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Abstract: In linear regression analysis, the estimator of the variance of the estimator of the regres-
sion coefficients should take into account the clustered nature of the data, if present, since using
the standard textbook formula will in that case lead to a severe downward bias in the standard
errors. This idea of a cluster-robust variance estimator (CRVE) generalizes to clusters the classical
heteroskedasticity-robust estimator. Its justification is asymptotic in the number of clusters. Although
an improvement, a considerable bias could remain when the number of clusters is low, the more
so when regressors are correlated within cluster. In order to address these issues, two improved
methods were proposed; one method, which we call CR2VE, was based on biased reduced lineariza-
tion, while the other, CR3VE, can be seen as a jackknife estimator. The latter is unbiased under very
strict conditions, in particular equal cluster size. To relax this condition, we introduce in this paper
CR3VE-λ, a generalization of CR3VE where the cluster size is allowed to vary freely between clusters.
We illustrate the performance of CR3VE-λ through simulations and we show that, especially when
cluster sizes vary widely, it can outperform the other commonly used estimators.

Keywords: clustered data; few clusters; unbalanced clusters; cluster-robust variance estimator;
inference

1. Introduction

In linear regressions with clustered data, it is common practice to estimate the vari-
ance of the estimated parameters using the cluster-robust variance estimator (CRVE from
hereon) introduced by Liang and Zeger (1986), as a generalization of the White (1980)
heteroskedastic-robust estimator. The justification is asymptotic, with number of clusters
tending to infinity. Bell and McCaffrey (2002) show that in a finite context, with few clusters
and error terms that are correlated within cluster, CRVE leads to severely downward-
biased standard errors and thus to misleading inference about the estimated parameters.
Moulton (1986, 1990) and Cameron and Miller (2015) point out that this issue is particularly
relevant for regressors that are correlated within cluster such as policy variables that are
implemented only in certain regions or states. An additional issue for inference about the es-
timated parameters is that, under the null hypothesis and with few clusters, the distribution
of the test statistic is unknown and approximate normality cannot be claimed.

Following Bell and McCaffrey (2002), inferences about the estimated parameters can
be improved by (i) reducing the bias of CRVE with either BRL (bias reduced lineariza-
tion), also known as CR2VE, or the jackknife estimator vJK, also known as CR3VE, both
based on transformed OLS residuals; CR2VE and CR3VE generalize, using clustered
data, the heteroskedasticity-consistent covariance estimators HC2 and HC3, introduced by
MacKinnon and White (1985). Inference about the estimated parameters can be also im-
proved by (ii) approximating the distribution of the test statistic with the t-distribution with
an extension of the Satterthwaite (1946) degrees of freedom (DOF) that are data-determined
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and regressor-specific. Imbens and Kolesar (2016) developed a more refined version of the
data-determined regressor-specific DOF used by Bell and McCaffrey (2002).

Bell and McCaffrey (2002) also show that CR3VE tends to overestimate the standard
errors. In this paper, we introduce CR3VE-λ, a cluster-robust variance estimator that is
identical to CR3VE in the case of balanced clusters but, in the case of unbalanced clusters,
takes the difference in cluster sizes into account such that the computed standard errors are
less conservative and unbiased under more general conditions.

The paper is organized as follows. In Section 2, we discuss basic theory on CRVE,
CR2VE and CR3VE. In Section 3, we introduce CR3VE-λ. In Section 4, we illustrate and
test the performance of CRVE, CR2VE, CR3VE and CR3VE-λ to compute standard errors
with few clusters using Monte Carlo simulations. In Section 5, we present ideas for future
research related to the current paper. Section 6 concludes the paper.

2. Basic Theory: CRVE, CR2VE and CR3VE

Consider the regression model y = Xβ + ε with observations that can be grouped
into C clusters of size n1, . . . , nC; ∑c nc = n. Write, for the c-th cluster, yc = Xcβ + εc,
with E(εc) = 0 and var(εc) = Vc. The Vc’s are collected in the block-diagonal matrix V.
After OLS we have

var(β̂) = (X′X)−1X′VX(X′X)−1 = (X′X)−1

(
∑

c
X′cVcXc

)
(X′X)−1. (1)

An intuitively appealing cluster-robust variance estimator (CRVE) based on OLS residuals
per cluster ε̂c is

v̂ar(β̂) = (X′X)−1

(
∑

c
X′c ε̂c ε̂′cXc

)
(X′X)−1. (2)

This estimator, which directly generalizes White (1980) and was introduced by
Liang and Zeger (1986), is consistent when the number of clusters goes to infinity. The same
holds when (2) is scaled, as in Stata, by the factor C(n − 1)/(C − 1)(n − k), with k the
number of regressors. Since this factor is larger than one, it increases the estimated variance.
In the case of few clusters, asymptotics will be a poor guide. In what follows, we therefore
consider its bias instead.

