
����������
�������

Citation: Rodríguez-Viera, L.; Martí,

I.; Martínez, R.; Perera, E.; Estrada,

M.P.; Mancera, J.M.; Martos-Sitcha,

J.A. Feed Supplementation with the

GHRP-6 Peptide, a Ghrelin Analog,

Improves Feed Intake, Growth

Performance and Aerobic

Metabolism in the Gilthead Sea

Bream Sparus aurata. Fishes 2022, 7, 31.

https://doi.org/10.3390/

fishes7010031

Academic Editor: Geneviève

Corraze

Received: 5 December 2021

Accepted: 26 January 2022

Published: 28 January 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

fishes

Article

Feed Supplementation with the GHRP-6 Peptide, a Ghrelin
Analog, Improves Feed Intake, Growth Performance and
Aerobic Metabolism in the Gilthead Sea Bream Sparus aurata
Leandro Rodríguez-Viera 1 , Ignacio Martí 2, Rebeca Martínez 3, Erick Perera 4 , Mario Pablo Estrada 3 ,
Juan Miguel Mancera 2 and Juan Antonio Martos-Sitcha 2,*

1 Center for Marine Research, University of Havana, Havana 10300, Cuba; leokarma@gmail.com
2 Department of Biology, Faculty of Marine and Environmental Sciences, Instituto Universitario de

Investigación Marina (INMAR), University of Cadiz, Campus de Excelencia Internacional del Mar (CEIMAR),
11519 Puerto Real, Cadiz, Spain; martignacio16@icloud.com (I.M.); juanmiguel.mancera@uca.es (J.M.M.)

3 Aquatic Biotechnology Project, Center for Genetic Engineering and Biotechnology, Havana 10600, Cuba;
rebeca.martinez@cigb.edu.cu (R.M.); mario.pablo@cigb.edu.cu (M.P.E.)

4 Andalusian Institute of Marine Sciences (ICMAN), Spanish National Research Council (CSIC),
11519 Puerto Real, Cadiz, Spain; erick.perera@csic.es

* Correspondence: juanantonio.sitcha@uca.es

Abstract: The aquaculture sector has experienced rapid and important growth with the subsequent
increase of feeding and nutritional issues for sustaining this activity, mainly related to the use of
high quality, safe and environmentally friendly feed ingredients. The use of additives in aquafeeds
has proven to be a suitable option to improve different productive indicators in farmed fish. In the
present study, the effect of adding the GHRP-6 peptide, a ghrelin analog, to a commercial diet of
gilthead sea bream (Sparus aurata) was studied at two proportions (100 or 500 µg/kg of feed). Both
experimental diets show an increase in growth performance, as well as in feed efficiency after 97 days
of experiment. The lower inclusion of GHRP-6 (100 µg/kg) results in a better aerobic metabolism,
while the higher inclusion significantly increased plasma GH levels in agreement with the GH
secretagogue effects of ghrelin. Similar growth outcome and differences between GHRP-6 levels in
aerobic metabolism and GH stimulation suggest that improvements in culture performance by this
peptide may occur through different mechanisms. Taken together, this compound can be considered
as a viable dietary supplement for increasing production efficiency of sea bream aquaculture, although
a better understanding of its dose-specific effects is still required.

Keywords: aquaculture; ghrelin; gilthead sea bream; growth hormone secretagogue; feed intake;
metabolism; welfare

1. Introduction

Aquaculture is the fastest growing animal food-producing sector in the world [1].
While there are several phenotypic traits that are currently being improved in farmed
fish through genetic selection, feed composition, management and farming practices, the
improvement of growth rates and feed efficiency remain as the main goal for most species.
Accordingly, intense research effort has been made to understand the internal and external
factors regulating feed intake [2] and growth [3] in fish. The use of additives such as
short- or medium-chain fatty acids [4,5] or nutraceutical compounds from algae [6], among
others, have been proven to be suitable options to improve different productive indicators in
farmed fish. However, it has been suggested that the use of endogenous feeding and growth
regulatory factors as feed additives should be also explored to modulate growth rate and
yield in cultured species [2]. In addition, the use of synthetic compounds that stimulate feed
intake, feeding efficiency, and physiological pathways related with growth, metabolism or
welfare, may open new avenues to increase the competence of this productive activity. Few
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studies are available in farmed fish in this regard, especially those targeting the regulation
of somatic growth.

