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Abstract: This paper addresses the input–output structural decomposition for an economic analysis.
The objective is to determine the causes of changes in production in these sectors with a particular
focus on disaggregating the technological change by distribution factors associated with a specific
normalization of the Leontief inverse. In calculating the net multipliers, an attempt was made to
exclude each sectors’ own consumption in a satisfactory manner. However, the treatment of own
consumption when introducing a time factor requires further investigation to avoid questionable mea-
surements. An empirical application is presented regarding agriculture, forestry, and fishing sectors in
six EU-28 countries (Austria, Belgium, France, Germany, Italy, and Spain) over the 2010–2015 period.
In general, a typical characteristic of primary sectors is the accumulation of a significant amount
of their own consumption, facilitated by the design of their own symmetric accounting methods.
Therefore, attention is focused on these sectors so as to reveal possible analysis techniques that will
provide nuance or validate existing techniques.

Keywords: structural decomposition analysis; technological change; primary sectors

1. Introduction

Structural decomposition analysis (SDA) is a practical tool that allows us to quantify
the causes of changes in a wide range of variables, such as economic growth, energy
consumption, and labor demand, etc. Input–output (IO) SDA is usually defined as the
study of economic change by comparing a series of static changes in the main variables of
an IO model (Rose and Chen 1991).

The most traditional and straightforward SDA usually concerns three drivers of struc-
tural change: technological changes relating to the effects caused by changes in the Leontief
inverse; changes in final demand (which are usually sub-divided into changes in levels
and the composition of final demand); and the interaction or combination of both (Miller
and Blair 2009). There is extensive related literature (see Hoekstra and Van Der Bergh
2003) using this methodology in various empirical studies to analyze production changes
(Fujimagari 1989), changes in employment (Forssell 1990; Han 1995), and labor productivity.
However, it is chiefly applied to energy consumption, CO2 emissions, and other envi-
ronmental issues (Casler and Rose 1998; Chen and Wu 1994; Han and Lakshmanan 1994;
Jacobsen 2000; Mukhopadhyay and Chakraborty 1999). There have also been numerous
developmental proposals for the theoretical approach to the model (Chen and Wu 2008;
Dietzenbacher and Los 1998; Rose and Casler 1996; Sonis et al. 1996; Wang et al. 2014). In
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other words, SDA is an appropriate methodology for analyzing the driving forces behind
changes in economic, energy, and environmental indicators.

In general, SDA formulas have been modified by new ways of decomposing the factors.
However, less attention has been paid to changes in the Leontief inverse (Wood and Lenzen
2009; Muradov 2021). Therefore, decomposing structural change by the (overall) effect
caused by the sectors’ own consumption is proposed. A specific normalization criterion, by
rows and columns of the model, is thus applied.

SDA is also used in the field of agricultural economics, especially regarding environ-
mental issues. Studies are available at the EU level. For example, in Italy, over the 1999–2006
period, the analysis was applied to energy and environmental outputs to determine the
impact of energy intensity and emissions, the Leontief effect, and the final demand effect on
changes in certain volumes, concluding that ‘agriculture, hunting and forestry’ are among
the main sectors affecting atmospheric emissions (Cellura et al. 2012). The analysis was
used to see how changes in final demand and technology affected variations in water use
for different crops in the EU. The results revealed that major crop producers increased their
water use mainly due to technology changes (Gerveni et al. 2020). Intrinsic reasons for
the increase in global consumption-based GHG emissions (1995–2009) were also analyzed,
with agriculture playing an important role in developing countries (Liu et al. 2019). SDA
was also applied to examine water use changes in agricultural production in the United
States (1995–2010). It revealed an overall decrease in water use in the production of all
crops due to more efficient irrigation systems (Avelino and Dall’erba 2020). However,
there is no doubt that the largest number of SDAs conducted have focused on China, both
nationwide and at the provincial level. This method was used to determine drivers of
metal consumption in China (1997–2015) in agriculture, industry, construction, and services
(Song et al. 2019), and to estimate energy-related CO2 emissions and structural emissions
reductions in Chinese agriculture (2007–2017). It was found, among other things, that
increasing agricultural demand across the industrial system fostered the growth of these
emissions (Yu et al. 2020). Other similar provincial-level papers concerning China using
SDA, sometimes in combination with complementary techniques, include the works of
Cai et al. (2019); Fang and Yang (2021); Feng et al. (2017); D. Li et al. (2020); W. Li et al.
(2020); X. Li et al. (2020); Liu and Liang (2017); Qian et al. (2018); Supasa et al. (2017);
Wang et al. (2016); Zhi et al. (2014); and Xu et al. (2017). Studies of a socio-economic
nature are uncommon, although they do exist. In China, for example, the sources of em-
ployment growth were analyzed using this method. It was found that the contribution of
exports to job creation increased significantly, especially in agriculture (Doan and Long
2019). The present investigation aims to fill this gap in literature using SDA to measure
technological change.