Let M = In − X(X′X)−1X′, let Sc be the n× nc matrix that selects the columns of M
corresponding to cluster c, let Lc ≡MSc and let

Hc ≡ S′cMSc = Inc − Xc(X′X)−1X′c.

There holds Hc = L′cLc since M is idempotent and symmetric. With ε̂ = Mε and ε̂c = L′cε,
we then have E(ε̂c ε̂′c) = L′cVLc 6= Vc, so that

E[v̂ar(β̂)] = (X′X)−1

(
∑

c
X′cL′cVLcXc

)
(X′X)−1 6= var(β̂). (3)

To reduce the bias, consider choosing a variance estimator based on transformed residuals
ε̃c ≡ Ac ε̂c, for some Ac. Then

E[v̂ar(β̂)] = (X′X)−1

(
∑

c
X′cAcL′cVLcA′cXc

)
(X′X)−1.

From (1), unbiasedness requires the Ac to be such that AcL′cVLcA′c = Vc for all c uniformly
in the Vc. This is infeasible and therefore we consider two second-best solutions.
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The first solution is to consider the case of no cluster effects, Vc = σ2Inc for all c,
and make the estimator unbiased for this case. Then E(ε̂c ε̂′c) = L′cVLc = σ2L′cLc = σ2Hc
and consequently

E[v̂ar(β̂)] = σ2(X′X)−1

(
∑

c
X′cAcHcA′cXc

)
(X′X)−1. (4)

The variance estimator is unbiased if AcHcA′c = Inc and so we choose Ac = H−1/2
c . This

estimator, introduced by Bell and McCaffrey (2002) and called BRL, is extensively discussed
by Cameron and Miller (2015) and it is also known as CR2VE.

The second solution is based on the idea that the elements in M outside the blocks on
the diagonal may be small. Then Lc can be approximated by a matrix with Hc as its c-th
block and zeros outside this block. Then L′cVLc = HcVcHc and choosing Ac = H−1

c leads,
when scaled by a factor (C− 1)/C, to an estimator that is approximately unbiased when
there are no cluster effects. This estimator with the jackknife correction is also introduced
by Bell and McCaffrey (2002), who called it vJK, it is discussed by Cameron and Miller
(2015) and it is also known as CR3VE. CR2VE and CR3VE can be computationally intensive
because they require the inversion of matrices of order equal to the cluster sizes. CR2VE
and CR3VE can be computed efficiently, that is, with computing time and storage of order
O(nc); a succinct proof is given by Niccodemi et al. (2020).

Both CR2VE and CR3VE are used in the literature as an alternative to bootstrapping.
The bootstrap literature has evolved rapidly since Cameron et al. (2008) proposed the
use of a wild cluster bootstrap procedure to improve inference in the case of few clusters.
Generally, the wild cluster bootstrap procedure performs well. However, MacKinnon and
Webb (2017) show that inference based on this procedure can fail in the case of dummy
regressors equal to zero or one in very few clusters. Djogbenou et al. (2019) propose an
asymptotic analysis of cluster-robust inference mainly focused on the wild cluster bootstrap
procedure, proving its asymptotic validity under certain conditions on the cluster sizes.
They show, both theoretically and through some experiments, how variation in cluster sizes
affects the asymptotic validity of this procedure and they conclude that the wild cluster
restricted bootstrap using the Rademacher distribution performs better than any other
competitors.

3. From CR3VE to CR3VE-λ

To analyze the bias of CR3VE we scale (4) by (C− 1)/C and use

AcHcAc = H−1
c = Inc + Xc(X′X− X′cXc)

−1X′c

to obtain

E[v̂ar(β̂)] =
C− 1

C
σ2

(
(X′X)−1 + ∑

c
(X′X)−1X′cXc(X′X− X′cXc)

−1X′cXc(X′X)−1

)
. (5)

When clusters are balanced and have the same covariance structure then X′cXc = X′X/C
for all c, and (5) reduces to E[v̂ar(β̂)] = σ2(X′X)−1. Thus, in the case of balanced clusters,
CR3VE with the correction factor (C− 1)/C is unbiased.

