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Definition: The concept of entropy constitutes, together with energy, a cornerstone of contemporary
physics and related areas. It was originally introduced by Clausius in 1865 along abstract lines
focusing on thermodynamical irreversibility of macroscopic physical processes. In the next decade,
Boltzmann made the genius connection—further developed by Gibbs—of the entropy with the
microscopic world, which led to the formulation of a new and impressively successful physical theory,
thereafter named statistical mechanics. The extension to quantum mechanical systems was formalized
by von Neumann in 1927, and the connections with the theory of communications and, more widely,
with the theory of information were respectively introduced by Shannon in 1948 and Jaynes in
1957. Since then, over fifty new entropic functionals emerged in the scientific and technological
literature. The most popular among them are the additive Renyi one introduced in 1961, and the
nonadditive one introduced in 1988 as a basis for the generalization of the Boltzmann–Gibbs and
related equilibrium and nonequilibrium theories, focusing on natural, artificial and social complex
systems. Along such lines, theoretical, experimental, observational and computational efforts, and
their connections to nonlinear dynamical systems and the theory of probabilities, are currently under
progress. Illustrative applications, in physics and elsewhere, of these recent developments are briefly
described in the present synopsis.

Keywords: thermodynamics; statistical mechanics; information theory; nonlinear dynamical systems;
strong and weak chaos; nonadditive entropies; nonextensive statistical mechanics; long-range
interactions; scale-free networks; complex systems

1. Introduction

Thermodynamics is an empirical physical theory which describes relevant aspects of
the behavior of macroscopic systems. In some form or another, all large physical systems
are shown to satisfy this theory. It is based on two most relevant concepts, namely energy
and entropy. The German physicist and mathematician Rudolf Julius Emanuel Clausius
(1822–1888) introduced the concept of entropy in 1865 [1,2], along rather abstract lines in
fact. He coined the word from the Greek τρoπη (tropē), meaning transformation, turn-
ing, change. Clausius seemingly appreciated the phonetic and etymological consonance
with the word ’energy’ itself, from the Greek ενεργεια (energeia), meaning activity, oper-
ation, work. It is generally believed that Clausius denoted the entropy with the letter S
in honor of the French scientist Sadi Carnot. For a reversible infinitesimal process, the ex-
act differential quantity dS is related to the differential heat transfer δQreversible through
dS = δQreversible

T , T being the absolute temperature. The quantity T−1 plays the role of an
integrating factor, which transforms the differential transfer of heat (dependent on the
specific path of the physical transformation) into the exact differential quantity of entropy
(path-independent). This relation was thereafter generalized by Clausius into its celebrated
inequality dS ≥ δQ/T, the equality corresponding to a reversible process. The inequal-
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ity corresponds to irreversible processes and is directly implied by the so-called Second
Principle of Thermodynamics, deeply related to our human perception of the arrow of time.

One decade later, the Austrian physicist and philosopher Ludwig Eduard Boltzmann
(1844–1906) made a crucial discovery, namely the connection of the thermodynamic en-
tropy S with the microscopic world [3,4]. The celebrated formula S = k ln W, W being
the total number of equally probable microscopic possibilities compatible with our infor-
mation about the system, is carved in his tombstone in the Central Cemetery of Vienna.
Although undoubtedly Boltzmann knew this relation, it appears that he never wrote it in
one of his papers. The American physicist, chemist and mathematician Josiah Willard Gibbs
(1839–1903) further discussed and extended the physical meaning of this connection [5–7].
Their efforts culminated in the formulation of a powerful theory, currently known as sta-
tistical mechanics. This very name was, at the time, a deeply controversial matter. Indeed,
it juxtaposes the word mechanics—cornerstone of a fully deterministic understanding of
Newtonian mechanics—and the word statistics—cornerstone of a probabilistic description,
precisely based on non-deterministic concepts. On top of that, there was the contradiction
with the Aristotelian view that fluids, e.g., the air, belong to the mineral kingdom of nature,
where there is no place for spontaneous motion. In severe variance, Boltzmann’s interpre-
tation of the very concept of temperature was directly related to spontaneous space-time
fluctuations of the molecules (‘atoms’) which constitute the fluid itself.

Many important contributions followed, including those by Max Planck, Paul and
Tatyana Ehrenfest, and Albert Einstein himself. Moreover, we mention here an important
next step concerning entropy, namely its extension to quantum mechanical systems. It was
introduced in 1927 [8] by the Hungarian-American mathematician, physicist and computer
scientist János Lajos Neumann (John von Neumann; 1903–1957).

The next nontrivial advance was done in 1948 by the American electrical engineer and
mathematician Claude Elwood Shannon (1916–2001), who based on the concept of entropy
his “Mathematical Theory of Communication” [9–11]. This was the seed of what nowadays
is ubiquitously referred to as the information theory, within which the American physicist
Edwin Thompson Jaynes (1922–1998) introduced the maximal entropy principle, thus
establishing the connection with statistical mechanics [12,13]. Along these lines, several
generalizations were introduced, the first of them, hereafter noted SR

q , by the Hungarian
mathematician Alfréd Rényi (1921–1970) in 1961 [14–17]. Various others followed in the
next few decades within the realm of information theory, cybernetics and other computer-
based frames, such as the functionals by Havrda, Charvat [18], Lindhard, Nielsen [19],
Sharma, Taneja, Mittal [20–22]. During this long maturation period, many important
issues have been punctuated. Let us mention, for instance, Jaynes’ “anthropomorphic”
conceptualization of entropy [23] (first pointed by E.P. Wigner), and also Landauer’s
“Information is physical” [24]. In all cases, the entropy emerges as a measure (a logarithmic
measure for the Boltzmann–Gibbs instance) of the number of states of the system that are
accessible, or, equivalently, as a measure of our ignorance or uncertainty about the system.

In 1988, the Greek-Argentine-Brazilian physicist Constantino Tsallis proposed the
generalization of statistical mechanics itself on the basis of a nonadditive entropy, noted
Sq, where the index q is a real number; Sq recovers the Boltzmann–Gibbs (BG) expression
for the value q = 1 [25]. This theory is currently referred to as nonextensive statistical
mechanics [26]. There was subsequently an explosion of entropic functionals: there are
nowadays over fifty such entropies in the available literature. However, very few among
them have found neat applications in physics and elsewhere.
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2. Basics
2.1. Definitions and Properties of Entropy

The Boltzmann–Gibbs–von Neumann–Shannon entropic functional (or entropy for sim-
plicity) for discrete variables is defined as follows:

SBG ≡ −k
W

∑
i=1

pi ln pi

( W

∑
i=1

pi = 1
)

, (1)

where k is a conventional positive constant (currently taken to be the Boltzmann constant
in physics, and k = 1 in information theory), and {pi} are the probabilities corresponding
to W possible states.

For classical systems, the discrete index i is replaced by a real continuous variable x,
and we have the form that was used by Boltzmann and Gibbs themselves, namely

SBG ≡ −k
∫

dx p(x) ln p(x)
(∫

dx p(x) = 1
)

. (2)

(Some mathematical care might be necessary in this limiting case; for instance, if the
distribution is extremely thin, this classical expression of SBG might lead to unphysical
negative values; although not particularly transparent, such difficulties simply disappear if
we take into account that the Planck constant is different from zero.)

For quantum systems, we have

SBG ≡ −kTrρ ln ρ
(

Trρ = 1
)

, (3)

where ρ is the density matrix, acting on an appropriate Hilbert space; under this form,
SBG is also referred to as von Neumann entropy [8]. Definition (1) can be expressed as a
particular instance of (2) through Dirac’s delta distributions (with p(x) = ∑W

i=1 δ(xi − pi)),
and also as a particular instance of (3) when ρ is diagonal.

In all cases, we may say that entropy is a logarithmic measure of the lack of information
on the system. When we know everything about the state of the system (more precisely,
on which one of the possible W states the system is), SBG vanishes. When we know nothing
(more precisely, when pi = 1/W for all values of i) SBG attains its maximal value

SBG = k ln W . (4)

This equality constitutes a crucial connection between the macroscopic world (represented
by the thermodynamical entropy SBG) and the microscopic world (represented by the total
number W of microscopic possibilities).

