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Abstract: Members of the pre-B-cell leukemia transcription factor (PBX) family of homeoproteins are
mainly known for their involvement in hematopoietic cell differentiation and in the development of
leukemia. The four PBX proteins, PBX1, PBX2, PBX3 and PBX4, belong to the three amino acid loop
extension (TALE) superfamily of homeoproteins which are important transcriptional cofactors in
several developmental processes involving homeobox (HOX) factors. Mutations in the human PBX1
gene are responsible for cases of gonadal dysgenesis with absence of male sex differentiation while
Pbx1 inactivation in the mouse causes a failure in Leydig cell differentiation and function. However,
no data is available regarding the expression profile of this transcription factor in the testis. To fill
this knowledge gap, we have characterized PBX1 expression during mouse testicular development.
Real time PCRs and Western blots confirmed the presence Pbx1 mRNA and PBX1 protein in different
Leydig and Sertoli cell lines. The cellular localization of the PBX1 protein was determined by
immunohistochemistry and immunofluorescence on mouse testis sections at different embryonic and
postnatal developmental stages. PBX1 was detected in interstitial cells and in peritubular myoid cells
from embryonic life until puberty. Most interstitial cells expressing PBX1 do not express the Leydig
cell marker CYP17A1, indicating that they are not differentiated and steroidogenically active Leydig
cells. In adults, PBX1 was mainly detected in Sertoli cells. The presence of PBX1 in different somatic
cell populations during testicular development further supports a direct role for this transcription
factor in testis cell differentiation and in male reproductive function.
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1. Introduction

The testis is responsible for the production of gametes and for the secretion of sexual
hormones that are essential for proper male reproductive development, growth, and
function. In mammals, testicular development is genetically determined by the presence of
the Sry gene located on the Y sex chromosome [1]. In the mouse, the Sry gene is transiently
expressed between embryonic day 10.5 (e10.5) and e12.5 in pre-Sertoli cells [2]. The SRY
protein therefore acts as a molecular switch to initiate male gonadal development by
regulating a network of genes required for the differentiation of the bipotential gonad into
a testis [2]. Further acquisition of a male phenotype is strictly regulated by three hormones
produced by the fetal testis: anti-Müllerian hormone (AMH) secreted by Sertoli cells, and
testosterone and Insulin-like 3 (INSL3) both produced by Leydig cells. AMH, a hormone
belonging to the TGFβ superfamily, induces the regression of the Müllerian ducts, which
would otherwise differentiate into female internal reproductive organs [3,4]. In humans,
mutations in the AMH or AMH receptor (AMHR2) gene cause persistent Müllerian duct
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syndrome (PMDS) [5]. Androgens, steroid hormones which include testosterone secreted
by Leydig cells and its more potent derivative dihydrotestosterone (DHT), are responsible
for masculinization of the male fetus. They induce Wolffian duct differentiation into the
epididymis, vas deferens, and seminal vesicles in addition to promoting development
of the external genitalia and accessory sex glands. Testosterone is indispensable for the
initiation and maintenance of spermatogenesis as well as for the second phase of testicular
descent. INSL3, a Leydig cells-secreted peptide belonging to the insulin/relaxin/growth
factor family, regulates the first phase of the testicular descent during fetal life [6,7] and
bone metabolism in adults [8].

Testicular development has been well characterized at the cellular level. However, the
molecular events that specify testis formation remain to be fully understood. Thus far, only
a handful of transcription factors have been shown to regulate testis organogenesis. These
include SF1 (NR5A1) [9], GATA4 [10,11], SOX9 [12], and DAX1 (NR0B1) [13].

