigated
to a large degree using Landsat spectral indices available over long time periods. Error
involved with estimates of initial and standing AGB presented here results from imprecise
minimum mapping units for disturbance (1 ha) and inherent variability in the severity of
discrete disturbance events. This model related error inflates the expected variance for
our estimates of biomass accumulation, thereby complicating interpretation of the results.
Another source of variability in our initial AGB estimates comes from the estimate of
disturbance dates derived from change detection. Inaccuracies of 1–3 years are common in
the change detection dates and influence our estimates of initial AGB following disturbance.
Further, error associated with disturbance agent classification also increases our uncertainty
regarding initial AGB. Nonetheless, clear differences exist in forest regeneration rate and
character between sites disturbed by different agents of change. These differences result
in varying rates of biomass accumulation over time and differences in standing stocks of
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biomass on sites affected by various agents of change. These differences are thought to
be related to disturbance severity, species level responses, canopy structure development,
community compositions, and carbon sequestration and storage potentials resulting from
distinct disturbance types.

We have also shown that older low-density LiDAR data can serve as a good predictor
in models producing AGB estimates for forested regions of interest. The information
provided by these low-density LiDAR-derived products can be effectively leveraged with
the addition of widely available spectral indices derived from satellite sensors, and more
current high-density LiDAR paired with PBI within portions of the region of interest. The
combination of different platforms and vintages of remotely sensed data products can
serve to inform and model landscape-scale changes over time and continues to enhance
the utility of older geospatial datasets, further extending their return on investment. These
observations may also benefit canopy change detection efforts used for monitoring of
timber harvest and other disturbances.

5. Conclusions

We have tested the hypothesis that older low-density LiDAR, paired with Landsat-
derived spectral indices available over a long time-period can be used in a modeling
environment to create accurate estimates of standing biomass. Comparison of our mod-
elling results against ground truth referenced to AGB estimates derived from high-density
LiDAR and PBI datasets yielded good correlation between modelled estimates and ob-
served values (R-squared ~0.85). In testing our primary hypothesis, we have shown that
satellite-derived spectral indices are able to supplement, augment, and correct for potential
misinformation present in older LiDAR acquisitions quite effectively.

Low-density LiDAR data provide important information related to existing levels of
AGB in a forested setting. This observation is especially relevant when canopy height data
are paired with indices of wetness and greenness derived from satellite imagery over time.
In combination, low-density LiDAR and spectral indices can be used to accurately predict
current AGB, as determined from high density LiDAR and PBI reference data. High-density
LiDAR data provide a range of useful information for development of predictive models of
AGB across a broader region and serve as important benchmarks for monitoring over time.

We also examined differential forest growth after canopy disturbance and have rejected
the null hypothesis that there is no significant difference in standing biomass or mean
biomass accumulation over time among different disturbance agents. Over time, the
response to disturbance by various agents of change results in clear differences in AGB.
Results presented here indicate profound differences in recruitment and forest development
following various events resulting in canopy change. This research provides quantifiable
clarity, adding to our understanding that forest management via timber harvest can be
used as an effective tool to increase AGB productivity.

Periodic re-measurement with high and low-density LiDAR would further contribute
to our understanding of differences in forest regrowth following disturbance by providing
a more solid baseline (e.g., multiple observations over time) related to changes in AGB
and tightening resulting confidence intervals for the kinds of models used here. However,
high quality LiDAR data are expensive to collect over large areas, so additional analysis
of the benefits of using methods described here to model landscape-scale AGB over time
should be completed. Such analyses would inform the needed re-measurement interval,
help target areas of interest where they are most relevant to improving model accuracy, and
provide quantifiable information related to return on investment for such data acquisition.
This research also identifies some areas of uncertainty stemming from the change detection
methods used, and further research into this important field of study is merited. The combi-
nation of multi-temporal LiDAR-derived and satellite-based spectral indices may provide
another avenue for improving canopy change detection methods and our understanding of
forest recovery following disturbance.
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