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Abstract: Estimating the accurate State of Charge (SOC) of a battery is important to avoid the
over/undercharging and protect the battery pack from low cycle life. Current methods of SOC
estimation use complex equations in the Extended Kalman Filter (EKF) and the equivalent circuit
model. In this paper, we used a Feed Forward Neural Network (FNN) to estimate the SOC value
accurately where battery parameters such as current, voltage, and charge are mapped directly to the
SOC value at the output. A FNN could self-learn the weights with each training data point and update
the model parameters such as weights and bias using a combination of two gradient descents (Adam).
This model comprises the Dropout technique, which can have many neural network architectures
by dropping the neuron/mode at each epoch/training cycle using the same weights and biases.
Our FNN model was trained with data comprising different current rates and tested for different
cycling data, for example, 5th, 10th, 20th, and 50th cycles and at a different cutoff voltage (4.5 V). The
battery used for estimating the SOC value was a Na-ion based battery, which is highly non-linear,
and it was fabricated in a house using Na0.67Fe0.5Mn0.5O2 (NFM) as a cathode and Na metal as a
reference electrode. The FNN successfully estimated the SOC value for the highly non-linear nature
of the Na-ion battery at different current rates (0.05 C, 0.1 C, 0.5 C, 1 C, 2 C), for different cycling
data, and at higher cut-off voltage of –4.5 V Na+, reaching the R2 value of ~0.97–~0.99, ~0.99, and
~0.98, respectively.

Keywords: neural network; State of Charge (SOC) estimation; sodium-ion battery; dropout technique

1. Introduction

A recent report from the International Energy Agency (IEA) on the Global Electric
Vehicle (EV) Outlook 2020 [1] showed a surge in demand for electric mobility in the coming
decade across the world. Stated Policies Scenarios, which incorporates existing government
policies, has estimated the rise in global battery capacity from 170 gigawatt-hours (GWh)
per annum in 2019 to 1500 GWh per annum in 2030, whereas the Sustainable Development
Scenario projected the battery capacity demand to 3000 GWh/year in 2030, driven by rapid
electrification and a rise in electric heavy-duty vehicles. In short, there is global pressure
for implementing the policy to minimize CO2 emissions, and increasing battery-powered
electric vehicles will make a considerable contribution to achieve the target.

Batteries are one of the expensive and important components in the electric vehicle;
therefore, they must be managed properly by electronics and software, i.e., having a reliable
battery management system (BMS). A BMS maximizes the performance (power and energy)
delivered by the battery and its service life and protects the battery pack [2,3]. To achieve
this specific task in a BMS, a sophisticated algorithm is implemented on these specialized
electronics. A BMS must be able to estimate two fundamental types of non-measurable
battery-pack quantities: (1) states that change quickly (state of charge, diffusion voltage,
hysteresis voltage) and (2) parameters that change slowly (cell capacities, resistances).
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State-of-charge estimation is very important because it is an input to cell balancing and
estimates the energy/power calculations.

Battery state of charge (SOC) is the ratio of residual capacity to the total capacity. SOC
is like a dashboard fuel gauge that reports a value from “Full (100%) to Empty” (0%) [4].
Current gasoline engines have a sensor to gauge the gasoline level, but presently there is
no such type of sensor to measure SOC in the electric vehicle. Accurate estimation of SOC
produces benefits such as avoiding harming the cells from over/undercharging (longevity),
producing excellent performance, enhancing overall power system reliability, and reducing
the cost of the overall system.

Estimating SOC is difficult because it is time dependent, highly non-linear based on
battery chemistry, and varies with temperature. Traditionally, there are two methods to
estimate the SOC such as a voltage-based method (open circuit voltage (OCV)) [5] and
current-based method (coulomb counting) [6]. These methods have their limitations, such
as coulomb counting is easy to implement but integral charge results in accumulating
SOC estimated error and the OCV method ignores the effects of impedance, diffusion, and
hysteresis voltage. These techniques are replaced with some advanced methods such as
Kalman filter (KF), Extended Kalman filter (EKF), equivalent circuit method, and neural
network [4,7]. One of the most known algorithms is the EKF algorithm, which estimates
the SOC value based on measured voltage, current, and previously estimated SOC. This
algorithm is often tied with an equivalent circuit model or a lumped parameter model,
which requires complicated parameter identification to represent the non-linear nature of
the battery.