The growth hormone (GH), mainly produced by the pituitary, is a key regulator
of growth, although it is also involved in regulating nutrition, reproduction, physical
activity, neuroprotection, immunity, and osmotic pressure [3]. The main action of GH is the
stimulation of hepatic insulin-like growth factors (IGFs), which promote growth, protein
synthesis, cell proliferation and metabolism [3]. GH releasing hormone (GHRH) is the
principal stimulator of GH synthesis and secretion, somatostatin is a potent noncompetitive
inhibitor of the release of GH, and ghrelin has a marked growth hormone-stimulating
activity, the last linking gastrointestinal-pituitary axis [7]. Ghrelin is a 28 amino acid
peptide that was discovered in rat stomach [8] as the endogenous ligand to the previous
orphan GHS-receptor (GHS-R), and thus a potent stimulator of pituitary GH release in
vertebrates [9], including fish [10]. Ghrelin, often called a “hunger hormone”, plays key
roles not only in the control of GH release but also in the regulation of feed intake, energy
metabolism, and immune responses in vertebrates [11–14], even from early stages [15,16].
In gilthead sea bream, ghrelin is highly expressed in the stomach and pyloric caeca [14] as
described in other fish [17].

GH secretagogues (GHSs) are a family of synthetic, non-natural peptides, initially
termed GH-releasing peptides (GHRPs) [18], which are recognized by the GHS-R. GHSs
have no structural homology with GHRH and act via specific receptors present in the pitu-
itary and maybe also at the hypothalamic level [19]. The action of several synthetic GHS on
GH secretion has been studied in different animals [20,21], including fish [22]. Among this
family, the Growth Hormone-Releasing Peptide 6 (GHRP-6) is a six amino acid synthetic
peptide (His-(D-Trp)-Ala-Trp-(D-Phe)-Lys-NH2, MW = 872.44 Da) first described by [23],
and it is considered a strong GHS. Few studies have been performed in fish regarding the
effects of this synthetic peptide. Moreover, most available information comes from studies
in freshwater species. GHRP-6 mimics the orexigenic action of ghrelin in goldfish [24]
and increases pituitary Gh secretion both in vitro and in vivo in juvenile tilapia [25–27],
whereas intraperitoneal administration of GHRP-6 induces Igf-i expression in the liver, and
stimulates growth rate when administered by a plastic tube to the pharyngeal cavity of
juvenile tilapia [27,28]. In addition, GHRP-6 increased body weight when it was adminis-
tered by immersion baths to tilapia larvae [26], enhancing their non-specific immunity [27].
In addition, in freshwater fishes (i.e., tilapia and rainbow trout), a related synthetic peptide
secretagogue (GHRP-2) increased the levels of Gh after intraperitoneal injections [29,30].
However, to the best of our knowledge, no study has reported similar effects in a marine
fish. In the present study, the effect of adding the GHRP-6 peptide to a commercial diet
for a marine fish was studied for the first time. The gilthead sea bream (Sparus aurata)
was used as the model species, which is one of the most important farmed fish species in
Europe [31]. After a feeding trial, different biometric, somatic and feed efficiency indexes
were concomitantly analyzed with plasma levels of Gh and Igf-i hormones, as well as
several parameters related to the metabolic and welfare status of the animals.

2. Materials and Methods
2.1. Animal Maintenance

Gilthead sea bream (S. aurata) juveniles were provided by a commercial source (PRE-
DOMAR, Carboneras, Almeria) and acclimated to the indoor experimental facilities at
the Servicios Centrales de Investigación en Cultivos Marinos (SC-ICM, CASEM, University of
Cadiz, Puerto Real, Cadiz, Spain) with seawater in controlled conditions of salinity (36 ppt),
temperature (19 ◦C), and under natural photoperiod at our latitude (36◦31′45” N, 6◦11′31”
W, from October 2019 until January 2020). All assay procedures were conducted in their
experimental facilities (Spanish Operational Code REGA ES11028000312).
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2.2. Diets