Let us now address the generalizations of SBG that exist in the literature. Given their
enormous amount, we shall restrict ourselves to the two most popular ones after the BG
entropy itself, namely the additive Renyi entropy SR

q [14–17] and the nonadditive entropy
Sq [25]. They are respectively defined as follows, q being a real number:

SR
q ≡ k

ln ∑W
i=1 pq

i
1− q

(SR
1 = SBG) , (5)

and

Sq ≡ k
1−∑W

i=1 pq
i

q− 1
= k

W

∑
i=1

pi lnq
1
pi

= −k
W

∑
i=1

pq
i lnq pi = −k

W

∑
i=1

pi ln2−q pi (S1 = SBG) , (6)
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where the q-logarithmic function is defined through

lnq z ≡ z1−q − 1
1− q

(ln1 z = ln z) . (7)

The quantity σ(p) ≡ ln(1/p) is referred to as surprise [27] or unexpectedness [28]. It vanishes
when the probability p equals unity, and diverges when the probability p → 0. We can
consistently define q-surprise or q-unexpectedness as σq(p) ≡ lnq(1/p), hence σq(1) = 0
and σq(0) diverges. With this definition, Sq can be rewritten in the following way:

Sq = k
W

∑
i=1

pi lnq(1/pi) ≡ 〈lnq(1/pi)〉 = 〈σq〉 , (8)

where 〈. . . 〉 denotes the mean value.
It can be verified that

SR
q /k =

ln[1 + (1− q)Sq/k]
1− q

, (9)

which implies that SR
q monotonically increases with Sq (like, say, (SBG)

3 monotonically in-
creases with SBG). Moreover, it can be shown that Sq({pi}) is concave for q > 0, and convex
for q < 0, whereas SR

q is concave for 0 < q ≤ 1, convex for q < 0, and neither concave nor
convex for q > 1. They both attain, for equal probabilities, their extremal value (maximal
for q > 0, and minimal for q < 0), namely

SR
q = k ln W , (10)

and
Sq = k lnq W . (11)

2.2. Additivity versus Extensivity

We address now two important notions, namely entropic additivity and extensivity.
Following O. Penrose [29], an entropic functional S({pi}) is said additive if, for two probabilis-
tically independent systems A and B (i.e., pA+B

ij = pA
i pB

j ), we verify S(A+ B) = S(A)+ S(B),
in other words, if we verify that

S({pA+B
i,j }) = S({pA

i }) + S({pB
j }) . (12)

Otherwise, S({pi}) is said nonadditive. It immediately follows that SBG and SR
q (for all

values of q) are additive. In contrast, Sq satisfies

Sq(A + B)
k

=
Sq(A)

k
+

Sq(B)
k

+ (1− q)
Sq(A)

k
Sq(B)

k
, (13)

hence
Sq(A + B) = Sq(A) + Sq(B) +

1− q
k

Sq(A)Sq(B) . (14)

Therefore, unless (1− q)/k→ 0, Sq is nonadditive.
Let us briefly mention at this point a simple generalization of Sq which appears to be

convenient for some specific purposes, such as black holes, cosmology, and possibly other
physical systems. We define [30]

Sq,δ ≡ k
W

∑
i=1

pi

[
lnq

1
pi

]δ
. (15)
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We can verify that S1,1 = SBG, Sq,1 = Sq, and S1,δ = Sδ where [26,31]

Sδ ≡ k ∑
i=1

pi

[
ln

1
pi

]δ
. (16)

Various properties of the nonadditive entropy Sq,δ are discussed in [32].
Let us now address the other important entropic concept, namely extensivity. An en-

tropy S(N) is said extensive if a specific entropic functional is applied to a many-body
system with N = Ld particles, where L is its dimensionless linear size and d its spatial
dimension, and satisfies the thermodynamical expectation

0 < lim
N→∞

S(N)

N
< ∞ , (17)

hence S(N) ∝ N for N � 1. Therefore, entropic additivity only depends on the entropic
functional, whereas entropic extensivity depends on both the chosen entropic functional
and the system itself (its constituents and the correlations among them).

Let us illustrate this distinction through four, among infinitely many, equal-probability
typical examples of W(N) (N → ∞), where W is the total number of possibilities whose
probability does not vanish.

• Exponential class W(N) ∼ AµN (A > 0; µ > 1):
This is the typical case within the BG theory. We have SBG(N) = k ln W(N) ∼
N ln µ + ln A ∝ N, therefore SBG is extensive, as thermodynamically required.

• Power-law class W(N) ∼ BNρ (B > 0; ρ > 0):
We should not use SBG since it implies SBG(N) = k ln W(N) ∼ ρ ln N + ln B ∝ ln N,
thus violating thermodynamics. We verify instead that Sq=1−1/ρ(N) = k lnq=1−1/ρ W(N)
∝ N, as thermodynamically required.

• Stretched exponential class W(N) ∼ CνNγ
(C > 0; ν > 1; 0 < γ < 1):

In this instance, no value of q exists which would imply an extensive entropy Sq.
We can instead used Sδ with δ = 1/γ. Indeed, Sδ=1/γ(N) = k[ln W(N)]δ ∝ N,
as thermodynamically required.

• Logarithmic class W(N) ∼ D ln N (D > 0):
In this case, no values of (q, δ) exist which imply an extensive entropy Sq,δ. Instead,
we can use the Curado entropy [33] SC

λ (N) = k
[
eλ W(N) − eλ

]
with λ = 1/D. Indeed,

we can verify that SC
λ=1/D(N) ∝ N, as thermodynamically required.

These four paradigmatic cases are indicated in Figure 1.
It is pertinent to remind, at this point, Einstein’s 1949 words [34]: “A theory is the more

impressive the greater the simplicity of its premises is, the more different kinds of things it
relates, and the more extended is its area of applicability. Therefore the deep impression
that classical thermodynamics made upon me. It is the only physical theory of universal
content concerning which I am convinced that, within the framework of applicability of its
basic concepts, it will never be overthrown”.

To better understand the strength of these words, a metaphor can be used. Within New-
tonian mechanics, we have the well-known Galilean composition of velocities v13 = v12 +
v23. In special relativity, this law was generalized into v13 = [v12 + v23]/[1 + v12v23/c2].
Why did Einstein abandon the simple linear composition of Galileo? Because he had a
higher goal, namely to unify mechanics and Maxwell electromagnetism, and, for this, he
had to impose the invariance with regard to the Lorentz transformation. We may thus see
the violation of the linear Galilean composition as a small price to pay for a major endeavor.
Analogously, what is expressed in Figure 1, is that generalizing the linear composition law
of SBG with regard to independent systems into the nonlinear composition (13) may be seen
as a small price to pay for a major endeavor, namely to always satisfy the Legendre structure
of thermodynamics. However, it is mandatory to register here that such a viewpoint is nev-
ertheless not free from controversy, in spite of its simplicity. For example, the well-known
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expression of Bekenstein and Hawking for the entropy for a black hole is proportional to
its surface instead of to its volume, therefore violating the above requirement.

Figure 1. Typical behaviors of W(N) (number of nonzero-probability states of a system with N random
variables) in the N → ∞ limit and entropic functionals which, under the assumption of equal
probabilities for all states with nonzero probability, yield extensive entropies for specific values of the
corresponding (nonadditive) entropic indices. In what concerns the exponential class W(N) ∼ AµN ,
SBG is not the unique entropy that yields entropic extensivity; the (additive) Renyi entropic functional
SR

q also is extensive for all values of q. Analogously, in what concerns the stretched-exponential
class W(N) ∼ CνNγ

, the (nonadditive) entropic functional Sδ is not unique. All the entropic families
illustrated in this table contain SBG as a particular case, except SC

λ , which is appropriate for the
logarithmic class W(N) ∼ D ln N. In the limit N → ∞, the inequalities µN � νNγ � Nρ � ln N � 1
are satisfied, hence limN→∞ νNγ

/µN = limN→∞ Nρ/µN = limN→∞ ln N/µN = 0. This exhibits that,
in all these nonadditive cases, the occupancy of the full phase space corresponds essentially to zero
Lebesgue measure, similarly to a whole class of (multi) fractals. If the equal probabilities hypothesis is
not satisfied, specific analysis becomes necessary and the results might be different.