We propose a different scaling factor than (C − 1)/C for CR3VE in the more gen-
eral case of unbalanced clusters that still have the same covariance structure. Define
πc ≡ nc/n for cluster c. Then X′cXc = πcX′X and the expression in parentheses in (5)
becomes λ(X′X)−1, with

λ ≡ 1 + ∑
c

π2
c

1− πc
,

and λ ≥ C/(C − 1), with equality holding in the case of balanced clusters. To see
this, let π ≡ (π1, . . . , πC)

′, Π ≡ diag(π), a ≡ (IC − Π)−1/2π and b ≡ (IC − Π)1/2ιC,
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a′a = π′(IC −Π)−1π, b′b = ι′C(IC −Π)ιC, and a′b = 1. Since (a′b)2 ≤ a′a b′b there
holds

∑
c

π2
c

1− πc
= π′(IC −Π)−1π ≥ 1

ι′C(IC −Π)ιC
=

1
C− 1

,

so λ− 1 ≥ 1/(C− 1) or λ ≥ C/(C− 1). This suggests that 1/λ may be a better scaling
factor than (C− 1)/C. As 1/λ ≤ (C− 1)/C, we propose a lower estimate of the variance
than with CR3VE. This fits in well with the observation by Bell and McCaffrey (2002),
as mentioned in the Introduction, that CR3VE tends to overestimate the standard errors.
We denote this estimator, which is unbiased under more general conditions than CR3VE,
by CR3VE-λ.

4. Monte Carlo Simulations

We run several sets of Monte Carlo (MC) simulations and compare the bias of the stan-
dard errors based on unclustered standard errors (UN), CRVE, CR2VE and CR3VE with the
bias of the standard errors based on CR3VE-λ. In each simulation, we generate randomly C
unbalanced clusters with number of observations per cluster nc ∼ U{1000 − g, 1000 + g},
where g is different in each set of simulations. In other words, nc is drawn from a uniform
distribution with constant mean but standard deviation that depends on g. We generate
our dependent variable yhc = α + βxhc + γdc + ehc, where h identifies the single observa-
tion (e.g., household) and c identifies the C clusters of size nc = n1, . . . , nC, and where
xhc = qhc + zc and ehc = whc + uc. Moreover, qhc, zc, whc, uc are independently drawn
from N(0, 1), α = 0 and β = γ = 1, and dc is a dummy variable constant within cluster
and randomly constrained, in each simulation, to be equal to 1 in half of the randomly
generated clusters. The simulation set-up is somewhat similar to the one in Cameron
et al. (2008). As pointed out by Cameron and Miller (2015), unclustered standard errors
and CRVE are likely to be severely biased if the cluster effect and the correlation of the
regressors within cluster are different from zero. Therefore, we set up experiments that
allow both ehc and the regressors to be correlated within cluster, including the extreme
case of dc, a dummy variable that is constant within cluster. The presence of regressors
correlated within cluster implies that the assumption under which CR3VE and CR3VE-λ
are unbiased are not met. Yet, CR3VE-λ takes into account the difference in cluster size and,
as this difference increases, it is expected to be less biased than CR3VE.

We run 100,000 simulations for each MC set and each MC set differs with respect to
the number of clusters C and g. We show results for C = 4 and C = 6, and for g = 0 (i.e.,
balanced clusters), g = 250, g = 500, g = 900 and g = 990, with standard deviation of
the cluster size equal to 0, 145, 289, 520 and 572, respectively. For each simulation: (i) we
compute the true standard deviation of β̂, sd(β̂), based on

var(β̂) = (X′X)−1

(
∑

c
X′cVcXc

)
(X′X)−1,

where
Vc = Inc + ιcι′c,

and where β = (α, β, γ), (ii) we compute the standard errors of β̂ and of γ̂ based on
the different methods seUN , seCRVE, seCR2VE, seCR3VE and seCR3VE−λ, (iii) we compute
the difference between the standard errors based on the different methods and the true
standard deviations sd(β̂) and sd(γ̂). Finally, for each MC set we compute the mean of
this difference (i.e., the estimated bias) for each method to compute the standard errors.
From Tables 1 and 2 we can see that CR3VE-λ always leads to the least biased standard
errors, with estimated bias always close to zero. Moreover, it remarkably reduces the
estimated bias of CR3VE with high unbalancedness. This is especially true for the dummy
variable di.
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Table 1. Estimated bias of se(β̂) based on different methods: 100,000 Monte Carlo simulations.

Std. Deviation Cluster Size
Balanced 145 289 520 572

4 clusters
Ê[sd(β̂)] 0.1978 0.1967 0.1929 0.1790 0.1745
B̂ias[seUN(β̂)] −0.1820 −0.1809 −0.1769 −0.1628 −0.1581
B̂ias[seCRVE(β̂)] −0.1293 −0.1271 −0.1207 −0.1069 −0.1043
B̂ias[seCR2VE(β̂)] −0.0667 −0.0663 −0.0644 −0.0605 −0.0599
B̂ias[seCR3VE(β̂)] 0.0191 0.0192 0.0188 0.0164 0.0157
B̂ias[seCR3VE−λ(β̂)] 0.0191 0.0184 0.0157 0.0066 0.0040

6 clusters
Ê[sd(β̂)] 0.1839 0.1837 0.1829 0.1811 0.1807
B̂ias[seUN(β̂)] −0.1709 −0.1707 −0.1699 −0.1679 −0.1675
B̂ias[seCRVE(β̂)] −0.0775 −0.0774 −0.0792 −0.0844 −0.0868
B̂ias[seCR2VE(β̂)] −0.0301 −0.0300 −0.0325 −0.0386 −0.0413
B̂ias[seCR3VE(β̂)] 0.0198 0.0208 0.0199 0.0202 0.0195
B̂ias[seCR3VE−λ(β̂)] 0.0198 0.0204 0.0182 0.0142 0.0120

Table 2. Estimated bias of se(γ̂) based on different methods: 100,000 Monte Carlo simulations.