Based on a standard commercial feed for gilthead sea bream (BioMar, Palencia; INICIO
Plus 805–Crude protein: 50.0%, Crude fat: 18.0%, Digestible carbohydrates: 16.1%, Crude
cellulose: 2.4%, Ash: 8.0%, phosphorous: 1.1%), experimental diets were prepared by its
supplementation with the GHRP-6 peptide at the rate of 100 µg GHRP-6/kg of feed (D100)
and 500 µg GHRP-6/kg of feed (D500), and a control diet in which only the excipients
used for the addition of the peptide were added (see below). GHRP-6 (His-(D-Trp)-Ala-
Trp-(D-Phe)-Lys-NH2, MW = 872.44 Da) with a purity >99% was provided by Sigma-
Aldrich, USA. Aquafeeds were prepared as described by Adelmann et al. [32] with some
modifications. Briefly, peptide reconstituted in PBS was added to a mixture of aluminum
hydroxide (Al(OH)3, 10%, Sigma-Aldrich) and polyethylene glycol 1000 (PEG, Sigma-
Aldrich) previously melted at 37 ◦C in a water bath. The pulverized commercial diet
was enriched with this suspension containing a final dose of 0, 100 and 500 µg GHRP-
6/kg of feed, and then pellets were prepared by cold extrusion using a manual extruder.
Subsequently, the feed was dried at 22 ◦C.

2.3. Experimental Design and Sampling Procedure

Fish with an average initial body mass of 20.6± 0.5 g and body length of 10.55 ± 0.08 cm
(n = 270) were randomly distributed in nine 400 L tanks (n = 30 fish per tank, 90 fish per ex-
perimental diet, three repetitions per treatment) and maintained under constant conditions
as described above and fed for 97 days. Experimental diets were offered to visual satiety
(ad libitum) two times per day, ensuring that the amount offered in each experimental unit
was completely ingested. The feeding test was carried out “blindly”, in such a way that
the three feeds were labelled with different colors but with no reference to its composition,
eliminating any source of subjectivity when feeding the animals to obtain final results re-
garding the acceptance and growth performance. Fish were group-weighed and measured
after 27 and 57 days of the beginning of the feeding trial. The feed intake was recorded
every week, allowing to calculate the feeding efficiency = 100 x (wet weight gain/dry feed
intake) for each experimental replicate. No mortalities were registered during the trial.

At the end of the trial (day 97), overnight fasted fish (4 fish per tank, 12 per experimen-
tal diet) were randomly selected and deeply anesthetized with 1 mL of 2-phenoxyethanol/L
of seawater [6]. After being weighed and measured individually for body mass and length,
blood and tissue samples were obtained. Blood was drawn from caudal vein with hep-
arinized syringes, centrifuged at 3000× g for 20 min at 4 ◦C, and plasma samples were
snap-frozen in liquid nitrogen and stored at −80 ◦C until biochemical and hormone anal-
ysis. Before tissue collection, fish were euthanized by cervical section, and livers and
perivisceral fat were removed and weighed. Samples of liver and white skeletal muscle
were rapidly taken, snap-frozen in liquid nitrogen, and stored at −80 ◦C until biochemical
analyses. Intestine was taken for length measurements.

2.4. Growth Performance and Biometric Parameters

Growth parameters were also evaluated according to the following equations: (i) Condition
Factor (K) = 100 × (body mass/fork length); (ii) weight gain (WG, %) = 100 × (body weigh
increase/initial body weight); (iii) specific growth rate (SGR, %·day−1) = [100 × (ln final
body mass− ln initial body mass)]/days; and (iv) feed efficiency (FE) = weight gain/total
feed intake. Survival was calculated by estimating the number of fish at the end of the
experiment with respect to the number of fish at the beginning of the experiment.

Biometric indices were estimated in accordance with the following equations:
(i) Hepatosomatic index (HSI) = 100 × (liver weight/fish body mass); (ii) Mesenteric
fat index (MSI) = 100 × (mesenteric fat/fish body mass); and (iii) Intestine length index
(ILI) = 100 × (Li/Lb), where Li and Lb are the intestine and fork body length, respectively.
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2.5. Metabolites in Plasma and Tissues

Plasma total protein concentration was determined with a BCA Protein Assay Kit
(PIERCE, Thermo Fisher Scientific, Rockford, IL, USA, #23225) using BSA as the standard,
whereas plasma glucose (Ref. 1001200), lactate (Ref. 1001330), triglycerides (Ref. 1001311)
and cholesterol (Ref. 41021) levels were measured using commercial kits from SPINREACT
(Girona, Spain) adapted to 96-well microplates.

Frozen tissues used for the assays of metabolites were homogenized by ultrasonic
disruption in 7.5 volumes of ice-cold 0.6 N perchloric acid, neutralized using 1 M KCO3,
and centrifuged (30 min, 3220× g at 4 ◦C). Supernatants were used to measure tissue
metabolites. Prior to the centrifugation, an aliquot was removed and frozen at −80 ◦C
for triglyceride determination. Tissue triglycerides and lactate levels were determined
spectrophotometrically with commercial kits (SPINREACT, see above). Tissue glycogen
concentration was quantified using the method described by [33], where glucose obtained
after glycogen breakdown with amyloglucosidase (Sigma-Aldrich A7420) was determined
with a commercial kit (SPINREACT, Girona, Spain). All assays were performed using a
Bio-Tek Power Wave 340 Microplate spectrophotometer using KCjunior Data Analysis
Software (Bio-Tek Instruments, Winooski, VT, USA).