The changes (in terms of output) in the primary sectors of the six countries of EU-28
between 2010 and 2015 are analyzed empirically, based on symmetric IO tables (total flows).
A relatively short period was chosen, one that was characterized by stagnation and even
by a deterioration in macro-economic indicators. Therefore, it is to be expected that these
sectors did not experience significant changes in their production structure. At the same
time, price changes during this period were not significant, yet deflation, based on 2010,
was applied to the flows. The change in output is largely driven by final demand behavior
and can be broken down by its components. It is now necessary to see to what extent the
technological change (the second cause of change) can be broken down according to the IO
logic. The total effects are calculated based on the effect of final demand and direct and
indirect requirement effects. This idea is embodied in the Leontief inverse construction, so
it is amenable to decomposition by distribution coefficients (associated with a particular
normalization) corresponding to this logic.

In calculating net IO multipliers, the goal is to exclude these sectors’ own consumption
from the calculation properly. Primary sectors tend to accumulate a large amount of own
consumption in their cost structures, and the development of symmetric accounting in
itself favors this situation. While extrapolating this recommended filtering of multipliers to
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the notion of technological change, attention should be focused on these sectors to reveal
possible analytical means of refining or enhancing existing ones.

2. Methodology

SDA and its extensions have identified various sources of change in both the economy
and its production sectors. To achieve the disaggregation of technological change, a specific
modification of the SDA is required. Decompositions of the Leontief inverse vary, but the
point is to look for the right one to achieve the stated goal.

2.1. Normalization of the Leontief Inverse Matrix

The open demand model, or Leontief model, can be expressed as follows:

x = (I − A)−1y = Cy, (1)

where x is the output vector, (I − A)−1 is the Leontief inverse matrix—which is further
simplified as C—and y is the net import final demand vector. Here, A is a matrix of technical
coefficients (total flows). Its generic element, denoted by aij, represents the contribution of
sector, i, per unit of output of sector, j. Furthermore, the economy studied is considered to
be broken down into n sectors.

The following is probably the most traditional way to present the Leontief inverse
matrix, as follows:

C = I + A + A2 + · · · (2)

where the generic element αij (i, j = 1, . . . , n) is presented as follows:{
1 + aij + ∑n

k=1 aikakj + ∑n
k1=1 ∑n

k2=1 aik1 ak1k2 ak2 j + · · · , (i = j)
aij + ∑n

k=1 aikakj + ∑n
k1=1 ∑n

k2=1 aik1 ak1k2 ak2 j + · · · , (i 6= j)
(3)

For alternative decompositions of C, a diagonal matrix, D̂, is constructed with the
elements of the main diagonal, C, which are the sum of the elements of the main diagonals
of these I, A, A2, · · · , An, · · · matrices. In analytical terms, such a diagonal matrix can be
expressed as follows:

D̂ = I + diag(A) + diag(A2) + · · ·+ diag(An) + · · · , (4)

where the generic element is presented as follows:

di = αii = 1 + aii + ∑n
k=1 aikaki + ∑n

k1=1 ∑n
k2=1 aik1 ak1k2 ak2i + · · · . (5)