Neural network (NN) is a powerful tool in predicting any non-linear system. It
does not require any accurate formula or equivalent circuit model/parameters to define
the relationship between the battery parameters and the SOC. It estimates SOC from the
historical data (current, voltage, temperature, impedance), which are fed to the network,
which adapts to them accordingly. Traditionally, various neural network architectures
contain a different number of neurons, hidden layers, and activation function to determine
the dynamic properties of a battery, which are usually composed of an input layer, hidden
layers, and an output layer [8–10]. Charkhgard et al. [11] used the combination of EKF
and a neural network comprising 30 neurons in the hidden layer and Gaussian as the
activation function to estimate the SOC with Root Mean Square error of <2% for Li-ion
battery. Du et al. [12] estimated the SOC with a maximum error of <2% using 10 neurons in
the hidden layer and a sigmoid as the activation function; however, as the test data were
collected at a constant current rate, it made the model less robust. Tiwari et al. [13] showed a
cascaded forward backpropagation network comprising two hidden layers with 18 neurons
each and sigmoid as an activation function, which had an accuracy of 99.99% for estimating
SOC in Na-ion battery. However, the model was less robust because test data used to
determine the SOC were the next immediate cycle; for example, the model was trained for
the first cycle and tested for a second cycle, which made it difficult to conclude what would
be the accuracy of the SOC for the subsequent or later cycles. Chemali et al. [14] used
an interesting deep neural network to determine the SOC for Li-ion battery for different
temperatures but showed only one-cycle data with Mean Absolute Error (MAE) of 1.10%
for data recorded at 25 ◦C and 2.17% for −20 ◦C.

The Current state of the art is the Li-ion battery (LIB) technology in electric vehicles
because of high energy density, good capacity retention, and pre-occupied infrastructure,
but procurement of metals required to build the LIBs is getting difficult. For example, the
extraction process of lithium is difficult and expensive, and has price instability and resource
concentration for cobalt metal makes it hard to rely only on one battery technology [15,16].
A sodium ion battery is considered as a better alternative to LIBs because of sodium’s low
cost, natural abundance, higher chemical diffusion coefficient, similar reaction mechanism,
and better electronic conductivity. However, it has a lower reducing potential (−2.71 V vs.
Standard Hydrogen Electrode (S.H.E) than Li (−3.04 V vs. S.H.E) [17].
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This paper shows how a Feed Forward Neural Network (FNN) can accurately deter-
mine the state of charge (SOC) for a Na-ion battery comprising Na0.67Fe0.5Mn0.5O2 (NFM)
as a cathode and Na metal as a reference electrode. The FNN shows the following novelties:
(1) It can estimate SOC for the non-linear nature of a Na-ion battery that has a higher
number of redox activities than a Li-ion battery; (2) A FNN uses voltage, current, and
charge as inputs to the network and estimates the SOC without Kalman filter or equivalent
circuit model; (3) A FNN can self-learn its weight using gradient descent and can be trained
for a smaller number of epochs, which make the computation faster; (4) A FNN, once
trained for different current rates (0.05 C, 0.1 C, 0.5 C, 1 C, and 2 C for four cycles each), at a
specific voltage of 4.2 V vs. Na+/Na, can estimate the SOC for a battery cycled at different
cutoff voltages (4.5 V vs. Na+/Na), for different current rates, and for various cycles (5th,
10th, 20th, and 50th cycles). This is unique because most of the trained models have tested
data for the immediate cycle [14] or for only one cycle [13] to evaluate and understand the
robustness nature of the model.