Members of the PBX (pre-B-cell leukemia) family of homeodomain proteins are tran-
scriptional regulators that belong to the TALE (three amino acid loop extension) homeo-
protein superfamily. In mammals, the four PBX proteins are encoded by distinct genes,
Pbx1, Pbx2, Pbx3 and Pbx4 that are closely related and well conserved [14–16]. The PBX
proteins have been shown to participate in several developmental processes (reviewed
in [17]) including hematopoiesis [18], leukemogenesis [18], nephrogenesis [19], as well as in
the development of the limbs and skeleton [20], adrenal gland, and urogenital system [19].
Pbx1, the first member of the family, was originally discovered as a product of an oncogene
responsible for pre-B cell acute lymphoblastic leukemia [14,21]. Loss-of-function studies
later showed that PBX1 is important for the patterning of several internal organs [19,20,22].
Although Pbx2 is widely expressed throughout development, Pbx2−/− mice are viable and
show no obvious phenotype, probably due to redundancy with other PBX family mem-
bers [23]. Pbx3 is expressed in the central and peripheral nervous system as well as in the
skeletal, cardiac, respiratory, and urogenital systems during embryonic development [24].
Pbx3−/− mice are born alive but die shortly after due to massive respiratory failure [25].
Pbx4−/− mice have not been reported yet, but it is known that Pbx4 is almost exclusively
expressed in germ cells during spermatogenesis [16].

PBX proteins regulate gene expression by binding to DNA as multi-protein complexes
with different cofactors such as other TALE homeoproteins and HOX factors (reviewed
in [26]). PBX proteins serve to increase HOX DNA-binding specificity and selectivity
(reviewed in [27–29]). PBX proteins have also been shown to function more broadly in a
HOX-independent manner [30,31].

Pbx1−/− mice die at e15–e16 due to severe hypoplasia or aplasia of multiple organs
and widespread skeletal patterning defects [20]. In Pbx1-deficient mice, gonadal develop-
ment and Leydig cell differentiation are also profoundly compromised [19]. More recently,
PBX1 has been implicated in human testicular development with the identification by
two independent groups of a single de novo heterozygous variant in 46,XY patients with
gonadal dysgenesis and female external genitalia [32,33]. The mutation p.Arg235Gln
(CGG >CAG):c.704 G > A changes an amino acid in exon 5 of human PBX1, which corre-
sponds to the highly conserved TALE homeodomain of the protein. This mutation severely
impairs nuclear localization of PBX1, preventing its action as a transcription factor [33].

Despite the importance of PBX1 for testis formation and male sex differentiation,
no detailed analysis of PBX1 expression in the testis has been reported. Using real time
PCR, Western blot, immunohistochemistry, and immunofluorescence, we found that PBX1
is present in interstitial cells and in peritubular myoid cells (PMC) from embryonic life
throughout puberty. PBX1-positive interstitial cells were found to be negative for the
Leydig cell marker CYP17A1. In adults, PBX1 was found almost exclusively in Sertoli cells.
Thus, PBX1 dynamic expression profile during testis organogenesis supports key roles for
PBX1 directly within different testicular cell lineages in regulating cell differentiation and
male reproductive development and function.
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2. Materials and Methods
2.1. Animals

C57BL/6 mice were maintained on a 12L:12D light cycle with water and food ad
libitum. Mice were killed at different time points as indicated in the figure legends and
the testes were harvested. Whole testis was fixed in 4% (w/v) paraformaldehyde for 24 h.
Tissues were then dehydrated with ethanol, substituted with xylene, embedded in paraffin,
and cut into 5 µm sections as previously described [34–39]. Primary Leydig cells were
isolated as described previously [37,40] from 25-day old Sprague Dawley rats obtained
on site. All experiments complied with the regulations set by the Canadian Council for
Animal Care and the policies and procedures of the Laval University Institutional Animal
Care Committee. All experiments have been approved by the Animal Care and Ethics
Committee of Laval University (protocol # 06-059).