Std. Deviation Cluster Size
Balanced 145 289 520 572

4 clusters
Ê[sd(γ̂)] 1.0209 1.0250 1.0369 1.0847 1.1066
B̂ias[seUN(γ̂)] −0.9805 −0.9843 −0.9957 −1.0416 −1.0623
B̂ias[seCRVE(γ̂)] −0.4700 −0.4790 −0.5038 −0.6066 −0.6533
B̂ias[seCR2VE(γ̂)] −0.1868 −0.1953 −0.2181 −0.3191 −0.3703
B̂ias[seCR3VE(γ̂)] 0.1005 0.1000 0.1023 0.1054 0.1068
B̂ias[seCR3VE−λ(γ̂)] 0.1005 0.0960 0.0856 0.0410 0.0225

6 clusters
Ê[sd(γ̂)] 0.8306 0.8355 0.8506 0.9059 0.9276
B̂ias[seUN(γ̂)] −0.7965 −0.8013 −0.8163 −0.8706 −0.8919
B̂ias[seCRVE(γ̂)] −0.2478 −0.2531 −0.2786 −0.3628 −0.3953
B̂ias[seCR2VE(γ̂)] −0.0837 −0.0861 −0.1057 −0.1653 −0.1894
B̂ias[seCR3VE(γ̂)] 0.0524 0.0556 0.0514 0.0564 0.0610
B̂ias[seCR3VE−λ(γ̂)] 0.0524 0.0537 0.0436 0.0265 0.0223

We acknowledge that the reader might be particularly interested in comparing the
inferential performance of the various CRVEs, including CR3VE-λ, especially in a real-data
setting. For this purpose we refer the reader to Niccodemi et al. (2020), where inferential
results based on the Current Population Survey data clustered in few, highly unbalanced
clusters and the t-distribution using the Imbens and Kolesar (2016) DOF are reported. This
experiment is similar to the one developed by Cameron and Miller (2015), although more
focused on cluster unbalancedness. According to the results, with few, highly unbal-
anced clusters CR3VE-λ appears to be among the most promising methods for inference,
as CR3VE tends to underreject a true null hypothesis.

5. A Note on Future Research

Future research on cluster-robust variance estimators, directly linked to the current
work, might take at least two directions. First, Djogbenou et al. (2019) show through some
experimental designs how the variation in cluster sizes affects the asymptotic validity
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of the wild cluster bootstrap. Testing how CR3VE-λ performs, in comparison to CR2VE
and CR3VE and using the same experimental designs, might provide further elements to
evaluate its performance.

Second, the effective number of clusters introduced by Carter et al. (2017) might be of
particular interest for CR3VE-λ. The effective number of clusters depends, among others,
on the cluster sizes. If the effective and the nominal number of clusters differ remarkably,
and if this difference is, to some extent, due to heterogeneity in cluster sizes, then inference
using CR3VE-λ might be much more accurate then inference based on CR3VE. Therefore,
it would be interesting to develop experiments that focus on the interaction between the
effective number of clusters as a diagnostic tool and the use of CR3VE-λ instead of CR3VE
for inference. Of course, other possibilities include the use of the effective number of
clusters to construct the scaling factor for CR3VE and the introduction of measures of the
effective size of the clusters to compute CR3VE-λ.

6. Conclusions

We propose CR3VE-λ, an estimator for clustered standard errors that improves the
jackknife estimator and is unbiased under more general conditions in the case of few
unbalanced clusters. In simulations, CR3VE-λ reduces the bias of CR3VE as the unbal-
ancedness of the clusters increases. We also provide a reference to a longer working
paper (i.e., Niccodemi et al. (2020)) that develops simulation results to compare inference
based on CRVE, CR2VE, CR3VE and CR3VE-λ. Given the results of both sets of simu-
lations, we suggest researchers to prefer CR3VE-λ to CR3VE in the case of (few) highly
unbalanced clusters.

For all the computations and the empirical illustrations we used Stata/SE 15.0. This
paper comes with a Stata do-file that can be used with any cross-sectional dataset for the
efficient computation of the standard errors based on CRVE, CR2VE, CR3VE and CR3VE-λ
and with a Stata do-file to replicate the Monte Carlo simulations. The Stata do-files are
available upon request.
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