2.3. Range of Interactions

Let us consider a d-dimensional classical many-body system with say attractive two-
body isotropic interactions decaying with a dimensionless distance r ≥ 1 as −A/rα (A > 0,
α ≥ 0), and with a infinitely repulsive potential for 0 ≤ r ≤ 1. At zero temperature T,
the total kinetic energy vanishes, and the potential energy per particle is proportional
to
∫ ∞

1 dr rdr−α. This quantity converges if α/d > 1 and diverges otherwise. These two
regimes are from now on respectively referred to as short-range and long-range interactions:
see Figure 2.

In addition, they can be shown to respectively correspond, within the BG theory,
to finite and divergent partition functions. This is precisely the point that was addressed by
Gibbs himself [5–7]: “In treating of the canonical distribution, we shall always suppose the
multiple integral in Equation (92) [the partition function, as we call it nowadays] to have a
finite value, as otherwise the coefficient of probability vanishes, and the law of distribution
becomes illusory. This will exclude certain cases, but not such apparently, as will affect
the value of our results with respect to their bearing on thermodynamics. It will exclude,
for instance, cases in which the system or parts of it can be distributed in unlimited space
[...]. It also excludes many cases in which the energy can decrease without limit, as when
the system contains material points which attract one another inversely as the squares of
their distances [...]. For the purposes of a general discussion, it is sufficient to call attention
to the assumption implicitly involved in the formula (92)”.
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Figure 2. The classical systems for which α/d > 1 correspond to an extensive total energy and
typically involve absolutely convergent series, whereas the so-called nonextensive systems (0 ≤ α/d < 1
for the classical ones) correspond to a superextensive total energy and typically involve divergent
series. The marginal systems (α/d = 1 here) typically involve conditionally convergent series, which
therefore depend on the boundary conditions, i.e., typically on the external shape of the system.
Capacitors constitute a notorious example of the α/d = 1 case. The model usually referred to in
the literature as the Hamiltonian-Mean-Field (HMF) one [35] lies on the α = 0 axis (for all values of
d > 0). The models usually referred to as the d-dimensional α-XY [36], α-Heisenberg [37–39] and
α-Fermi–Pasta–Ulam (or α-Fermi–Pasta–Ulam–Tsingou problem [40,41]) [42–44] models lie parallel
to the vertical axis at abscissa d (for all values of α ≥ 0). The standard Lennard–Jones gas is located at
(d, α) = (3, 6). From [33].

The standard BG recipe demands integration up to infinity in
∫ ∞

1 dr rdr−α. In slight
variance, let us assume that the N-particle system is roughly homogeneously distributed
within a limited sphere. Then, the potential energy per particle scales as follows:

Upot(N)

N
∝ −A

∫ N1/d

1
dr rd−1 r−α = −A

d
N∗ , (18)

with

N? ≡ N1−α/d − 1
1− α/d

= lnα/d N ∼



1
α/d− 1

if α/d > 1 ;

ln N if α/d = 1 ;

N1−α/d

1− α/d
if 0 < α/d < 1 .

(19)

Therefore, in the N → ∞ limit, Upot(N)
N approaches a constant (∝ −A/(α − d)) if

α/d > 1, and diverges like N1−α/d/(1− α/d) if 0 ≤ α/d < 1 (it diverges logarithmically if
α/d = 1). In other words, the total potential energy is extensive for short-range interactions
(α/d > 1), and nonextensive for long-range interactions (0 ≤ α/d ≤ 1). Equation (19) recovers
the characterization with

∫ ∞
1 dr rdr−α in the limit N → ∞. They have, however, the great

advantage of providing a finite value for finite N. This fact will be now shown to enable a
proper scaling for the macroscopic quantities in the thermodynamic limit (N → ∞) for all
values of α/d ≥ 0, and not only for α/d > 1.
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2.4. Thermodynamics and Legendre Transformations

The mathematical structure of classical thermodynamics is based on the Legendre
transforms. It is not sufficiently realized that thermodynamics does not depend from mi-
croscopic details only for short-range interactions. As we illustrate here below, it does depend
on quantities such as (α, d) for long-range interactions. In Landsberg’s words [45,46]: “The
presence of long-range forces causes important amendments to thermodynamics, some of
which are not fully investigated as yet”.

Let us consider now an illustrative d-dimensional homogeneous and isotropic classical
fluid containing magnetic particles in thermodynamical equilibrium. Its Gibbs free energy
is then given by

G(N, T, p, µ, H) = U(N, T, p, µ, H)− TS(N, T, p, µ, H)

+ pV(N, T, p, µ, H)− µN − HM(N, T, p, µ, H), (20)

where (T, p, µ, H) correspond respectively to the temperature, pressure, chemical potential
and external magnetic field, U is the internal energy, S is the entropy, V is the volume, N is
the number of particles and M the magnetization.

If the interactions are short-ranged, i.e., if α/d > 1, we can divide this equation by N
and then take the N → ∞ limit. We obtain

g(T, p, µ, H) = u(T, p, µ, H)− Ts(T, p, µ, H) + pv(T, p, µ, H)− µ− Hm(T, p, H) , (21)

where g(T, p, µ, H) ≡ limN→∞ G(N, T, p, µ, H)/N, and analogously for the other variables
of the equation.

In contrast, for long-ranged interactions (i.e., if 0 ≤ α/d ≤ 1), all the terms of expres-
sion (21) diverge, hence, they are nonsensical on thermodynamical grounds. Consequently,
the generically correct procedure for all values of α/d ≥ 0, must conform to the follow-
ing lines:

lim
N→∞

G(N, T, p, µ, H)

NN?
= lim

N→∞

U(N, T, p, µ, H)

NN?
− lim

N→∞

[ T
N?

S(N, T, p, µ, H)

N

]
+ lim

N→∞

[ p
N?

V(N, T, p, µ, H)

N

]
− lim

N→∞

µ

N?
− lim

N→∞

[ H
N?

M(N, T, p, µ, H)

N

]
(22)

hence,

g(T?, p?, µ?, H?) = u(T?, p?, µ?, H?)− T?s(T?, p?, µ?, H?)

+p?v(T?, p?, µ?, H?)− H?m(T?, p?, µ?, H?) , (23)

where the definitions of T? and of all the other variables are self-explanatory (e.g., T? ≡
limN→∞[T/N?] and s(T?, p?, µ?, H?) ≡ limN→∞[S(N, T, p, µ, H)/N]). Consequently, in or-
der to have finite thermodynamic equations of states, we must in general express them
in the variables (T?, p?, µ?, H?). This procedure recovers, if α/d > 1, the usual equations
of states, as well as the usual extensive (G, U, S, V, N, M) and intensive (T, p, µ, H) thermo-
dynamic variables. In contrast, if 0 ≤ α/d ≤ 1, the situation is more complex, and three,
instead of the traditional two, classes of thermodynamic variables emerge. We may call
them extensive (S, V, N, M), pseudo-extensive (G, U) (super-extensive in the present case) and
pseudo-intensive (T, p, µ, H) (super-intensive in the present case) variables. All the energy-
type thermodynamical variables (G, F, U), F being the Helmholtz free energy, give rise to
pseudo-extensive ones, whereas those which appear in the usual Legendre thermodynami-
cal pairs give rise to pseudo-intensive ones (T, p, µ, H) and extensive ones (S, V, N, M). Let
us emphasize that (S, V, N, M) are extensive in all cases! See Figure 3.

Let us also emphasize that, consistently, (i) the ratio of any two pseudo-intensive
variables (T, p, µ, H, . . . ), e.g., p/T, is intensive in all cases; (ii) the ratio of any pseudo-
extensive variable (G, F, U) with any pseudo-intensive variable, e.g., U/T, is extensive in all
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cases. A most important implication of these facts is that, in expressions such as e
−βqHN
q

where HN is the N-body Hamiltonian (see Section 2.6 here below), the argument βqHN
is extensive in all cases. This plays a crucial role in the possible q-generalization of what
is currently referred to as the Large Deviation Theory. Indeed, the extensivity of βqHN
appears to mirror, in all cases, the extensivity of the total entropy involved in rqN, rq being
the ratio function, possibly always related to some relative nonadditive entropy per particle.