2.2. Cell Culture

The following cell lines were obtained from ATCC: mouse MLTC-1 Leydig cells
(ATCC Cat# CRL-2065, RRID:CVCL_3544), rat LC-540 Leydig cells (ATCC Cat# CCL-43,
RRID:CVCL_3536), mouse TM3 Leydig cells (ATCC Cat# CRL-1714, RRID:CVCL_4326),
rat R2C Leydig cells (ATCC Cat# CCL-97, RRID:CVCL_3571), and mouse 15P-1 Sertoli
cells (ATCC Cat# CRL-2618, RRID:CVCL_6552). The mouse MA-10 Leydig cell line (ATCC
Cat# CRL-3050, RRID:CVCL_D789) [41] was provided by Dr. Mario Ascoli (University of
Iowa, Iowa City, IA, USA) and the mouse Sertoli MSC-1 cell line (RRID:CVCL_U446) [42]
was a gift from Dr. Michael Griswold (Washington State University, Pullman, WA, USA).
The MSC-1 cells were grown in Dulbecco modified Eagle medium (DMEM) supplemented
with 10% fetal bovine serum, 20 mM HEPES, and 50 mg/L of penicillin and streptomycin
sulfate. MA-10 cells were grown in Waymouth’s MB752/1 medium supplemented with
20 mM HEPES, 15% horse serum, and 50 mg/L of penicillin and streptomycin sulfate. All
cell lines obtained from ATCC were grown as recommended by ATCC. All cell lines were
grown at 37 ◦C and 5% CO2.

2.3. RNA Preparation and PCR

Total RNA from mouse testis, cultured primary Leydig cells from immature rats, and
various cell lines was isolated using RNeasy Plus extraction kit (Qiagen, Mississauga, ON,
Canada) and TRIzol reagent (Invitrogen Canada, Burlington, ON, Canada). First strand
cDNAs were synthesized from a 2.5 µg aliquot of the various RNAs using the Transcriptor
Reverse Transcriptase kit (Roche Diagnostics, Laval, QC, Canada). Real-time PCRs were
carried out using a LightCycler 1.5 instrument (Roche Diagnostics, Laval, QC, Canada).
Reactions were performed using the LightCycler DNA Master SYBR Green kit according to
the manufacturer’s recommendations (Roche Diagnostics, Laval, QC, Canada). PCRs were
performed using the following Pbx1-specific primers: forward, 5′-ATT TCT ATT CCC ATC
TCA GCA AC-3′ and reverse, 5′-GGC TTC CTC TTG AAA TTT ACC-3′ (accession number
NM_183355). As an internal control, PCRs were performed using previously described
Rpl19-specific primer (accession number NM_031103) [37]. Rpl19 was chosen as a reference
since it is very stable in numerous tissues and cell types [43–46]. The PCRs were done using
the following conditions: 10 min at 95 ◦C followed by 35 cycles of denaturation (5 s at 95 ◦C),
annealing (5 s at 62 ◦C for Rpl19 and 61 ◦C for Pbx1), and extension (20 s at 72 ◦C) with
single acquisition of fluorescence at the end of each extension steps. After amplification,
the samples were slowly heated at 0.2 ◦C/sec from 68 ◦C to 95 ◦C with continuous reading
of fluorescence to obtain a melting curve. The specificity of each PCR product was then
determined by using the melting-curve analysis program of the LightCycler software and
agarose gel electrophoresis. The Pbx1 and Rpl19 PCR products showed a single peak/band
in the analysis. Determination of Pbx1 and Rpl19 levels was performed using a standard
curve done from serial dilutions of a plasmid construct containing the Pbx1 or Rpl19 cDNA.
Quantification of gene expression was then performed using the Relative Quantification
Software (Roche Diagnostics, Laval, QC, Canada), which corrects for differences in PCR
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efficiency, and is expressed as a ratio of Pbx1 to Rpl19 mRNA levels. Each amplification
was performed in triplicate using three different preparations of first strand cDNAs for
each of the three different RNA extractions.