From here, one can derive the decomposition of the Leontief inverse matrix, as follows:

C = D̂D̂−1C =
(

I + diag(A) + diag
(

A2)+ · · ·+ diag(An) + · · ·
)

D̂−1C
= D̂−1C + diag(A)D̂−1C + diag

(
A2)D̂−1C + · · ·+ diag(An)D̂−1C + · · · (6)

In this decomposition, normalization is produced by the rows of the C matrix, as
follows:

C̃ f (row) = D̂−1C =


1 α12

α11
· · · α1n

α11
α21
α22

1 · · · α2n
α22

...
...

. . .
...

αn1
αnn

αn2
αnn

· · · 1

. (7)

This normalization criterion was applied, albeit partially (Jeong 1982, 1984), to the
direct and indirect input demand matrix and (C− I), and was later used by Gim and
Kim (1998) for this matrix in its entirety. In this way, the C elements are adjusted by row
according to the value of the main diagonal (associated with the production branch); that
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is, the elements are amenable to be used for the quantification of net multipliers and are
linked, from a methodological point of view, to the hypothetical extraction method.

Another normalization of C is given by the following:

C̃g(row) =
(

I − D̂−1
)

C =


α11 − 1 α11−1

α11
α12 · · · α11−1

α11
α1n

α22−1
α22

α21 α22 − 1 · · · α22−1
α22

α2n
...

...
. . .

...
αnn−1

αnn
αn1

αnn−1
αnn

αn2 · · · αnn − 1

. (8)

This matrix is constructed in a similar way to (7), except that the transformations are
conditioned by the effects provided by (αii − 1), i = 1, 2 . . . , n; i.e., the direct effect of final
demand on the multipliers is excluded.

Next, one can see the role that normalization by C rows plays in the model itself. Thus,
if one considers (1), and if a particular modification is applied, the following distribution
is found:

x = Cy = ICy =
(

D̂−1 + I − D̂−1)Cy
=
[
D̂−1C +

(
I − D̂−1)C]y = D̂−1Cy +

(
I − D̂−1)Cy,

(9)

in short, it can be seen that:

x = C̃ f (row)y + C̃g(row)y. (10)

Therefore, the generic element C is broken down by two (or more) distribution factors,
as follows:

αij =
1

αii
αij +

αii − 1
αii

αij. (11)

Disaggregating αij based on the effect produced by an increase in one unit of final
demand and the other effects (occurring at different stages of production) that make up the
αii normalizing element. Thus, a production sector with high levels of own consumption
will generally lead to normalizing elements with a higher value. As a result, the distri-
bution coefficient 1

αii
decreases and (simultaneously) the αii−1

αii
coefficient increases. The

opposite is true in sectors with a low own consumption. This means that the calculation
of net multipliers varies by sector. Of course, the αii−1

αii
factor can be further broken down

according to (5), at least by distinguishing between direct and indirect requirements: aii
αii

and αii−(1+aii)
αii

.
The first equation of system (10) can be considered based on the following example:

x1 =

[
y1 +

α12

α11
y2 + . . . +

α1n
α11

yn] + [(α11 − 1)y1 +
α11 − 1

α11
α12y2 + . . .

α11 − 1
α11

α1nyn

]
. (12)

Another possible transformation of C is as follows:

C = CD̂D̂−1 = C
(

I + diag(A) + diag
(

A2)+ · · ·+ diag(An) + · · ·
)

D̂−1

= CD̂−1 + C diag(A)D̂−1 + C diag
(

A2)D̂−1 + · · ·+ C diag(An)D̂−1 + · · · (13)

Therefore, normalization by columns in the Leontief inverse matrix is found in a
similar way, as follows:

C̃ f (col) = CD̂−1 (14)

and
C̃g(col) = C

(
I − D̂−1

)
. (15)

This normalization was applied to (C− I) by Gim and Kim (2005), and Miller and
Blair (2009) applied it directly to C.
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Similarly, one can see the role of normalization by columns in the following model:

x = Cy = CIy = C
(

D̂−1 + I − D̂−1)y
= CD̂−1y + C

(
I − D̂−1)y = C̃ f (col)y + C̃g(col)y.