 0  1 α/d(long−range interactions) (short−range interactions)

Intensive, e.g., T, p, µ, H ∝ L
0

Extensive, e.g., G, U, S, N, V, M ∝ L
d

(θ ≠ 0) (θ = 0)

Pseudo−intensive, e.g., T, p, µ, H ∝ L θ

Extensive, e.g., S, N, V, M ∝ L
d

Pseudo−extensive, e.g., G, U ∝ L d+θ

Figure 3. Schematic representation of the different scaling regimes for classical d-dimensional
systems. In the case of attractive long-ranged interactions (i.e., 0 ≤ α/d ≤ 1, α characterizing the
interaction range in a potential with the form 1/rα; for example, Newtonian gravitation corresponds
to (d, α) = (3, 1)), we may distinguish three classes of thermodynamic variables, namely, those scaling
with Lθ , named pseudo-intensive (L is a characteristic linear length, θ is a system-dependent parameter),
those scaling with Ld+θ with θ = d− α, the pseudo-extensive ones (the energies), and those scaling with
Ld (which are always extensive). In the case of short-ranged interactions (i.e., α > d), we have θ = 0
and the energies recover their standard Ld extensive scaling, falling within the same class of S, N, V,
M, etc., whereas the previous pseudo-intensive variables become truly intensive ones (independent
of L); this is the region, with only two classes of variables that is covered by the traditional textbooks
of thermodynamics. From [26,30,33,47–49].

2.5. Classification of Entropic Functionals

There is no unique classification or taxonomy of entropic functionals. A few facts
must nevertheless be emphasized. First, the Boltzmann–Gibbs entropy SBG and the Renyi
entropy SR

q are the unique to be additive. All the others that are present in the literature
are nonadditive.

Second, it is interesting to refer to trace-form entropies S since they are the only ones
that can be expressed as S = k〈σ〉, where σ is the previously introduced intuitive surprise
function, which vanishes in the case of certainty and diverges in the case of vanishing
probability of occurrence.

Third, we consider now another property for a dimensionless entropic form S({pi})/k,
namely composability. An entropy is said composable [50,51] (see also [26,52,53]) if the
entropy S(A+ B)/k corresponding to a system composed of two probabilistically independent
subsystems A and B can be expressed in the form

S(A + B)
k

= F
(S(A)

k
,

S(B)
k

; {η}
)

, (24)

where F(x, y; {η}) is a smooth function of (x, y) which depends on a (typically small)
set of universal indices {η} defined in such a way that F(x, y; {0}) = x + y (additivity),
and which satisfies F(x, 0; {η}) = x (null-composability), F(x, y; {η}) = F(y, x; {η}) (sym-
metry), F(x, F(y, z; {η}); {η}) = F(F(x, y; {η}), z; {η}) (associativity). This associativity
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appears to be consistent, for thermodynamical systems, with the 0th Principle of Thermo-
dynamics. In other words, the whole concept of composability is constructed upon the
requirement that the entropy of (A + B) does not depend on the microscopic configurations
of A and of B. Equivalently, we are able to macroscopically calculate the entropy of the
composed system without any need of entering into the knowledge of the microscopic
states of the subsystems. This property appears to be a natural one for an entropic form
if we desire to use it as a basis for a statistical mechanics which would naturally connect
to thermodynamics. The entropy SBG is composable since it satisfies Equation (24). More
precisely, we have FBG(x, y) = x + y. Being SBG nonparametric, no index exists in FBG.

Fourth, most but not all entropies available in the literature recover SBG as a particu-
lar case.

Let us finally mention that the Enciso–Tempesta theorem [54] establishes that the
(generically nonadditive) entropy Sq is the only one which simultaneously is trace-form,
composable, and contains SBG as a particular case. See Figure 4. For further properties of
Sq and other entropies, the reader might refer to [55]. In addition, a quite general structure,
usually referred to as the Φ-entropy, and its mathematical properties are available at [56].

ENTROPIC	FUNCTIONALS

ENTROPIC	FUNCTIONALS

TRACE-FORM COMPOSABLE

INCLUDES	SBG

Sq,q'BR

SqAb

SκK

Sκ ,rKLS

SηAP

Sc,dHT

Sq,δ
Sq,q'ST

Sα ,β ,qT

Sq,rSM

SqLVRA

SqTMP

SqAr

Sa,b,rCTT

SbC

ScE

SλC

SBGSq
SqR

Sγ ,αJPPT

Group	
entropies

Sa,b,αT

Figure 4. It has been proved [54] that Sq is the unique entropic form which simultaneously is
trace-form, composable, and recovers SBG as a particular instance. Sq (hence SBG), the Renyi
entropy SR

q [14], the Tempesta (a, b, α)-entropy ST
a,b,α (Equation (9.1) in [57]), the Jensen–Pazuki–

Pruessner–Tempesta entropy SJPPT
γ,α [58] and many others belong to the class of group entropies

and are therefore composable. To facilitate the identification, we are here using the following nota-
tions: Sharma–Mittal entropy SSM

q,r [20–22], Landsberg–Vedral–Rajagopal–Abe entropy SLVRA
q [59–61],

Tsallis–Mendes–Plastino entropy STMP
q , Arimoto entropy SAr

q [62], Curado–Tempesta–Tsallis entropy
SCTT

a,b,r [63], Borges–Roditi entropy SBR
q,q′ [64], Abe entropy SAb

q [65], Kaniadakis entropy SK
κ [66–68],

Kaniadakis–Lissia–Scarfone entropy SKLS
κ,r [69], Anteneodo–Plastino entropy SAP

η [70], Hanel–Thurner
entropy SHT

c,d [71,72], Sq,δ [30], Schwammle–Tsallis entropy SST
q,q′ [73], the Tempesta (α, β, q)-entropy

ST
α,β,q [74], the Curado b-entropy SC

b [75,76], the Curado λ-entropy SC
λ [33], and the exponential

c-entropy SE
c [77]; one more exponential form is, in fact, available in the literature, namely the Pal

and Pal non-composable trace-form entropy SPP [78]. The entropic form SC
λ is a rare case which does

not include SBG and is neither trace-form nor composable. From [33].
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2.6. Boltzmann–Gibbs and Nonextensive Statistical Mechanics
2.6.1. Boltzmann–Gibbs Statistical Mechanics

In the canonical form of BG statistics (for a not necessarily large system in thermal
equilibrium with a much larger thermostat at temperature T), the entropy SBG({pi}) is
maximized with the constraints

W

∑
i=1

pi = 1 (25)

and
W

∑
i=1

piEi = UBG , (26)

where Ei is the energy corresponding to the i-th state of the entire N-body system. The ther-
mal equilibrium distribution which comes out is given by the celebrated BG exponential
weight

pi =
e−βEi

ZBG(β)
(β = 1/kT) , (27)

with the partition function defined as

ZBG(β) ≡
W

∑
i=1

e−βEi . (28)

Important relations that are straightforwardly implied by this result include the Clausius
relation

1
T

=
∂SBG
∂UBG

, (29)

the Helmholtz free energy

FBG(β) ≡ UBG − TSBG = −(1/β) ln ZBG(β) , (30)

the internal energy

UBG(β) = −∂ ln ZBG(β)

∂β
, (31)

and the specific heat

CBG ≡ T
∂SBG

∂T
=

∂UBG
∂T

= −T
∂2FBG(β)

∂T2 ≥ 0 . (32)

All these expressions are consistent with the Legendre structure of thermodynamics. In
addition, they enable, whenever mathematically tractable, first-principle calculations of
quantities, such as equation of states, specific heat, magnetic susceptibility, and others,
which are simply inaccessible to thermodynamics alone [79,80].