2.4. Immunohistochemistry

Immunohistochemistry was performed as previously described [36,37,39,47]. Briefly,
paraformaldehyde-fixed, paraffin-embedded 5 µm testis sections were dewaxed in xylene,
treated for 30 min in 0.3% H2O2 (Sigma-Aldrich, Oakville, Canada)/methanol, rehydrated
in graded alcohols (95%, 70%, and 50%), and treated for antigen retrieval by heating in
a microwave oven for 15 min (heat at 800 watts for 10 s, no heat for 20 s) in a 0.01 M
citrate buffer pH 6.0. After cooling down to room temperature, sections were blocked for
2 h with 10% horse serum and incubated overnight at 4 ◦C with a rabbit polyclonal anti-
PBX1 antiserum (1:500, Santa Cruz Biotechnology Cat# sc-25411, RRID:AB_2160311) and a
goat polyclonal anti-CYP17A1 antiserum (1:200, Santa Cruz Biotechnology Cat# sc-46081,
RRID:AB_2088659) in PBS containing 0.1% BSA. The next morning, slides were washed
in PBS and incubated for 1 h at room temperature with the corresponding biotinylated
secondary antibody (1:1000, rabbit anti-goat antibody, Vector Laboratories Cat# BA-5000,
RRID:AB_2336126 or goat anti-rabbit IgG antibody, Vector Laboratories Cat# BA-1000,
RRID:AB_2313606). After washing in PBS, sections were submitted to an avidin-biotin
complex (ABC) solution for 30 min at room temperature (Vector Laboratories Cat# PK-6100,
RRID:AB_2336819). The negative control corresponds to the same procedure with the
omission of the primary antibodies. The signal was detected using a solution of 3-amino-
9-ethylcarbazole (AEC, Sigma-Aldrich Canada, Oakville, Canada), 50 mM acetate buffer
pH 5.2 (0.2 M sodium acetate, 0.2 M acetic acid) and 0.002% H2O2. Sections were then
counterstained with Gill #1 hematoxylin and mounted in Mowiol 4-88 reagent (Sigma-
Aldrich Canada, Oakville, ON, Canada).

2.5. Immunofluorescence

Paraformaldehyde-fixed, paraffin-embedded 5 µm testis sections were dewaxed in
xylene, rehydrated in graded alcohols (95%, 70%, and 50%), and treated for antigen retrieval
as described above. Sections were then blocked for 2 h at room temperature with 0.5%
bovine serum albumin (BSA) and incubated overnight at 4 ◦C with a rabbit polyclonal
anti-PBX1 antiserum (1:100, Santa Cruz Biotechnology Cat# sc-25411, RRID:AB_2160311)
and a goat polyclonal anti-CYP17A1 antiserum (1:200, Santa Cruz Biotechnology Cat#
sc-46081, RRID:AB_2088659) in PBS containing 0.1% BSA. The next morning, slides were
washed in PBS and incubated with donkey anti-goat Alexa 488 (1:1500; Thermo Fisher
Scientific Cat# A-11055, RRID:AB_2534102) in PBS containing 0.1% BSA for 1 h at room
temperature. After washing in PBS, sections were incubated with goat anti-rabbit Alexa
594 (1:1500; Thermo Fisher Scientific Cat# A-11012, RRID:AB_2534079) in PBS containing
0.1% BSA. The negative control corresponds to the same procedure with the omission of the
primary antibodies. After washing in PBS the sections were mounted in VECTASHIELD
Mounting Medium with DAPI (Vector Laboratories, Burlington, ON, Canada).