After a brief introduction, the second section will discuss how a feed forward neural
network is designed for estimating the SOC. The third section presents how sodium layered
cathode material was synthesized in house, fabricated in a coin cell, generating data that
was collected for training/testing data from the battery station. In the fourth section,
performance of the FNN is evaluated on a variety of test datasets.

2. Materials and Methods
2.1. Methods

The fundamental block of deep learning is an artificial neuron. The neuron takes
an input (x1, x2, x3 . . . .xn) and, based on feature importance, each input is assigned some
corresponding weight (w1, w2, w3 . . . .wn). This neuron takes an aggregate of weighted
inputs, applies some function, and gives the output, as shown in Figure 1. For McCulloch
Pitt’s (MP) neuron model, input/output can only be Boolean and all weights are unity [18].
All the input are added together, since all the inputs are Boolean, which means counting
the number of things that have a value of 1.
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Figure 1. Artificial neuron model showing weights (w), inputs (x), pre-activation function as ‘a’, and
activation function ‘h’ and ‘y’ as outputs.

Aggregation of this input can be called a pre-activation function ‘a’ (Equation (1)).
The value of ‘a’ will pass through the function ‘h’, called the activation function, and gives
output 1, which means the neuron will fire if the summation value is greater than some
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threshold value ‘t’, or it will output 0, which means the summation value is less than the
threshold value (Equation (2)).

a(x1 , x2, x3, . . . .xn) = a(x) = ∑n
i=1 xi, (1)

ŷ = h(a(x)) = 1 if a(x) ≥ t
= 0 if a(x) < t

where t is the threshold. (2)

If the predicted output ‘ŷ’ is different from the true output ‘y’, then the error in
this case would be the square of the difference between true and predicted values. The
difference value is squared to avoid the cancelation of positive and negative difference
values. Equation (3) shows the loss value for one bit of datum having numerous features,
and Equation (4) shows the loss value of all the data points having different features of
corresponding importance (weights).

Loss/error = (yi − ŷi)
2 (3)

Loss/error = ∑i(yi − ŷi)
2 (4)

To minimize the error/loss value, the unique value of threshold ‘t’ is used via the
brute force method. With minimum loss value, the model is tested based on the accuracy it
achieved (Equation (5)).

Accuracy =
number of correct prediction
Total number of predictions

(5)

The MP neuron model divides the output into two sections: One section consists of
the predicted value 1 and the other section consists of predicted value 0. The problem with
this model is that it takes only binary values (0 and 1), has a poor learning algorithm to
search the better threshold value ‘t’, and it is a linear model.

To overcome the limitation of the MP neuron model, a Sigmoid neuron model can be
used as an alternative with logistic function as an activation function ‘h’. Pre-activation
‘a’ is the same as in the MP neuron model. Summation of the weighted inputs (could
be n-dimensional) along with the bias as ‘b’ and output y as sigmoid or logistic function
(Equation (6)). For the two inputs’ case, the Sigmoid function is shown in Equation (7). For
more than two inputs, the output equation is shown Equation (8). The input to the sigmoid
neuron would be of any input value and output will be a continuous value between 0 and
1, for example, 0.4, 0.6, 0.8, and so on. The loss value (L) calculated for the Sigmoid neuron
model would be the same as Equation (4).

ŷ =
1

1 + e−(wx+b)
(6)

ŷ =
1

1 + e−(w1x1+w2x2+b)
(7)

ŷ =
1

1 + e−(∑i wixi+b)
(8)