2.6. Hormones

Plasma cortisol levels were measured with a commercial Cortisol Enzyme Immunoas-
say Kit from ARBORASSAYS (Ref. #K003), whereas plasma Gh and Igf-i were measured
through competitive inhibition ELISA using commercial kits (CSB-E12121Fh for GH and
CSB-E12122Fh for IGF-I, CUSABIO). All assays were performed following the manufac-
turer’s protocols.

2.7. Statistical Analyses

All data were checked for normality and homogeneity of variance using Kolmogorov–
Smirnov and Levene’s tests, respectively, with p ≤ 0.05. Differences among treatments
(CTRL, D100, D500) were evaluated using the one-way ANOVA (p ≤ 0.05), except for the
growth evolution (Figure 1), where significant differences were analyzed using two-way
ANOVA followed by Tukey’s test taking (i) diet and (ii) experimental time as the mean
factors. In all cases, the Tukey’s test (p ≤ 0.05) was used to determine differences among
means. For the values of the somatic index (MSI), the premises of a parametric test were not
met, and a non-parametric Kruskal–Wallis test was performed. All results are expressed
as the mean ± SEM (standard error of the mean). The software package GraphPad Prism
8.0 (GraphPad Software, Inc., San Diego, CA, US) was used for all tests performed and
generated figures.

3. Results
3.1. Growth Performance and Biometric Parameters

In general, all fish groups increased their length from 10.5 cm to 14–15 cm and their
weight from 20 g to 50–59 g, with an overall weight gain of 144−190% and specific growth
rates of 0.92–1.10%·day−1 (Table 1). All the experimental groups presented similar growth
trajectory during the first feeding periods (eight weeks), but reached a higher biomass at
the end of the experiment in those fish groups that ingested the diets supplemented with
the peptide (D100, 56.53 ± 1.56 g and D500, 58.50 ± 0.46 g), compared to the control diet
(49.57 ± 1.45 g) (Figure 1). Both the WG and SGR were significantly higher with the diets
supplemented with the peptide (Table 1). However, no significant differences were found
in final length among the three treatments (Table 1). The analysis of the Condition Factor
(K) showed significant differences in the weight–furcal length relationship, with an increase
in this index in the experimental groups D100 and D500 with respect to the control group
(Table 1).
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Figure 1. Weight increase as a function of days per experimental group. The results are expressed as
the mean ± SEM of the triplicate tanks for each experimental group. Different letters in each group
indicate significant differences among treatments (two-way ANOVA, followed by Tukey’s test; p <
0.05). CTRL: control; D100: 100 µg GHRP-6/kg of feed; D500: 500 µg GHRP-6/kg of feed.

Table 1. Growth performance and somatic indexes of juvenile gilthead sea breams fed to visual satiety
from October 2019 to January 2020 (14 weeks). Data on body weight, feed intake and growth indexes
are the mean ± SEM of triplicate tanks. Data on somatic indexes are the mean ± SEM of 12 fish.
Different superscript letters in each row indicate significant differences among dietary treatments
based on one-way ANOVA and Tukey’s test (p < 0.05). CTRL: control; D100: 100 µg GHRP-6/kg
aquafeed; D500: 500 µg GHRP-6/kg aquafeed.

CTRL D100 D500 p 1

Initial body weight (g) 20.32 ± 0.08 20.21 ± 0.05 20.13 ± 0.03 0.129
Final body weight (g) 49.57 ± 1.45 a 56.53 ± 1.56 b 58.50 ± 0.46 b 0.006
Final fork length (cm) 14.58 ± 0.14 14.50 ± 0.20 14.85 ± 0.20 0.374
K 2 1.85 ± 0.03 a 1.99 ± 0.04 b 2.00 ± 0.05 b 0.015
Weight gain (%) 3 144.0 ± 7.1 a 179.8 ± 7.6 b 190.6 ± 2.32 b 0.004
SGR (%) 4 0.92 ± 0.03 a 1.07 ± 0.03 b 1.10 ± 0.01 b 0.004
Feed intake (g DM/fish) 44.67 ± 0.71 a 47.01 ± 0.69 b 48.36 ± 0.58 b 0.017
FE (%) 5 63 ± 2 a 77 ± 2 b 79 ± 1 b <0.001
HSI (%) 6 1.59 ± 0.07 1.62 ± 0.08 1.72 ± 0.10 0.491
MSI (%) 7 0.69 ± 0.05 0.59 ± 0.12 0.56 ± 0.05 0.120
ILI (%) 8 107.4 ± 5.8 105.0 ± 7.9 109.3 ± 7.5 0.914