(16)

This way, two alternative distributions for the Leontief inverse matrix are obtained.
Additionally:

C = C̃ f (row) + C̃g(row) = C̃ f (col) + C̃g(col). (17)

It is mathematically possible to use a combination of two matrix normalization meth-
ods, as follows:

2x =
[
C̃ f (row)y + C̃g(row)y] + [C̃ f (col)y + C̃g(col)y

]
. (18)

To conclude that:

x = 0.5
[
C̃ f (row) + C̃ f (col)]y + 0.5[C̃g(row) + C̃g(col)

]
y, (19)

Which, in a shortened form, the demand model can be expressed as follows:

x = C̃ f y + C̃gy. (20)

Thus, the demand model, expressed in this way, breaks down the overall impact into
two factors; it quantifies a sector’s weight in terms of its relative external contribution to
market interdependence, and it reproduces the size of the corresponding economy.

2.2. Structural Decomposition Analysis

The purpose of structural decomposition analysis is to isolate the main sources of
change in the economy and its production sectors over a certain period. More specifically,
it is a matter of detecting what part of the economic change between two points in time
is related to technological change factors or productive efficiency, and what part is due to
changes in final demand.

Thus, the increase in output between year 0 and year 1 is as follows:

∆x = C1y1 − C0y0, (21)

Given that y1 = y0 + ∆y and C1 = C0 + ∆C, it is possible to express the above in
different ways.

Such as:
∆x = C1(y0 + ∆y)− (C1 − ∆C)y0 = ∆Cy0 + C1∆y, (22)

or alternatively:

∆x = (C0 + ∆C)y1 − C0(y1 − ∆y) = ∆Cy1 + C0∆y, (23)

or even:
∆x = ∆Cy0 + C0∆y + ∆C(∆y). (24)

It also follows that:
∆x = ∆Cy1 + C1∆y− ∆C(∆y). (25)

Additionally, (24) and (25) give the average of the following:

∆x =
1
2
[∆C(y0 + y1) + (C0 + C1)∆y] = ∆C y + C∆y, (26)

where the vector y = 0.5(y0 + y1) and matrix C = 0.5(C0 + C1).
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To interpret a technological change in economic sectors more precisely, a method-
ological proposal is presented that uses a specific normalization criterion by row and
column of the Leontief inverse matrix. In fact, it is possible to find an alternative (additive)
decomposition. Therefore, decomposing the inverses in (21) yields the following:

∆x =
[
C̃g

1 + C̃ f
1 ]y1−[C̃

g
0 + C̃ f

0

]
y0. (27)

By performing the following operation:

∆x = C̃g
1 y1 − C̃g

0 y0 + C̃ f
1 y1 − C̃ f

0 y0, (28)

because y1 = y0 + ∆y, the following substitutions can be made:

∆x = C̃g
1 [y0 + ∆y]− C̃g

0 y0 + C̃ f
1 [y0 + ∆y]− C̃ f

0 y0

= C̃g
1 y0 + C̃g

1 ∆y− C̃g
0 y0 + C̃ f

1 y0 + C̃ f
1 ∆y− C̃ f

0 y0
= ∆C̃gy0 + ∆C̃ f y0 + C1∆y.

(29)

Additionally, because y0 = y1 − ∆y, another alternative decomposition is found, as follows:

∆x = ∆C̃gy1 + ∆C̃ f y1 + C0∆y. (30)

This produces an additive expression of the modified SDA, as follows:

∆x =
1
2

[
∆C̃g + ∆C̃ f

]
(y0 + y1) +

1
2
(C0 + C1)∆y, (31)

or shortened, as follows:
∆x =

[
∆C̃ f y + ∆C̃gy

]
+ C∆y. (32)

The change vector ∆C̃gy can be broken down by production stage, at least based
on direct and indirect requirements. Further decompositions including final demand
components or others can also be considered.