To minimize the loss value (L), the parameter of the sigmoid neuron model ‘wi’ and
‘bi’ should be such that the difference between predicted (ŷ) and true value (y) should be
minimal. Initially, the model parameters are assigned some random values. Then, predict
the output and compute the loss as in the Perceptron model [19]. It iterates by changing
the value of ‘w’ and ‘b’ until the loss value is minimized. However, by changing the model
parameters with some random guesswork, the loss value will decrease at some point and
increase for the next potential value. In the actual world, we want to start at a random
point and move towards the minimal loss value with some learning algorithm. Instead of
guessing the model parameters, it requires a principal way of changing ‘w’ and ‘b’ in such
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a way that loss value is minimized in the unique direction. With the help of the Gradient
Descent (GD) rule [20], the values of ‘w’ and ‘b’ are updated by a partial derivative of loss
function, which accounts for the entire data, computes the predicted output, computes the
loss, and then updates the parameters again. This loop iterates continuously until good
accuracy (loss value is minimal) is achieved. There are functions in the framework such as
Pytorch [21] and Tensorflow [22], which compute the parameters automatically.

In the actual world, the data are not just linearly separable. Therefore, we need a
complex function to fit the data. To have a complex function, using a simple sigmoid neuron
model as the basic building block would not predict the output with high accuracy. Instead,
combining several such sigmoid neurons in various layers, as shown in Figure 2 (known as
Deep Neural Network (DNN)), can approximate a complex function between input and
output [23,24]. The DNN would be differentiable, as the basic block is differentiable to
learn the model parameters. The final output (ŷ) would be a function of (x1, x2, x3 . . . .xn)
and it would be very complex because each input is passing through many neurons
having an activation function with multiple transitions in different layers. With different
network architecture, the one that gives the minimal loss value would be the best DNN
approximating the relationship between inputs and the output. In summary, a neural
network (Deep Neural Network (DNN)) with a certain number of hidden layers, an
activation function, s number of neurons, and a learning rate could approximate any
functions that exist between inputs and output.
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Figure 2. Architecture of a Deep Neural Network with L number of layers and n number of neurons
at each layer. Weight and bias are associated to the corresponding layer and a detailed explanation is
given in the main text. The input data are given as current, voltage, and charge at each time step and
output of DNN estimates the SOC at every time step.

In Figure 2, the very first layer is known as the input layer, comprising current,
voltage, and charge, and the last layer is known as the output layer for predicting the
state of charge (SOC). All the other layers between input and output layers are known as
intermediate/hidden layers. Each neuron has two things: One is the pre-activation, denoted
as ‘a’, and the other is activation, denoted as ‘h’. As in the case of the simple sigmoid neuron,
the aggregation of inputs is known as pre-activation, and activation passes the aggregation
of inputs to the sigmoid/logistic function. The weight is labeled as wijk where i = layer
number, j = neuron number, and k = input number. For example, w121 is the first layer, the
second neuron is attached to the first input, aij is the pre-activation, and hij is the activation
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function of each neuron, where i is the layer number, j is the neuron numbers, and bL is
the bias associated with L number of layers. Below, Equations (9) and (10) show the matrix
of weight ‘W1’ and activation function ‘h1’ for the first layer, respectively. The ‘a1n’ is the
pre-activation function for the first layer for n neurons (Equation (11)).

W1 =

 w111 · · · w11k
...

. . .
...

w1j1 · · · w1jk

 (9)

h1 =

h11
h12

...
h1n

(10)

= w1j1 ∗ x1 + w1j2 ∗ x2 + w1j3 ∗ x3 + w1j4 ∗ x4 . . . . . . . . . + w1jk ∗ xk + b1,j (11)

For the second layer, output of the activation function of the first layer becomes
the input for the pre-activation function of the second layer with the corresponding
weights and bias. The general equations for ‘L’ number of layers are mentioned below, in
Equations (12)–(14).

The pre-activation at layer ‘i’ is given by

ai(x) = Wihi−1(x) + bi (12)

The activation at layer ‘i’ is given by

hi(x) = g(ai(x)) (13)

where g is called the activation function.
The activation function at the output layer ‘L’ is given by

ŷ = f (x) = hL = O(aL), (14)

where ‘O’ is called the output activation function.
The estimated output ŷ will be a very composite and complex function of all the inputs

passing through lots of non-linearities all the way. Once we compute the loss value, we can
feed it to the function in the framework (from Pytorch, TensorFlow), which will update the
parameter via backpropagation to minimize the overall loss value. The above network is
also known as a Feed-forward network (FNN).