2.6.2. q-Generalization of the Boltzmann–Gibbs Theory

If we adopt an entropic functional differing from SBG but containing it as a particular
instance, we can formally generalize the BG theory. When we adopt as basis the nonad-
ditive entropy Sq, such a generalization is usually referred to as nonextensive statistical
mechanics [25,26], as mentioned earlier. This generalization can be outlined through vari-
ous, basically equivalent [81,82], paths. We follow here the version developed in [83]. We
optimize Sq (maximize for q > 0 and minimize for q < 0) with the constraints (25) and

∑W
i=1 pq

i Ei

∑W
i=1 pq

i

= Uq , (33)
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where we impose, for reasons that are analyzed in [84], the average of Ei by using the
escort distribution pq

i / ∑W
i=1 pq

i , instead of simply pi. This procedure yields the following
q-generalized results:

pi =
e
−βq(Ei−Uq)
q

Z̄q(βq)
, (34)

with

Z̄q(βq) ≡
W

∑
i=1

e
−βq(Ei−Uq)
q , (35)

and
βq =

β

∑W
i=1 pq

i

, (36)

β ≡ 1/kT being the Lagrange parameter. The q-exponential function is defined as ez
q ≡

[1 + (1− q)z]
1

1−q if [1 + (1− q)z] > 0 and zero otherwise, with ez
1 = ez. It is the inverse of

the q-logarithmic function, i.e., e
lnq z
q = lnq ez

q = z.
We can rewrite Equation (34) as follows:

pi =
e
−β′qEi
q

Z′q(β′q)
, (37)

with

β′q ≡
βq

1 + (1− q)βqUq
, (38)

and

Z′q(β′q) ≡
W

∑
i=1

e
−β′qEi
q . (39)

In addition, it can be proved that
1
T

=
∂Sq

∂Uq
, (40)

Fq(β) ≡ Uq(β)− TSq(β) = −(1/β) lnq Zq(β) , (41)

with
lnq Zq = lnq Z̄q − βUq , (42)

and

Uq(β) = −
∂ lnq Zq(β)

∂β
, (43)

and

Cq ≡ T
∂Sq

∂T
=

∂Uq

∂T
= −T

∂2Fq(T)
∂T2 . (44)

As before, these expressions are consistent with the Legendre structure of thermodynamics.
In addition, as for the BG theory (here recovered as the q = 1 particular case), they enable,
whenever mathematically tractable, first-principle calculations of quantities, such as equation
of states, specific heat, magnetic susceptibility, and others, which are simply inaccessible to
thermodynamics alone. Some analytical calculations of this type, focusing on overdamped
many-body systems, are available in [85–93].

As a final remark, it is worthy to emphasize that the BG entropy and associated
statistical mechanics appear to be sufficient but not necessary for the validity of classical
thermodynamics and the Einstein likelihood principle, see [94].
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3. Results and Applications

The ubiquitous applications of SBG and associated statistical mechanics are not re-
viewed here since a vast literature profusely describes them during the last 150 years
(see, e.g., [80] and references therein). We shall here restrict our focus onto some typical
applications of non-BG entropies, mainly those of the popular Sq, in physics and beyond,
thus illustrating this vast and intensively developing field.

3.1. In Physics
3.1.1. Nonlinear Dynamical Systems

Nonlinear dynamics has various direct connections with the time evolution of the
entropy of a system and its consequences. There are, in this respect, two important classes
of chaotic behavior, namely strong chaos, characterized by exponential sensitivity to the
initial conditions (referred to, for classical systems, as having a positive maximal Lyapunov
exponent) and weak chaos, characterized by subexponential (frequently power-law) sensitivity
to the initial conditions (referred to, for classical systems, as having a vanishing maximal
Lyapunov exponent). We focus here on two important issues: (i) the time evolution of
the entropy while exploring the system phase-space, and (ii) the Central Limit Theorem
attractor in the space of distributions when averaging along time a single coordinate of
the system.

(i) Let us illustrate the first issue with a paradigmatic dissipative system, namely
the logistic map xt+1 = 1 − ax2

t (xt ∈ [−1, 1]; a ∈ [0, 2]; t = 0, 1, 2, . . . ). For a = 2,
the system is strongly chaotic since the sensitivity to the initial conditions satisfies ξ ≡
lim∆x(0)→0

∆x(t)
∆x(0) = eλt with a Lyapunov exponent λ = ln 2 > 0. Consistently, if we start at

t = 0 from a set of M initial conditions in an arbitrarily chosen single window within W of
them equally partitioning the interval [−1, 1], we obtain the entropy production per unit time

KBG ≡ lim
t→∞

lim
W→∞

lim
M→∞

SBG(t)/k
t

= λ > 0 , (45)

thus verifying the Pesin identity. We also verify that Kq ≡ limt→∞ limW→∞ limM→∞
Sq(t)/k

t
vanishes if q > 1 and diverges if q < 1. In other words, q = 1 is the unique value of the
index for which Sq(t) asymptotically increases linearly with time. See Figure 5.

If we do the same operations at the edge of chaos, more precisely at the Feigenbaum
(or Feigenbaum–Coullet–Tresser) point a = ac ≡ 1.40115518909 . . . , which corresponds to

a vanishing Lyapunov exponent λ (i.e., weak chaos), we verify that ξ = e
λqsensitivity t
qsensitivity with

qsensitivity = 0.244487701341282066198 . . . and λqsensitivity = 1/(1− qsensitivity). It follows that,

for t → ∞, ξ diverges subexponentially, more precisely, a power-law ξ ∝ t1/(1−qsensitivity).
Moreover, it can be shown that 1

1−qsensitivity
= 1

αmin
− 1

αmax
= ln αF

ln 2 , where αF is the so-called

Feigenbaum universal constant, the multifractal function f (α) being concave, defined
in the interval [αmin, αmax] with f (αmin) = f (αmax) = 0. Analogously to the BG case,
we verify a q-generalized Pesin identity Kqentropy = λqentropy with qentropy = qsensitivity and
λqentropy = λqsensitivity . See Figure 6. Consistently, we have that Kq vanishes for q > qentropy
and diverges for q < qentropy.
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Figure 5. Time evolution of Sq for a = 2. The interval [−1, 1] is partitioned into W equal cells.
The initial distribution consists of M = 106 points placed at random inside a randomly picked cell.
We indicate three typical values of q and the two cases W = 104 and W = 105. Results are averages
over 100 runs. From [95].

Figure 6. Numerical confirmation (full circles) of the q-generalized Pesin-like identity K(k)
q = λ

(k)
q

at the logistic-map edge of chaos. On the ordinate, we plot the q-logarithm of ξtk (equal to λ
(k)
q t),

and, on the abscissa, Sq (equal to K(q)
q t), both for q = 0.2445... The dashed line is a linear fit. Inset:

The full lines are from the analytic result. From [96].
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(ii) Let us illustrate now the second issue, still with the same logistic map. Along
the Central Limit Theorem line, we may define y ≡ ∑T

t=1 xt. For a = 2, we have that,
after proper scaling and centering, the distribution P(y) is given by a Gaussian, according
to the classical Central Limit Theorem, whereas, for a = ac, it is given by a qattractor-Gaussian
with qattractor = 1.66± 0.04, see Figure 7. Incidentally, we verify for the logistic map at the
Feigenbaum point (edge of chaos) that qsensitivity = qentropy 6= qattractor. This is a generic
tendency of many non-Boltzmann–Gibbs systems. More precisely, there might be not only
one but various indices q differing from unity which are associated to various properties of
the same system under specific classes of initial or boundary conditions. However, similarly
to the critical exponents within the standard theory of phase transitions, relatively simple
relations are expected to exist among these various q-values.

Figure 7. Data collapse of probability density functions (in log-linear plots) for T = 22n, where 2n is
an odd number (top) or an even number (bottom). As n increases, good fits with qattractor-Gaussian

∝ e−βy2

qattractor (with (qattractor, β) = (1.63, 6.2) (top), and (qstat, β) = (1.70, 6.2) (bottom)) are obtained
for increasingly large regions. Insets: Linear-linear plots of the data for a better visualization of the
central part. From [97].



Encyclopedia 2022, 2 279

Let us further illustrate the second issue, now with a paradigmatic conservative system,
namely the standard map introduced by Chirikov in 1979:

pi+1 = pi − K sin xi (mod 2π) (K ≥ 0)

xi+1 = xi + pi+1 (mod 2π) (46)

Typical phase portraits are shown in Figure 8. Each (x, p) point yields a Lyapunov exponent
λ(1) = −λ(2) ≥ 0, see Figure 9. Next, along the Central Limit Theorem lines, we define the
following quantity

ȳ ≡
T

∑
i=1

(x(j)
i − 〈x〉) , (47)

with

〈x〉 ≡ 1
M

1
T

M

∑
j=1

T

∑
i=1

x(j)
i , (48)

where M >> 1 (typically M ≥ 107) is the number of initial conditions and T >> 1
(typically T ≥ 223 ' 107) is the number of iterations for each of those M initial con-
ditions. Finally, by constructing the histogram for ȳ, we obtain the results indicated in
Figures 10 and 11. The limiting K = 0 case (hence a linear map, though with a highly
nontrivial set of stable orbits) has been revisited, along the same lines, with higher pre-
cision [98] and the value qattract ' 1.935 has been re-obtained. Nevertheless, since some
numerical error naturally persists, an analytical effort has been accomplished [99] and the
exact value turns out to be qattract = 2.