3. Preliminary DATA

The information provided by the IO tables is essential to highlight the various sources
of change in output, in particular the information available in the intermediate input
matrices, given that their structures are the primary reference for SDA. Indeed, they were
extracted from a database (Eurostat 2015a) containing symmetric matrices in 64 × 64 basic
prices of products for six EU-28 countries (Austria, Belgium, France, Germany, Italy, and
Spain), over the period 2010–2015. At the same time, the corresponding price deflation from
the 2015 tables, based on 2010 prices, was performed (see Supplementary Material). In this
context, it should be noted that Eurostat has detailed information on deflation indicators
(with 2010 as reference) of value added by sector (Eurostat 2015b). An analogous indicator
for intermediate inputs is only available for Germany. Therefore, this approach was chosen
because it includes the same criterion for the six countries analyzed.

With respect to indirect inputs in the three economic activities included in primary
sectors, Figure 1 shows that they did not change much between 2010 and 2015, and neither
did the price index (it is given as an average). Crop and animal production, hunting, and
related service activities have a higher relative weight of intermediate inputs than the
other two in these six countries. Logically, countries with access to the sea have a greater
representation of fishing and aquaculture. Thus, Figure 1 requires no further explanation.
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Figure 1. Change in intermediate inputs in primary sectors and price index, 2010–2015.

Figure 2 shows the changes—2010 with an index of 100—in both value added and
total output for the three sectors together over the period analyzed, indirectly subtracting
changes in intermediate inputs. Four countries (Austria, Belgium, France, and Spain) show
very similar behavior in these two variables (also deflated with reference to 2010). It can
be noted that Germany’s Gross Value Added (GVA)and Italy´s output indexes for the
considered sectors did not preset inflation. Using value-added price indices as a criterion
may be appropriate for calculating deflation of IO tables.
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Figure 3 shows the percentage structure of final demand in the six countries studied
(2015, including deflation with reference to 2010). It is broken down into three components
(although, it could be broken down further). The larger share of final consumption expen-
diture is evident in almost all cases. However, fishing exports are fairly sizeable, especially
in France and Germany. Table 1 presents the same information, but in value terms. The
2010 structure is very similar.
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Table 1. Final demand components by country (million EUR) in 2015.

Country Product Total Final Consumption
Expenditure

Gross Fixed Capital
Formation Exports

Austria
Agriculture 2073.76 191.14 979.25

Forestry 406.22 0.00 72.41
Fishing 41.87 0.00 2.57

Belgium
Agriculture 2537.83 63.39 3701.04

Forestry 93.40 0.00 145.75
Fishing 167.03 0.00 60.04

France
Agriculture 15,015.05 1374.04 12,086.93

Forestry 1154.17 0.00 152.98
Fishing 783.25 0.00 519.02

Germany
Agriculture 17,318.48 674.49 9924.52

Forestry 1117.48 0.00 337.28
Fishing 340.93 0.00 237.43

Italy
Agriculture 13,704.94 365.38 4897.40

Forestry 826.99 0.00 94.03
Fishing 2066.41 47.70 236.75

Spain
Agriculture 8260.62 1649.21 12,520.33

Forestry 320.49 0.21 149.85
Fishing 1942.74 0.00 448.47

4. Results and Discussion

The proposed decomposition applies to the six EU-28 countries in 2010–2015, for
which we have homogeneous information based on symmetric IO tables of total flows,
measured in constant prices. In order to perform SDA, price deflation is needed. Here,
matrices were deflated considering 2010 prices as base year. Available information about
price indexes allows for row and/or columns proportional adjustments (Dietzenbacher
and Hoen 1998). These techniques can be adapted to different information scenarios.

Agriculture is the largest of the three selected sectors and is, in fact, the one on which
attention is focused. It was decided to present results for the other two similar sectors to
test the extended methodology, although calculations were made for all production sectors.