There are many architectural designs for a FNN based on different variables. They
can be different depending upon the activation functions such as those chosen for sigmoid,
tanh, ReLU, or LeakyReLU. The number of hidden layers can be changed to 2, 4, 5, and so
on, the number of neurons in each layer can be 15, 16, 20 . . . etc., the learning rate can be 0.1,
0.01, 0.0001, etc., different batch sizes can be 16, 32, 128, etc., and different gradient descent
techniques such as Adam, Adagrad, RMS prop, Momentum GD, etc. can be used. Distinct
designs of a FNN determine the different loss values. This is known as hyper-parameter
tuning and it can be performed using GridSearchCV [25] or RandomSearchCV [26]. In
GridSearchCV, all the combinations of each variable with all other parameters are used to
design the FNN and are run for a specific number of epochs. (Note: A full one-training
epoch is considered when it includes one forward pass and one backward pass, the process
of sending the Loss value signal backward to update the weights and bias.) Once all the
combinations are run, they will give the best possible parameter whose loss value will be
minimal. Similarly, in RandomsearchCV, it will randomly choose a variable combination
for a predetermined number of combinations and provide the best combination parameter
whose loss value is minimal. Hyper-parameter tuning via GridSearchCV is computationally
time consuming and gives out the minimal loss value. However, in machine learning,
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getting the minimal loss value of training data does not guarantee the best model, as the
model needs to be validated on the validation data. If validation loss for validation data is
higher for the same model, which has minimal loss value on training data, then the model
is encountered with the over-fitting. It occurs when the gap between the training loss value
and validation loss is higher.

In this work, we designed a two-layer neural network with 15 neurons in each layer
and used sigmoid as the activation function. Before data were fed to the neural network,
the data were normalized using MinMaxScaler (Equation (15)).

xscaled =
x−min(x)

max(x)−min(x)
(15)

A few optimization techniques were used in this model such as a batch size of 16 and
Adam. Traditionally, the model looks at all the data points, computes the partial derivative
of losses for all the data points, and updates the parameters; this is computationally
expensive. Using data points as Batch ‘B’, means B data points are fed to the network,
which computes the partial derivative, keeping a log for all such B number of data observed,
and updates the weights and bias accordingly. After all the data points in batch size are fed
to the network it is considered as one epoch. Instead of updating the model parameters
once, its update the weights and bias ‘B’ number of times. The Adam algorithm is the
combination of the two-Gradient Descent (GD) rule (Equation (18)), which is a momentum-
based GD (a history component is used to make the current update (Equation (16)), and the
RMS prop GD (in which history is used to update the learning rate (Equation (17)) [27].

mt = β1∗vt−1 + (1− β1)(∇wt) (16)

vt = β2∗vt−1 + (1− β2)(∇wt)
2 (17)

wt+1 = wt −
η√

vt + ε
mt (18)

The β1 and β2 are the exponential rates for the first and second momentum estimates,
respectively, and have values less than 1: For example, β1 : 0.9 and β2 : 0.999. The η is the
learning rate and ε is a tiny number to prevent any denominator from going to zero, for
example, 10−8.

To avoid the symmetry breaking problem for using similar weights, an initialization
technique is used for the initial weights. Based on the activation function, an initialization
technique was used; for example, the best initialization technique for the sigmoid and tanh
functions is Xavier uniform and for ReLU/Leaky ReLU, the He initialization technique
is preferred. For the FNN, weights were initialized using the Xavier uniform distribution
with sampling interval [−r,r] (Equation (19) shows the equation of r) [28].

where r =

√
6

nin + nout
(19)

The nin and nout are the number of input and output connections, respectively.