Figure 8. Phase portrait of the standard map for representative values of K. In each case, black dots
represent the region of chaotic sea in the available phase space and all other colors represent different
stability islands. From [100].
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Figure 9. Lyapunov exponent results of the phase portrait of the standard map. The same repre-
sentative K values are used. For each case, Lyapunov exponents are calculated for 200,000 initial
conditions. In the calculation, each initial condition is iterated 107 times. From [100].

Figure 10. Normalized probability distribution function for K = 10 with T = 218. From [100].
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Figure 11. Normalized probability distribution function for K = 0.2 with T = 222. From [100].

3.1.2. First-Principle Calculation of q for a Quantum Hamiltonian System

The calculation of q from first principles is mathematically tractable in some cases. One
such example is the quantum phase transition at T = 0 for the d = 1 first-neighbor Ising
ferromagnet in the presence of a transverse magnetic field, and similar quantum systems
characterized by a central charge c ≥ 0. A subsystem of linear size L of an infinitely long such
chain satisfies SBG(L) ∝ ln L, which is nonextensive and violates therefore the Legendre
structure of thermodynamics. It turns out, however, that a value of q, noted qentropy, exists
such that Sqentropy(L) ∝ L, thus satisfying thermodynamics. Its value is given [101] by

qentropy =

√
9 + c2 − 3

c
, (49)

which is depicted in Figure 12.
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Figure 12. The index qentropy as a function of the inverse central charge 1/c. The universality classes of
some specific models are indicated, see [94]. The BG value qentropy = 1 is recovered in the c→ ∞ limit.

3.1.3. Long-Range Interactions

As discussed in Section 2.3, Gibbs himself dismissed [5–7] BG statistical mechanics
whenever anomalies such as say long-range interactions make the partition function func-
tion to diverge. This means that, for α/d > 1 in the classical systems focused on in that
Section, we expect the distribution of velocities to be Maxwellian (i.e., qmomenta = 1), and the
distribution of energies to precisely be the BG weight (i.e., qenergy = 1). In contrast, models,
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such as the d-dimensional α-XY [36] and α-Heisenberg [37–39] ferromagnets, as well as
the α-Fermi–Pasta–Ulam [42–44] one, are numerically shown to violate the BG theory and
exhibit q-statistics instead. This is illustrated for the α-XY ferromagnet in Figures 13 and 14.
For α/d = 0.9, we obtain qmomenta ' 1.6 and qenergy ' 1.3, whereas, for α/d = 2, we verify
that qmomenta = 1.

Figure 13. A typical single-initial-condition one-momentum distribution P(p) for N = 106 , u = 0.69,
τ = 1 (corresponding to 5 molecular-dynamics steps), calculated in the region [tmin; tmax] =

[200, 000; 500, 000] for α = 0.9 (top plot), and α = 2.0 (bottom plot). The upper temperature indicated
in the α = 0.9 inset coincides with that analytically calculated within BG statistical mechanics, namely
Tkin ≡ 2K(t)/N ' 0.475. The horizontal line of the α = 2.0 inset corresponds to the numerically
calculated time average; indeed, analytical solutions are only available for α < 1 and in the α→ ∞

limit. The continuous curves correspond to P( p̃)/P0 = e
−β

(P0)
qn [ p̃P0)]2/2

qn with (qn, β
(P0)
qn ) = (1.58, 11.2)

for α = 0.9 and (1.0,6.4) for α = 2.0. Notice that, for α = 0.9, 1/β
(P0)
qn 6= T. Each distribution has been

rescaled with its own P0. From [102].



Encyclopedia 2022, 2 283

10
−5

10
−4

10
−3

10
−2

10
0

−18 −15 −12 −9 −6 −3  0  3  6  12  15  18

α/d=0.90

q=1
initial
distribution

 P(−pi)/P0
=eqp

−βp(−pi P0
)
2

qp =1.59

βp=5.6

P
(− p

i)
/P

0

−piP0

d=1
d=2
d=3

10
−5

10
−4

10
−3

10
−2

10
0

−18 −15 −12 −9 −6 −3  0  3  6  12  15  18

−800

−600

−400

−200

0

0 40 80 120

ln
q

p
[P

(− p
i)

/P
0
]

(−piP0
)

2

−βp(−piP0
)
2

−800

−600

−400

−200

0

0 40 80 120
0.38

0.40

0.44

0.48

t/10
5 0  1  2  3  4  5

∆t

T(t)

d = 1
d = 2
d = 3

0.38

0.40

0.44

0.48

t/10
5 0  1  2  3  4  5

10
−4

10
−3

10
−2

10
−1

10
1

0.5 1.0 1.5 2.0 2.5 3.5

α/d = 0.90

q=1

 P(
−−
Ei)=P(µ)eqE

−βE(
−−
Ei−µ)

qE =1.31

βE=48.0

P
(−

− E
i)

−−
Ei

d = 1
d = 2
d = 3

10
−4

10
−3

10
−2

10
−1

10
1

0.5 1.0 1.5 2.0 2.5 3.5

−90

−60

−30

0

0.5 1.0 1.5 2.0 2.5 3.0ln
q

E
[P

(−
− E
i)

/P
(µ

)]

−−
Ei

−βE (
−−
Ei−µ)

−90

−60

−30

0

0.5 1.0 1.5 2.0 2.5 3.0

0.38

0.40

0.44

0.48

t/10
5 0  1  2  3  4  5

∆t

T(t)

d = 1
d = 2
d = 3

0.38

0.40

0.44

0.48

t/10
5 0  1  2  3  4  5

Figure 14. Distributions of the time-averages of the momenta p̄i and of the energies Ēi (with τ = 1)
for α/d = 0.9, in d = 1, 2 and 3 dimensions. The simulations were done for the energy per particle
u = 0.69 and total number of rotators N = 106. Top: Distribution P( p̄i) is shown (P0 ≡ P( p̄i = 0)), the
full line being a q-Gaussian with qp = 1.59 and βp = 5.6, and the dashed line being a Gaussian (q = 1).
The left inset shows the same data in a q-logarithm versus squared-momentum representation; a
straight line is obtained as expected (since lnq(ex

q ) = x). Bottom: The full line represents the q-
exponential P(Ēi) = P(µ) expqE

[−βE(Ēi − µ)], with qE = 1.31 (βE = 48.0, µ = 0.69, and P(µ) = 12);
the corresponding exponential (dashed line) is also shown for comparison. Since the density of
states is necessary to reproduce the entire range of data, a chemical potential µ was introduced in the
fitting. The bottom inset shows a straight line by using the q-logarithm in the ordinate. The kinetic
temperature T(t) ≡ 2K(t)/N and time window ∆t, along which the time averages were calculated,
coincide in both cases (shown as insets). One notices that, in all plots, the collapse of all dimensions
occurs with nearly the same value of q. From [103].

3.1.4. Overdamped Many-Body Systems

In various overdamped classical d-dimensional many-body systems including short-
range repulsive interactions, it has been possible to analytically calculate and numerically
verify the validity of q-statistics, focusing on space and velocity distributions, equations
of states, Carnot cycle, H-theorem and the 0-th principle of thermodynamics [85–93,104].
For example, for repulsive interactions proportional to 1/rα, it is proved [104] that qposition =
1− α/d < 1, which, in the limit α/d→ 0, recovers the result qposition = qmomenta = 0 [85–87].
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This class of systems constitute a rare case where nearly all thermostatistical quantities can
be analytically calculated, thus verifying q-statistics.

3.1.5. Low Energy Physics

Several validations of q-statistics are available in the literature for low-energy systems.
Two of them are selected here as illustrations: cold atoms and granular matter.

In 2003, Lutz suggested [105] that the velocity distribution of cold atoms in dissipative
optical lattices should be a q-Gaussian with q = 1 + 44ER/U0, ER and U0 being parameters
of the lattice potential. The Lutz prediction was computationally and experimentally
verified in 2006 [106,107], see Figure 15.