Compared with previous five-year periods, the reference data are characterized by a
slowdown, both in final demand and in output by sector. This circumstance is considered
ideal for fine-tuning the measurement of technological change using SDA. There has been
an upward trend in these macro-economic indicators in the past, so there was no suspicion
of possible overestimation in this area.

According to Formula (5), the elements of the main diagonal of the Leontief inverse ma-
trix can be divided into three effects: that produced by final demand, by direct requirement
(own consumption), and by indirect requirement. Figure 4 shows this disaggregation for
the products examined. This information will be critical for interpreting the normalization
results described in the methodology section.

There are no significant differences between the two survey years, but there are
some differences among countries. In fact, high values of these multipliers lead to sharp
adjustments in the corresponding rows and/or columns, as will be shown in the normalized
matrices C̃ f (row) and C̃ f (col). For example, Forestry’s own consumption in Austria, France
and Germany is very high and has its indirect effects, as can be seen in the figure. Moreover,
in the case of Belgium and Italy, this sector’s own consumption is zero. Thus, normalization
by row and/or column has no effect on the Leontief inverse matrix.

Table 2 shows the results for the three primary sectors from 2010 to 2015; although,
for computational purposes, all production sectors were considered (see Supplementary
Material). The impact of the final demand vector is not broken down. However, it is
possible to disaggregate this vector in multiple ways, so it would be possible to apply
extended versions of this formula. Additionally, instead of working with an additive format,
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one can use a multiplicative format. The various disaggregation possibilities shown in
Table 2 do not present a common pattern, although they do show some commonalities that
are described below. With respect to agriculture, there is an upward trend in production,
except for Italy, which can be explained by technological change and final demand changes.
However, these recent changes do not always follow the same path. Overall, changes in
the other sectors, i.e., forestry and fishing, are not as significant. However, they display
different changes to those in agriculture.
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The focus is centered on variations due to technological change, which is explained by
positive or negative changes in inverses and in the mean vector of final demand, which
is always positive. This means that positive or negative changes will be determined by
changes in Leontief inverse matrices. In this respect, it should be noted that a reduction
in the proportion of intermediate demand results in an increase in the proportion of
final demand. Therefore, for the purposes of the inverse, it implies lower values of its
components. Over time, this means that negative changes in the inverse imply that there is
less dependence on intermediate inputs. In a period, such as the one under consideration,
which is characterized by an economic crisis and which at the same time covers only a
few years, it can be assumed that almost no changes have taken place in its production
structures. Therefore, such a refinement of the overall figures for technological change by
roughly subtracting the component attributed to sectoral own consumption could be a
suitable alternative for analysis.

The empirical application here presented gives a straightforward probe of how tech-
nological changes in SDA analysis, as captured in Miller and Blair (2009), can be disag-
gregated into different components. A mathematical demonstration has been given in
Equations (27)–(32). Since analogous proposals cannot be found in literature to the au-
thor´s knowledge, empirical comparisons between alternative decompositions are not
possible. However, these methodological improvements could be combined with other
SDA developments (e.g., the ones focused on disaggregating final demand components).
This could be a promising way forward for further testing.
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Table 2. Break down of changes in output by country (million EUR) from 2010 to 2015.

Country Product

Output Change Technological Change Final Demand
Change

Value %
Standardized

by Final
Demand

Standardized
by Direct

Requirements

Standardized by
Indirect

Requirements
Aggregated

Austria
Agriculture 999.25 18.59 544.45 81.78 44.81 328.21

Forestry 52.46 2.41 −64.97 −20.66 −25.63 163.71
Fishing 0.64 1.52 10.52 −0.32 −0.03 −9.53

Belgium
Agriculture 1042.71 12.34 1548.82 310.86 318.44 −1135.41

Forestry −6.35 −1.57 −25.13 −3.27 0.07 21.98
Fishing −33.23 −25.64 −63.42 −3.96 −2.74 36.88