Dropout Technique

The process to mitigate over-fitting is called regularization, which means modifica-
tions are made in the learning algorithm with the goal of reducing the generalization
error/validation loss rather than training error. A few techniques are early stopping [29],
data augmentation, L2 regularization [30], batch normalization, and dropout technique [31].
In early stopping, the number of epochs is stopped when the validation loss is minimal,
whereas in data augmentation, more training data or defects’ data are added for train-
ing the model. Among all, the dropout technique is an interesting way to minimize the
validation error.
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Consider the example of using 10 different model architectures to approximate the
relation between input and output. Instead of relying on the output of one model, we
could rely on the output of all 10 models by averaging all the output data. Training the
data on all different models or with a different subset of data having a different number
of neurons, layers, or activation functions and then computing the loss value for all such
neural networks will be computationally expensive. Instead, we can build a model in such
a way that it shares the same weights and bias for neurons but has a different number of
hidden layers and neurons and gets updated only when it is necessary. This configuration
can be achieved via the Dropout technique where a neuron can be dropped based on some
threshold value. For example, if the value of a node is 0, that means the node/neuron is
dropped, and if it is 1, then keep the node/neuron in the network. If the neural network
comprises 15 neurons, the combination of the network is 215. For n neurons, 2n different
possible NN architectures can be designed. For the dropped-out architecture, the weights
for the nodes are kept in the network, which is going to be same as the original network.
The model moves according to the previously fed data to the network, calculates the
loss values, backpropagates the loss values, and updates the weights, which are used to
compute the output value, but weights that are connected to the dropped node/neuron are
not updated. For the next architecture, if the dropped neuron is connected, it will update
the weights from the last iteration. In this way, weights and bias values are propagated or
shared throughout multiple architectures, making them computationally workable and less
time consuming. Each neuron will be present in half of all the networks and, thus, it will be
updated for 50% of the period during training. We used the dropout rate of 20% between
the inputs and hidden layer, meaning one in five inputs will be randomly excluded from
each layer update.

2.2. Material Synthesis

P2-type Na0.67Fe0.5Mn0.5O2 (NFM) was synthesized using the sol-gel technique.
CH3COONa (10% excess), Fe(NO3)3.9H2O, (CH3COO)2Mn.4H2O, and citric acid as cheat-
ing agent were dissolved in deionized water with an appropriate molar ratio. The mixed
solution was heated at 80 ◦C and stirred until the deionized water was evaporated. The
dried powder was ground and heated at 400 ◦C for 4 h. in air (ramp rate 5 ◦C/min)
followed by subsequent heating at 950 ◦C for 15 h. (in air at ramp rate 5 ◦C/min). The final
calcined powder was stored in an Argon-filled glove box (H2O, O2 ≤ 0.1 ppm) to avoid
exposure to humidity and air

2.3. Material Characterization

X-Ray Diffraction (XRD) was performed using a Rigaku Ultima IV diffractometer with
D/tex Ultra High Speed Detector and PANalytical powder diffractometers over the 2θ range
from 10◦ to 80◦ with a scan speed of 2◦/min with Cu Kα radiation (power setting 40 kV,
44 mA). Crystallographic evaluations of the sol-gel synthesized P2-type Na0.67Fe0.5Mn0.5O2
were performed using the XRD patterns, shown in Figure 3a. The patterns showed that the
NFM powder samples had a hexagonal, layered structure with a P63/mmc space group,
as reported in our previous paper [32,33]. The morphology of the powder samples was
observed using an ultra-high-resolution Field Emission Scanning Electron Microscope
(FE-SEM) Hitachi SU7000. The particle shapes of the powdered samples were hexagonal
crystalline having average particle sizes between ~0.8–2.5 µm (Figure 3b).
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Figure 3. (a) X-ray Diffraction (XRD) patterns for Na0.66Fe0.5Mn0.5O2 (NFM) and corresponding hkl
values. (b) The Scanning electron microscopy (SEM) image of NFM.