Figure 15. Quantum Monte Carlo verification (left panels) [(a) Analytic and numerical distribu-
tions; (b) Analytical and numerical functions q(U0/Er)], and laboratory verification with Cs atoms
(right panels) [(Top a) Analytical and experimental distributions; (Bottom b) Experimental frequency
dependence of q; (Left a) Linear-linear representation of the experimental distribution of momenta,
the black curve corresponding to the present q-Gaussian, the red curve corresponding to a Maxwellian
distribution; (Right b) The same in log-log representation.] of the 2003 Lutz prediction. From [106].

Another experimental validation of q-statistics was performed for granular matter.
In 1996, the scaling law α = 2/(3 − q) was predicted [108], α being defined from the
anomalous diffusion scaling x2 ∼ tα, and q corresponding to the index of the q-Gaussian
solution of the nonlinear Fokker–Planck equation introduced by Plastino and Plastino [109].
This prediction was verified within ±2% error in 2015 [110], see Figures 16–18.
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Figure 16. Probability density functions of the horizontal components of the randomly fluctuating dis-
placements tracked during two typical increments of shear strain (∆γ = 7.3× 10−4 and ∆γ = 10−1).
The scatters correspond to experimental data, and the solid lines correspond to q-Gaussian fittings.
From [110].

Figure 17. Evolution of the measured value q as a function of the squared inverse of the strain
increment for both the experiments and simulations. The dashed line corresponds to a regression
using the function q(1/

√
∆γ) = 1 + a tanh(b/

√
∆γ), with (a, b) = (0.521, 0.096). Inset: The same

plot for data from a simulation that highlights the limit q = 1 when ∆γ→ ∞. The fitted parameters
for simulations were (a, b) = (0.387, 0.057). From [110].
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Figure 18. Verification of the scaling law α = 2/(3− q) [108] for several regimes of diffusion. Top:
Evolution of the measured diffusion exponent α as a function of 1/

√
∆γ; the dashed line is a direct

application of the scaling law from the fit of the values shown in Figure 17, α(1/
√

∆γ) = 2/[3−
q(1/
√

∆γ)]. Inset: A typical diffusion curve showing the mean square displacement fluctuations 〈x2〉
as a function of the shear strain γ; this allows the assessment of the diffusion exponent α ≡ µ for each
strain window tested. In the case shown, it corresponds to the smallest strain window, the rightmost
point in the curve in the main panel. Note that for a constant strain rate, γ is proportional to time.
Bottom: Measure of the deviation of the data relative to the scaling law prediction αP = 2/(3− q),
as a function of 1/

√
∆γ, showing a remarkable agreement of the order of ±2%. From [110].

3.1.6. High Energy Physics

Many validations of q-statistics are available in the literature for high-energy sys-
tems. Two of them are selected here as illustrations: high-energy collisions experiments at
LHC/CERN [111] and AMS-02 observations of matter and anti-matter [112], see Figures 19
and 20, respectively.
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Figure 19. Experimental transverse momentum distribution of hadrons in pp collisions at central
rapidity y compared with theoretical q-exponentials with q ' 1.13± 0.02 and T ' (0.14± 0.01) GeV.
The corresponding Boltzmann–Gibbs (purely exponential) fit is illustrated as the dashed curve. The
data and the analytical curves have been divided by a constant factor as indicated, for a better
visualization. The ratios data/fit are shown at the bottom, where a nearly log-periodic behavior is
observed on top of the q-exponential one. See [111] for details.

Figure 20. The measured AMS-02 data are very well fitted by linear combination of escort and
non-escort distributions (solid lines); q1 = 13/11 and q2 = 1/(2− q1) = 11/9. From [112].
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3.2. Beyond Physics
3.2.1. Mathematics

The product xy of two real numbers has been conveniently generalized as the following
q-product [113,114]:

x⊗q y ≡ e
lnq x+lnq y
q =

[
x1−q + y1−q − 1

] 1
1−q

+
(x ≥ 0, y ≥ 0) , (50)

where [. . . ]+ = [. . . ] if [. . . ] > 0 and vanishes otherwise. Let us list some of its main
properties:

(i) It recovers the standard product as the q = 1 particular instance, i.e.,

x⊗1 y = xy ; (51)

(ii) It is commutative, i.e.,
x⊗q y = y⊗q x ; (52)

(iii) It is additive under q-logarithm, i.e.,

lnq(x⊗q y) = lnq x + lnq y , (53)

whereas we remind that

lnq(x y) = lnq x + lnq y + (1− q)(lnq x)(lnq y) . (54)

Consistently,
ex

q ⊗q ey
q = ex+y

q , (55)

whereas
ex

q ey
q = ex+y+(1−q)xy

q ; (56)

(iv) It is associative, i.e.,

x⊗q (y⊗q z) = (x⊗q y)⊗q z = x⊗q y⊗q z = (x1−q + y1−q + z1−q − 2)1/(1−q) ; (57)

(v) It admits unity, i.e.,
x⊗q 1 = x ; (58)

(vi) It admits zero under certain conditions, more precisely,

x⊗q 0 =


0 if (q ≥ 1 and x ≥ 0) or if (q < 1 and 0 ≤ x ≤ 1) ,

(
x1−q − 1

) 1
1−q if q < 1 and x > 1 ;

(59)

On the basis of this product, it is possible to generalize, for q ≥ 1, the Fourier-Transform of
a nonnegative function f (x) as follows: [115,116]:

Fq[ f ](ξ) ≡
∫

dx ei ξ x
q ⊗q f (x)Fq[ f ](ξ) =

∫ ∞

−∞
dx ei ξ x[ f (x)]q−1

q f (x) . (60)

It is clear that this transformation is, for q 6= 1, nonlinear. Indeed, if we do f (x)→ λ f (x),
λ being any constant, we straightforwardly verify that Fq[λ f ](ξ) 6= λFq[ f ](ξ). This
generalization of the standard Fourier transform F1[ f ](ξ) was introduced in order to have
a remarkable property: it transforms q-Gaussians into q-Gaussians. Indeed, the following
equality can be easily verified:

Fq

[
Bq
√

β e−β x2

q

]
(ξ) = e−β1 ξ2

q1 , (61)
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where
(q1, β1) =

(1 + q
3− q

,
3− q

8 β2−qB2(q−1)
q

)
(1 ≤ q < 2) , (62)

Bq being an appropriate normalizing quantity. Within this frame, and others as well,
the Central Limit Theorem has been generalized [115], showing that, while averaging a
large number of random variables within a wide class of nonlocal correlations (yet only
partially explored), q-Gaussians emerge as attractors in the space of distributions. This
provides an epistemological basis for understanding why are there so many q-Gaussians
(and consistently so many q-exponentials) in nature. Further details and proofs can be
found in [117].

Another relevant line of mathematical research concerns the relations of various sets
of q-indices (e.g., q-triplets) that frequently appear in complex systems [118,119].

3.2.2. Chemistry

Among the many chemical applications available in the literature, we select here a
rather intriguing one concerning Mendeleev’s Table. The free atom ground-state energy
(as calculated by a performant ab initio Hartree–Fock method) of all the elements approxi-
mately follows, as function of the atomic number Z, a q-exponential. Indeed, as depicted in
Figure 21, from the hydrogen to the lawrencium, it is given by [120]

E = EH e2.4333 (Z−1)
0.58145 (EH = −13.60534 ev) . (63)

Figure 21. Ground-state energy E of the free atom as a function of the atomic number Z. The results
from hydrogen to lawrencium are presented. The red line has been calculated with Equation (63).
From [120].

The reason for this peculiar behavior is unknown. However, it plausibly is a conse-
quence of the proton–electron and electron–electron long-range Coulombian interactions.

3.2.3. Economics

There are many applications of q-statistics to economics (see for instance [121–123]).
As an illustration, we exhibit in Figure 22 the cumulative return distributions corresponding
to the 100 American companies with the highest market capitalization [124].
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Figure 22. Left panel: Cumulative distributions of absolute normalized returns corresponding to
different time scales ∆t for the 100 American companies with the highest market capitalization
(points), and the fitted cumulative q-Gaussian distributions (lines). In order to better visualize the
associated results, each q-Gaussian CDF and the respective experimental data have been multiplied by
a positive factor c 6= 1. Right panel: Dependence of the index q on the time scale ∆t, for the estimated
q-Gaussian pdfs of normalized absolute returns in the left panel. Inset: log-log representation
exhibiting a power-law dependence of the type q− 1 ∝ (∆t)−τ , with τ = 0.081± 0.004. From [124].