France
Agriculture 4479.31 7.12 1568.98 418.71 241.55 2250.06

Forestry 152.84 3.06 −710.22 −163.50 −87.95 1114.52
Fishing 122.14 5.85 178.06 8.74 4.40 −69.06

Germany
Agriculture 5763.43 14.14 4860.93 599.65 365.42 −62.57

Forestry 1085.35 34.35 −29.51 −85.93 −49.97 1250.75
Fishing 44.10 11.67 124.67 12.58 3.44 −96.59

Italy
Agriculture −1763.27 −3.82 7.15 −35.33 −8.64 −1726.45

Forestry 89.72 7.06 145.97 8.90 3.37 −68.51
Fishing −180.33 −8.33 227.49 19.53 3.14 −430.49

Spain
Agriculture 5512.51 14.00 1755.95 903.09 394.84 2458.64

Forestry 233.58 19.45 159.77 51.30 14.65 7.86
Fishing −345.30 −14.99 −198.02 −18.62 −2.75 −125.91

Figure 5 supports the table of results but focuses only on the decomposition of tech-
nological changes. A decomposition of the change indicated by final demand can also
be performed, however, that is beyond the scope of this article. The results are shown
as percentages to facilitate their visual comparison. Again, heterogeneous behavior is
evident. It is clear that the disaggregation of elements of the main diagonal, presented in
Figure 4, determines these results because those elements are used as distribution factors.
For example, it is clear that agriculture in Italy shows technological improvement, although
when we go into detail about it, the change in own consumption determines this global
figure and the other two components ultimately offset each other because one is positive
and the other negative. Another example to consider is Forestry in Germany, with high
own consumption, as stated above, and that the factor attributed to it largely explains the
reduction in output in this respect; if this component is deducted, the technological change
will not be so marked.

The value of the main diagonal’s components (Leontief inverse matrix) depends
largely on own consumption, regardless of the interrelationships that each production
sector has with the others that make up the economy. Even mere errors in the calculation of
own consumption may be considered to be technological changes when they are not. In this
sense, agricultural products are very diverse but in the formatting processes of symmetric
IO tables they are presented grouped together. Moreover, the symmetric format almost
always needs to be adjusted by algorithms that can often raise figures of a higher value.
In future research, the output changes could be analyzed using rectangular IO models
because origin–destination tables present a greater disaggregation of basic products and do
not depend on purely mathematical adjustments that ensure accounting equilibrium, but
which may, in some way, distort true relationships between product demand and output
by non-homogeneous branches of production.
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5. Conclusions

Primary sectors are ideal for testing the extended SDA, since they are closely inter-
connected with the rest of the economy, and at the same time, they tend to have higher
than average own consumption figures. With respect to the Leontief model, the own
consumption figures treated through normalization do not change the accounting balance,
hence it is possible to make transformations to the above-mentioned model, which facilitate
the calculation of net effects. Furthermore, the presented normalizations of the Leontief
inverse matrix and its decomposition facilitate the calculation of the importance of a sector
in terms of its external contribution—associated with sectoral interdependencies—and also
reproduce the size of the corresponding economy. In terms of comparing the accounting
frameworks, whether for the economy as a whole or for the production sector, the sectoral
own consumption can also be relativized. In this way, at least in part, the effect they
have on the calculation of multipliers to compare inverses from different years can be
deduced. The sensitiveness of inverse elements can be fine-tuned, or other means can
be employed to adjust or refine concepts such as technological change. Within IO frame-
works, this kind of normalizations have also been used to measure inter-industrial linkages
(Pereira-López et al. 2021).

In the processes of constructing homogeneous branches (a product equals a branch) in
equilibrium, some adjustments are applied that tend to raise the figures of a higher value,
and own consumption figures are an excellent candidate for such an accumulation of errors
(adjustments). Hence, the output changes could be analyzed using rectangular IO models
because they operate with a greater disaggregation of basic products, and they are not
subject to accounting adjustments.
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