2.6. Protein Purification and Western Blots

The human cervical cancer HeLa cell line (ATCC Cat# CRL-7923, RRID:CVCL_0030)
was grown in Dulbecco modified Eagle medium (DMEM) F12 supplemented with 10% fetal
bovine serum, 20 mM HEPES and 50 mg/L of penicillin and streptomycin sulfate. HeLa
cells were transfected with an empty pcDNA3.1 expression vector (Stratagene, La Jolla, CA,
USA) or an expression vector containing the full-length cDNAs encoding human PBX1,
PBX2 and PBX3 (full length cDNAs were a gift from Dr. Michael Cleary, Stanford University
School of Medicine, Stanford, CA, USA). All transfections were performed in 100 mm Petri
dishes using the calcium phosphate co-precipitation method [48]. Proteins were prepared
by the procedure outlined by Schreiber et al. [49]. Protein concentrations were determined
using standard Bradford assays. Total proteins (20 µg) from Leydig (MA-10, MLTC-1, TM3,
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LC-540, R2C) and Sertoli (MSC-1, 15P-1) cell lines and HeLa cells overexpressing human
PBX1, PBX2 and PBX3 were boiled 10 min in a denaturing loading buffer, fractionated
by SDS-PAGE, and transferred onto polyvinylidene difluoride (PVDF) membrane (GE
Healthcare, Baie-D′Urfé, QC, Canada). The membrane was incubated in 1x casein (Vector
Laboratories, Burlington, ON, Canada) for 1 h at room temperature to block non-specific
sites. PBX1 immunodetection was achieved using two different rabbit polyclonal PBX
antisera (1:100): anti-PBX1 (Santa Cruz Biotechnology Cat# sc-889, RRID:AB_2160315) or
anti-PBX1-2-3-4 (Santa Cruz Biotechnology Cat# sc-25411, RRID:AB_2160311). Both were
generated against the N-terminus of human PBX1 protein and recognize human, mouse,
and rat PBX proteins (Santa Cruz Biotechnology, Santa Cruz, CA). The membrane was
exposed to the primary antibody for 1 h at room temperature, washed three times in
Tris-buffered saline with 0.05% Tween-20 followed by a 1 h incubation at room temper-
ature with a biotinylated goat anti-rabbit secondary antibody (Vector Laboratories Cat#
BA-1000, RRID:AB_2313606). After extensive washes, detection was done as previously
described, [50] using the Vectastain-ABC-AmP reagent (Vector Laboratories Cat# AK-6000,
RRID:AB_2336806) which is a preformed complex between streptavidin and biotinylated
alkaline phosphatase according to the manufacturer’s recommendations.

3. Results
3.1. Pbx1 mRNA and Protein in Leydig and Sertoli Cells

Five Leydig cell lines all corresponding to the adult Leydig cell population were
used. Although they are all defined as Leydig cell lines, they have distinct characteristics
(reviewed in [51,52]). The best characterized and most widely used are the mouse MA-
10 [41] and MLTC-1 [53] cell lines, which were both derived from a testicular tumor that
spontaneously arose in the mouse. These cells do respond to LH/cAMP stimulation with
increased steroid hormone production. On the other hand, the rat R2C cell line, which
was established from a transplantable tumor of testicular interstitial cells, is constitutively
steroidogenic and treatment with LH or cAMP analogs cannot further enhance steroid
hormone production [54]. The rat LC-540 cell line was established from a transplantable
tumor in rat that arose spontaneously [55] and remains poorly characterized to this day.
The mouse TM3 cell line, also poorly characterized, originated from spontaneous immor-
talization in vitro from a mixture of mouse testicular cells isolated from 11–13-day-old
mice [56]. The two mouse Sertoli cell lines used, MSC-1 [57] and 15P-1 [58], were both
isolated from tumors that occurred in mature transgenic mice overexpressing the SV40
large T antigen. Both cell lines have morphological and ultrastructural characteristics of
mouse Sertoli cells [52].

Real time PCR was first carried out using RNA from the various testicular cell lines
described above and from whole mouse testis. As shown in Figure 1A, Pbx1 was found to
be expressed in most Leydig and Sertoli cell lines analyzed, albeit at a lower level in the
constitutively steroidogenic Leydig cell line R2C. Pbx1 mRNA was also detected in primary
Leydig cells isolated from immature rats (P25) and in adult mouse testis (Figure 1A).