3.2.4. Biology and Life Sciences

Let us next focus on DNA structures as discussed in [125]. Typical results for the
inter-nucleotide intervals are shown in Figure 23.

It is definitively remarkable that the value q = 1.11 plays a universal role in so diverse
biological beings. Its explanation certainly remains an open problem. Moreover, it would
be undoubtedly interesting to check whether the double q-exponential behavior that is
observed in Homo Sapiens is also present in other mammals.
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Figure 23. PDFs of the inter-nucleotide intervals A-A, T-T (open symbols); G-G, C-C (full symbols) in
the DNA sequences from Homo Sapiens and Bacteria full genomes (in scaled form). Dashed lines

show the best fits by a q-exponential distribution A = 1/[1 + (q− 1)β(l/L)]
1

q−1 . While in Bacteria the
approximation by a single q-exponential with q ∼ 1.1 and β ∼ 1.5 is possible, in H. Sapiens, a sum
of two q-exponentials with q ∼ 1.11 and β ∼ 1.5 and 0.1 makes the best fit. To avoid overlapping,
the PDFs for Bacteria are shifted downwards by two decades. For comparison, dotted lines show
corresponding exponential PDFs. From [125].

3.2.5. Computer Sciences

The search for global minima in a cost function of many variables which simulta-
neously presents many local minima is a most relevant problem in all kinds of scientific
and technological systems. It might be computationally very hard. One such method
is the so-called Simulated Annealing (SA), also referred to as the Boltzmann machine. It
consists of (i) a searching algorithm based on normal diffusion within the phase-space,
(ii) an accepting algorithm based on the Boltzmann weight, and (iii) a cooling algorithm
based on the monotonic decrease of temperature along time t as follows:

T(t)
T(1)

=
ln 2

ln(1 + t)
(t = 1, 2, 3, ...) , (64)

where T(1) is an initial high temperature imposed onto the system. A performant (both in
speed and precision) q-generalization of this machine is available and usually referred to as
Generalized Simulated Annealing (GSA) [126]. It generalizes the SA ingredient (i) into a qV-
Gaussian anomalous diffusion (typically with qV ≥ 1), ingredient (ii) into a qA-exponential
weight (typically with qA ≤ 1), and time evolution (iii) into

T(t)
T(1)

=
2qV−1 − 1

(1 + t)qV−1 − 1
=

lnqV (1/2)
lnqV [1/(t + 1)]

(t = 1, 2, 3, ...) . (65)

We verify that, for qV = qA = 1, the Boltzmann machine is precisely recovered. The GSA
algorithm is being successfully applied in physics, chemistry, computational sciences,
engineering, and elsewhere when the relevant cost function presents a large amount of
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local minima in a multi-dimensional phase-space, by all means a very frequent case in
complex systems.

3.2.6. Random Networks

Complex networks are ubiquitous in natural, artificial and social systems. Among them,
many classes of either growing or non-growing, geographical or fully nonlocal, d-dimensional
networks exist which exhibit asymptotic scale-invariance, typically based on various kinds
of preferential attachments [127–136]. A quite general network with weighted links is
introduced and numerically analyzed in [136], see Figures 24 and 25.

Figure 24. Sample of a network with 100 sites for the following model parameters (d, αA, αG, η, w0) =

(2, 1, 5, 1, 1), where αA and αG respectively characterize the attachment and geographical ranges; η

and w0 are parameters of the distribution of widths. As illustrated for this choice of parameters, hubs
(highly connected nodes) naturally emerge in the network. Each link has a specific width wij and
the total energy εi associated with the site i will be given by half of the sum over all link widths
connected to the site i (see zoom of site i). From [136].

Figure 25. In all cases, the energy distribution is well fitted with the form pq ∝ e−βqε
q . (a) q as a

function of αA/d (black solid line); q = 4/3 for 0 ≤ αA/d ≤ 1 and decreases exponentially with
αA/d for αA/d > 1, down to q∞ = 1. (b) βq as a function of αA/d for η = 1, 2, 3 and w0 = 1, 5, 10,
for typical values of αA/d; βq increases with η and decreases with w0 and αA/d. From [136].
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3.2.7. Image and Signal Processing

Nonadditive entropies have been profusely used in image and signal processing,
in order to improve speed and clarity. Two such examples are here exhibited.

The detection of possibly pathological microcalcifications as revealed in mammograms
can be sensibly improved by using q-entropy with q 6= 1 [137], see Figure 26.

Figure 26. Without q-entropy enhancement with q 6= 1, detection of microcalcifications is meager:
80.21% Tps (true positives) with 8.1 Fps (false positives), whereas upon introduction of the q-entropy,
the results surge to 96.55% Tps with 0.4 Fps. Detection results from the experiment: (a) mdb236,
(b) output with the Mcs enhanced, (c) output with the Mcs extracted, (d) mdb216, (e) output with the
Mcs enhanced, (f) output with the Mcs extracted. From [137].
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The image of Computer Tomography scans revealing fibrosis due to COVID-19 can be
sensibly improved by incorporating in the algorithm the q-entropy with q = 0.5 [138], see
Figure 27.

Figure 27. Sample scans from the dataset before and after enhancement showing infected lungs.
(a) Original Computer Tomography scans, with red circles highlighting some regions where fibrosis
can be seen; (b) enhanced Computer Tomography scans using q = 0.5. From [138].

3.2.8. Engineering

Various engineering projects have been settled down which include nonadditive
entropies and related properties. One of those projects, concerning civil engineering, is
presented in Figures 28 and 29. By sticking a sensible microphone onto a civil engineering
material supporting variable stresses, it is possible to detect and computationally process
the microfracture signals which occur. If a convenient protocol is implemented, it is
possible to predict when the block will break macroscopically. This type of technique
could in principle be implemented to check the structural health of buildings, bridges,
monuments.
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Figure 28. Cumulative pdfs of the inter-event times of acoustic emission for the last three loadings of
the specimens. Left: C1, C2 (concrete) and Right: B1, B2 (basalt). The q-exponential fittings are also
shown. From [139].

Figure 29. The values of the entropic index of the q-exponential fits, reproducing the complementary
cumulative pdfs obtained from experimental data about the AE inter-event time series for both the
concrete (C1, C2—full circles) and basalt (B1, B2—full squares) specimens, are reported as function
of 1/βq. Linear fits of the reported values are also shown. The macroscopic failure occurs when
1/βq vanishes. The values for q and 1/βq extracted from analogous failure tests with cement mortar
specimens in [140] are also reported (triangles). From [139].
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4. Final Remarks

At this stage, it is a must to emphasize a basic open question: why, among over fifty
entropic functionals that are available in the literature, has Sq proved to lead to so many
successful applications in science and technology? This question is definitively hard to
answer. It strikes, however, the fact that, as proved in the Enciso–Tempesta theorem [54]
and schematized in Figure 4, Sq is the unique one simultaneously satisfying that (i) it
recovers SBG as a particular case, (ii) it is trace-form, and (iii) it is composable. It is allowed
to think that this uniqueness has the potential of explaining the emergence of Sq in so
many applications.

Many other open questions exist. Let us mention here two among the most intriguing
ones, namely:

(i) Why, in several first-principle numerical calculations focusing on long-range in-
teractions, qmomenta and qenergy do not attain unity as soon α/d = 1 is overcome? Is it the
existence of very slowly converging finite-size effects with regard to the size of the system
and/or to the time required for the system to achieve its true stationary state? Is it the class
of initial conditions that have been implemented up to now?

(ii) What are the generic scaling laws relating the various q-indices (e.g., q-triplets)
systematically emerging in all kinds of classes of systems under all kinds of boundary and
initial conditions? How many of them are independent? The path followed in [118,119]
and references therein seems promising but much remains to be understood.

Answers to these and to many other questions are definitively welcome. Among other
important issues, they would clarify the—still today challenging—basics of the so-called
“Boltzmann program” for statistical mechanics. In other words, how is it possible that
optimization techniques using specific entropic functionals are capable of precisely lead-
ing to definitively useful and verifiable quantities related to mathematically intractable
calculations of many-body classical and quantum systems?
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