2.4. Electrochemical Characterization

Electrochemical performance was analyzed by fabricating the cathode (NFM) in a
CR2032 coin cell ((0.787-inch diameter * 0.125-inch height), United Minerals and Chemical
Corporation). The half-cells were assembled using Na metal (dia.: 7/16 inch) as the counter
electrode, two glass microfibers (Whatman DBS 30, dia.: 5/8 inch) as the separator, and a
slurry cast cathode (NFM) as the working electrode (dia.: 7/16 inch). The active material
slurry was prepared by mixing the active material, Super P binder (Kynar PVDF), in the
mass ratio of 80:10:10, respectively. N-Methyl-2-pyrrolidine (NMP) was used as a solvent
for making the viscous slurry. Cathodes were prepared by casting the active material
slurry on a carbon-coated aluminum current collector. The active material loading was
2–3 mg/cm2), followed by drying under vacuum at 90 ◦C overnight. The electrolyte
used was 1.0 M NaClO4 in Propylene Carbonate (PC) with 2% Fluoroethylene Carbonate
(FEC) as an additive. The coin cells were assembled in an Argon-filled glove box (H2O,
O2 ≤ 0.1 ppm). Galvanostatic cycling assessments were performed using a Maccor Series
4000 battery tester.

2.5. Data Used for Training and Test Data
2.5.1. Training Data

For training the FNN model, the data collected comprised current, voltage, and charge
value at each time step, which were used as inputs to the FNN, and the calculated SOC was
found at the output layer. The current, voltage, and charge values were found from the
data set obtained from cycling the Na-based cathode coin cell (the Fabrication of the coin
cell is explained in Section 2.4). Figure 4a shows the cycling behavior of the NFM cathodes
cycled between 1.5–4.2 V vs. Na/Na+ for five cycles each at different C-rates from 0.05 C
to 2 C rate (1 C = 260 mAh/g). The first four discharge cycles for each C-rate were added
together in the Excel file and used as the training data. The training data were divided into
training and validation data for tuning the parameters. The validation data comprised 10%
of the training data.
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Figure 4. (a) Rate capability at different current rates from 0.05 C–4 C for NFM cathodes. (b) Gal-
vanostatic discharge curve for NFM cycled between 1.5–4.2 V vs. Na/Na+ for the fifth cycle of each
current rate from 0.05 C to 2 C rate. (c) Specific capacity as a function of cycle number for NFM
cathode cycled between 1.5–4.2 V vs. Na/Na+ at 0.1 C rate for 50 cycles. (d) Galvanostatic discharge
curve for NFM cycled between 1.5–4.5 V vs. Na/Na+ for the 2nd, 5th, and 10th cycles at 0.05 C rate
(1 C = 260 mA/g).

2.5.2. Testing Data

The testing data were characterized into three sections. (1) Figure 4b shows the charge–
discharge profile curve of the NFM cathode cycled between 1.5–4.2 V vs. Na/Na+ for
different C-rate. (Note: The fifth cycle of each C-rate such as the 5th, 10th, 15th, 20th, and
25th cycles in Figure 4a). (2) Figure 4c shows the cycling data of the NFM cathode cycled
between 1.5–4.2 V vs. Na/Na+ for 50 cycles at 0.1 C rate, out of which the 5th, 10th, 20th,
and 50th cycles were used for testing the FNN model. (3) Figure 4d shows the charge and
discharge voltage profile curves for the NFM cathode cycled between 1.5–4.5 V vs. Na/Na+
at a 0.05 C rate.