Next, the presence of the PBX1 protein was investigated by Western blots in a panel of
testicular cell lines using two distinct antisera: one known to be specific for PBX1 and the
other believed to recognize all four PBX family members (PBX1-2-3-4). The specificity of
this PBX1-2-3-4 antibody was tested by Western blots using nuclear extracts from HeLa
cells overexpressing human PBX1, PBX2 or PBX3. Consistent with the fact that HeLa cells
endogenously express PBX1 [59], a band of appropriate molecular weight (50 kDa) was
detected in the control sample (mock transfected cells; Figure 1B, lane 1). The intensity
of this band was increased in extracts from PBX1-overexpressing cells (Figure 1B, lane 2).
No increase in band intensity was detected in HeLa cells overexpressing PBX2 and PBX3
(Figure 1B, lanes 3 and 4). This indicates that the PBX1-2-3-4 antibody preferentially
recognizes PBX1. Both PBX1 antisera were then used in Western blots with nuclear extracts
from various Leydig (MA-10, MLTC-1, TM3, LC-540, R2C) and Sertoli (MSC-1, 15P-1)
cell lines. As shown in Figure 1C, both antisera gave identical results; PBX1 is present
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in all Leydig and Sertoli cell lines analyzed, albeit at different levels. Bands of higher
molecular weight were observed in some samples suggesting that the PBX1 protein might
be post-translationally modified or that both PBX1 antisera might cross-react with unrelated
non-specific proteins.
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strand cDNAs from Leydig (MA-10, MLTC-1, TM3, LC-540, R2C) and Sertoli cell lines (MSC-1, 15P-1),
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using nuclear extracts from HeLa cells mock transfected (CTL) or transfected with expression vectors
for PBX1, PBX2 or PBX3 as indicated. (C) Western blot analyses of PBX1 protein in Leydig (MA-10,
MLTC-1, TM3, LC-540, R2C) and Sertoli (MSC-1, 15P-1) cell lines using two different antisera: αPBX1:
top panel, αPBX1-2-3-4: middle panel. TUBULIN was used as a loading control (lower panel).
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3.2. PBX1 Is Dynamically Expressed in the Mouse Testis throughout Development

Although PBX1 was reported to be present from the onset of mouse gonadogenesis
(e10) [19], no data is available regarding its expression in the testis beyond e14.5. To fill
this gap, immunohistochemistry was performed on mouse testis at various developmental
stages (e19.5, P5, P10, P20, P32, and P56). In the fetal mouse testis at e19.5, PBX1 protein
was located mainly in peritubular fibroblasts (peritubular myoid cells, PMC) that surround
the seminiferous tubules (Figure 2). PBX1 was also detected in scattered interstitial cells
(Figure 2). At this stage of testicular development, the interstitium of the testis contains
mostly scattered fibroblasts and round shaped clustered androgen-secreting fetal Leydig
cells (FLC). Interestingly, most of the PBX1 positive interstitial cells were found to be
negative for the Leydig cell marker CYP17A1 as revealed by double immunofluorescence
(Figure 2C) and by immunohistochemistry on serial sections (Figure 2D,D′). The CYP17A1
enzyme was chosen to identify steroidogenically active Leydig cells since it is strongly
expressed in these cells throughout testicular development [60,61]. These data indicate that
most mature and steroidogenically active fetal Leydig cells do not express PBX1. PBX1 was
not detected in Sertoli cells of the embryonic testis while a faint signal could be observed in
some gonocytes.
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Figure 2. PBX1 is expressed in peritubular myoid cells and interstitial cells of the embryonic testis.
Immunohistochemistry (A,B,D,D′) and immunofluorescence (C) were performed on 5 µm paraf-
fin sections of paraformaldehyde-fixed e19.5 mouse testis for PBX1 (A–D) or CYP17A1 (C,D′).
(A,B) PBX1 is mainly present in the nuclei (brownish staining) of interstitial cells and peritubular
myoid cells. (C) Merged image of PBX1 (red) and CYP17A1 (a Leydig cell marker, green). (D,D′)
PBX1 (D) and CYP17A1 (D′) expression on serial sections. Fetal Leydig cells identified as CYP17A1-
positive are represented by dotted circles in D. FLC: fetal Leydig cells, PMC: peritubular myoid cells.
Magnifications: (A): 100×; (C,D): 200×; (B): 400×. Scale bar: 7 µm.

In early postnatal mouse testis at P5 (Figure 3A–D) and P10 (Figure 3E–H), PBX1
was still mostly present in PMC and interstitial fibroblast-like cells. The few remaining
fetal Leydig cells, identified by CYP17A1 expression, were negative for PBX1 as revealed
by co-immunofluorescence (Figure 3D,H). PBX1 was not detected in Sertoli cells or in
gonocytes at P5 and P10 (Figure 3).
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Figure 3. PBX1 expression in neonatal testis. Immunohistochemistry (A,E) and immunofluorescence
(B–D,F–H) were performed on 5 µm paraffin sections of paraformaldehyde-fixed P5 (A–D) and
P10 (E–H) mouse testis for PBX1 (A,C,E,G) or CYP17A1 (B,F). D and H correspond to the merged
image of PBX1 (red) and CYP17A1 (green). FLC: fetal Leydig cells, PMC: peritubular myoid cells.
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Next, PBX1 expression profile was analyzed in pre-pubertal (P20), pubertal (P32),
and adult (P56) mouse testis (Figure 4). At P20 weak staining can be detected for PBX1 in
interstitial cells (Figure 4A) while at P32, most interstitial cells express PBX1 (Figure 4B).
PBX1 was also located in the flat nuclei of spindle-shaped PMCs that surround the seminif-
erous tubules (Figure 4A,B). PBX1 was not expressed in cells of the seminiferous tubule
(Sertoli and germ cells). In adults at P56, PBX1 was almost exclusively expressed in Sertoli
cells (Figure 4C). A few interstitial cells remained positive for PBX1 while PMCs no longer
expressed PBX1 (Figure 4C). Germ cells remained mostly negative, although a weak signal
could be seen in some cells (Figure 4C). Thus, in mature animals, PBX1 is mainly present in
Sertoli cells.
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Figure 4. Expression of PBX1 in pre-pubertal, pubertal, and adult mouse testis. Immunohistochem-
istry was performed on 5 µm paraffin sections of paraformaldehyde-fixed P20 (A), P32 (B), and P56
(C) mouse testis for PBX1 (brownish staining). (A,B) In immature (P20) and pubertal (P32) testis,
PBX1 is present in Leydig cells (arrow heads) and peritubular myoid cells (solid arrows). Sertoli cells
(open arrows) and germ cells do not express PBX1. The punctuated structure in some tubules at
P32 corresponds to the acrosome, which is highly antigenic. (C) In adult (P56) mouse testis, PBX1
is mostly detected in Sertoli cells (open arrows). LC: Leydig cells, SC: Sertoli cells, GC: Germ cells,
PMC: peritubular myoid cells. Magnifications: (A–C): 400×. Scale bar: 7 µm.
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4. Discussion

Male gonadogenesis requires a complex network of transcriptional regulators that
are essential to transform the undifferentiated testis into a gamete-producing organ. The
focus of this study was to bring new insights into the expression pattern of a well-known
developmental regulator, the PBX1 transcription factor, during mouse testicular develop-
ment. Although mRNAs for all four Pbx family members were detected in the mouse testis
(our unpublished data and [16,19,24]), Pbx1 was chosen because testicular development
in Pbx1−/− mice is impaired and both XY and XX gonads look identical at e14.5 [19],
while mutations in the human PBX1 gene cause gonadal dysgenesis and genetic males
exhibit female external genitalia [32,33]. This indicates that PBX1 is essential for male
sex differentiation.

Pbx1 is known to be widely expressed in several tissues during development [62,63]
which is consistent with the broad spectrum of defects observed in Pbx1-deficient mice [20].
Previous studies had reported expression of Pbx1 in the coelomic epithelium, in cells
of the bipotential gonads, and in mesenchymal cells of the mesonephros at e10.0 in the
mouse [19,63]. PBX1 is also known to be present in the interstitium of XX and XY gonads
until e14.5 [19] but no data was available for later developmental stages of the testis.

RT-PCR and Western blots revealed that Pbx1 mRNA and PBX1 protein are present
in several Leydig and Sertoli cell lines. Consistent with this, we found that the PBX1
protein is located in the nuclei of interstitial and Sertoli cells of the testis albeit at distinct
developmental stages. From fetal life until puberty (P32), PBX1 is mainly located in
interstitial cells and PMCs. Interestingly, at e19.5, P5, and P10, PBX1 and CYP17A1 did
not co-localize in interstitial cells indicating that the PBX1 positive cells do not correspond
to mature and functional FLC. Instead, at these stages, PBX1 is present in mesenchymal
fibroblasts as reported by Schnabel et al. for earlier stages (e14.5) [19]. As mesenchymal
fibroblasts and PMCs are known to be a source of FLCs [64–68], our findings would be
consistent with a role for PBX1 in FLC differentiation. This is supported by the fact that
Pbx1−/− mice exhibit impaired FLC expansion and differentiation as revealed by the
drastically reduced levels of P450SCC (CYP11A1) [19], a steroidogenic enzyme essential for
testosterone production.