3. Results and Discussion

After training the FNN with the training data, as mentioned in Section 2.5.1, the
FNN was tested for various test data sets fetched at different current rates, cycling data,
and cutoff voltages, which were not part of the training data. The model was trained for
20 epochs, for a batch size of 32, a learning rate of 0.001, using a sigmoid activation function,
using initialization technique as the Xavier uniform, and applying a dropout function to
only the first hidden layer.
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The computational speed for this training took a few minutes to train the model.
Figure 5 shows the training and loss values as a function of epochs. Figure 6 shows the
relationship between the different current rates for voltage and the state of charge. The true
value of the SOC (solid line) was compared with the predicted SOC (dashed line) value for
the tested data. The Accuracy between the true and estimated SOC values was measured
using the R2 value. Most of the report showed the graph for a time vs. SOC graph, as
shown in Figure 6a, but it failed to give a more detailed information compared to Figure 6b.
Thus, in this paper, most of the data was analyzed for voltage vs. SOC values. The R2 value
for the test data at 0.05 C (Figure 6b) showed 0.9960, which means 99.60% of the predicted
value matched with the true SOC value. (Note: Though the R2 value was above 99%, some
positive values compensated for negative values, which failed to interpret the true accuracy.
The true understanding of the SOC estimation is known when the Voltage vs. SOC graph
was plotted for True and Estimated SOC values.) The Model mostly predicted the correct
value of the SOC at the slope, with a slight variation at the plateau region between 40% and
85% of the SOC. At higher C-rates, the R2 value decreased, for example, at 0.5 C (0.9874),
1 C (0.9747), and 2 C (0.9780), shown in Figure 6d–f. Figure 7 shows the graph of Voltage
vs. SOC for the test data run at a 0.1 C rate for a different cycle (5th, 10th, 20th, and 50th),
and the model performed much better in estimating the SOC value, having the R2 value
of ~0.99–0.97. The battery degraded when it was cycled for a longer period because of
crystal structure instability, an increase in the impedance by forming a passivation layer on
the electrode, the decomposition of the electrolyte, and many more reasons, as explained
in our previous paper [32]. However, the model overcame the degradation nature of the
battery and estimated the SOC value for a higher cycle (50th cycle) with good accuracy, of
~0.99, making the model more robust. Figure 8 shows the result of the estimated SOC value
compared to the true value for the NFM cathode cycle at a higher cutoff voltage (4.5 V). The
Model was never trained for the higher voltage, but it showed better accuracy, of ~0.994 for
the 2nd, 0.9916 for the 5th cycle, and 0.9840 for 10th cycle. The battery run at higher cutoff
voltage showed a different performance in terms of capacity and stability of the crystal
structure. The SOC value differed when it was cycled at a higher potential, but the model
predicted the SOC value with good accuracy, of greater than 98%. In summary, the model
estimated the SOC value with an accuracy of ~0.98–~0.99 for a higher cutoff voltage (4.5 V),
~0.99 for a higher cycle number, and 0.97–0.99 at different current rates of the test data.
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Figure 6. (a) Model performance is shown, using State of charge vs. time for the battery discharge
data at a 0.05 C rate, by comparing the true and estimated values. However, for getting detailed
information, the performance of the Feed forward neural network (FNN) model is shown, using
voltage vs. State of charge graphs. Data used as battery discharged cycled between 1.5–4.2 V vs.
Na/Na+ at (b) 0.05 C, (c) 0.1 C, (d) 0.5 C, (e) 1 C, and (f) 2 C. The Mean square value and R2 value are
mentioned on each graph.
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4. Conclusions

In this paper, a two-layer feed forward neural network was designed with 15 neurons
in each layer, and sigmoid was used as the activation function. The FNN mapped the
measured battery signal voltage, current, and charge value directly to SOC and achieved
the competitive estimation performance. The FNN can estimate the SOC for the highly
non-linear nature of a Na-ion battery at different current rates (0.05 C, 0.1 C, 0.5 C, 1 C, 2 C),
with R2 value of ~0.97–0.99 and ~0.99 for higher cycle numbers, and a higher cutoff voltage
of 4.5 V vs. Na+/Na. The FNN can self-learn its weight using a gradient descent technique
called Adam, and it was trained for 20 number of epochs. The future work is to train this
model on the dataset of various drive cycles such as Urban Dynamometer Driving Schedule
(UDDS), the Highway Fuel Economy Driving Schedule (HWFET), the Unified Driving
Schedule (LA92), and the Supplemental Federal Test Procedures for various temperatures.
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