After birth, the FLC population regresses in number and these cells rapidly lose their
steroidogenic capabilities as revealed by the limited number of CYP17A1 positive cells at P5
and P10. FLC are replaced by a distinct population, the adult Leydig cells (ALC) population
(reviewed in [69,70]). The ALC lineage-specific precursors, known as stem Leydig cells, are
believed to be present early in the fetal testis. After FLC specification, progenitor/stem
ALCs are likely kept in a dormant state. ALCs derive from undifferentiated spindle-shaped,
fibroblast-like mesenchymal stem Leydig cells believed to be present during fetal life,
express the nuclear receptor COUP-TFII/NR2F2 [38,39,71,72], and can be isolated a few
days after birth [73]. The source of these cells has been identified as peritubular, interstitial,
and/or perivascular in mouse and human testes [39,71,72,74]. A small reservoir of cells with
stem Leydig cell properties is present in the adult testis to maintain the ALC population
through slow turnover and renewal. These Leydig stem cells are located on the surface of
the seminiferous tubule and around blood vessels (reviewed in [75]). It is proposed that
ALC and FLC lineage precursors might share a common stem cells origin [73], although
conclusive evidence is still needed. In the pre-pubertal (P20) and pubertal (P32) mouse
testis, PBX1 is still expressed in interstitial cells and PMCs, cells that are known to give
rise to the ALC population [65,73]. Between P20 and P32, the ALC population is actively
differentiating, and most cells go from the progenitor to the immature stage, although a
very limited number of Leydig cells have also reached the fully mature stage [76]. The
PBX1 positive interstitial cells at that stage are thus believed to correspond to differentiating
ALC. Consistent with this, we have detected Pbx1 mRNA in primary Leydig cells isolated
from immature rats. This is also further supported by the fact that in fully mature animals
(P56), PBX1 is essentially absent from interstitial cells, the vast majority of which are fully
differentiated and testosterone-producing ALC. Therefore, the expression profile of PBX1
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in immature animals would be consistent with a role for this factor in ALC specification
and differentiation. This, however, remains to be confirmed. Since it is absent from fully
differentiated Leydig cells (both FLC and ALC), PBX1 is therefore not required for the
maintenance of Leydig cell steroidogenic function.

In adult mouse testis (P56), PBX1 expression shifts dramatically and is almost ex-
clusively expressed in Sertoli cells within the seminiferous tubule, although a few PBX1-
positive interstitial cells could be detected. At this age, Sertoli cells no longer proliferate
and are fully mature and functional. Although proliferation occurs mostly during fetal life,
the acquisition of mature Sertoli cell functions such as formation of the blood-testis barrier,
expression of androgen-binding protein, and production of seminiferous fluid takes place
postnatally and is usually completed by 5 weeks ([77] and reviewed in [78]). It is therefore
possible that PBX1 plays a role in post-natal Sertoli cell maturation and function.

Unfortunately, Pbx1-deficient mice die at e15-e16 thus precluding an assessment
of the role of PBX1 at later developmental stages, for instance in the specification and
differentiation of the adult population of Leydig cells and in the maturation and function of
Sertoli cells. A definitive answer regarding the role of PBX1 in these processes will require
additional in vivo studies to conditionally inactivate Pbx1 specifically in ALC precursors
and in Sertoli cells.

5. Conclusions

In conclusion, we report that the homeobox factor PBX1 exhibit a very dynamic
expression profile in different somatic cell populations during testicular development. This
indicates that PBX1 likely acts directly within several testicular cell lineages to regulate cell
differentiation and male reproductive function.
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