1 Values resulting from one-way analysis of variance, 2 Condition Factor = (100 × body weight)/fork length,
3 weight gain (%) = (100 × (body weigh increase)/initial body weight, 4 specific growth rate (%) = 100 × (ln
final body weight − ln initial body weight)/days, 5 feed efficiency (%) = 100 × (wet weight gain/dry feed
intake), 6 Hepatosomatic index = (100 × liver weight)/fish weight, 7 Mesenteric fat index = (100 × mesenteric fat
weight)/fish weight, 8 Intestine length index = (100 × intestine length)/standard length.

No differences were found in feed intake among the two supplemented diets (D100
and D500). However, fish fed with these two diets exhibited a significantly higher fed
intake with respect to the CTRL group. In addition, feed efficiency increased significantly
with GHRP-6 peptide supplementation, from 0.63 in fish fed the CTRL diet to 0.77 and 0.79
for D100 and D500 groups, respectively (Table 1). No differences were observed among
treatments in the calculated organosomatic indexes HIS, MSI, and ILI (Table 1).
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3.2. Metabolites in Plasma and Tissues

No differences were found among the three experimental diets in relation to circulating
levels of glucose, triglycerides and proteins (Table 2). However, lactate values showed a
significant decrease in fish fed with the D100 diet (2.39 ± 0.22 mM) compared to the CTRL
group (3.14 ± 0.24 mM) and to the experimental diet D500 (3.25 ± 0.19 mM) (Table 2).
Plasma cholesterol was significantly higher in fish fed both supplemented diets with re-
spect to the CTRL group (Table 2). In the liver, no differences were found on the content of
triglycerides and glucose among treatments (Table 2). Nevertheless, a significant improve-
ment in glycogen reserves was detected in fish ingesting the diet with the highest dose
of the peptide (D500) (Table 2). No changes were found in the level of glucose, glycogen,
triglycerides and lactate in the white skeletal muscle among fish fed the two different
experimental diets and the control (Table 2).

Table 2. Blood and tissue biochemistry of juvenile gilthead sea breams fed to visual satiety from
October 2019 to January 2020 (14 weeks). Data are the mean ± SEM of 12 fish. Different superscript
letters in each row indicate significant differences among dietary treatments based on one-way
ANOVA and Tukey’s test (p < 0.05). CTRL: control; D100: 100 µg GHRP-6/kg aquafeed; D500: 500 µg
GHRP-6/kg aquafeed. 1 Values resulting from one-way analysis of variance.

CTRL D100 D500 p 1

Plasma glucose (mM) 1.67 ± 0.05 1.59 ± 0.02 1.69 ± 0.03 0.089
Plasma lactate (mM) 3.14 ± 0.24 a 2.39 ± 0.22 b 3.25 ± 0.19 a 0.013
Plasma triglycerides (mM) 2.61 ± 0.24 2.41 ± 0.21 2.29 ± 0.14 0.529
Plasma proteins (mg·mL−1) 38.85 ± 2.79 40.25 ± 1.65 41.34 ± 1.58 0.699
Plasma cholesterol
(mg·dL−1) 258.7 ± 8.9 a 326.7 ± 12.4 b 318.1 ± 10.9 b <0.001

Plasma cortisol (ng·mL−1) 15.19 ± 1.14 16.04 ± 0.95 15.84 ± 0.73 0.808

Hepatic glucose
(µmol·gww−1) 2.87 ± 0.20 2.56 ± 0.24 3.31 ± 0.34 0.150

Hepatic glycogen
(µmol·gww−1) 19.77 ± 0.50 a 20.52 ± 0.73 a 24.33 ± 1.49 b 0.007

Hepatic triglycerides
(µmol·gww−1) 137.6 ± 13.1 148.6 ± 11.0 147.0 ± 14.0 0.807

Muscular glucose
(µmol·gww−1) 1.94 ± 0.19 1.97 ± 0.22 2.05 ± 0.20 0.939

Muscular glycogen
(µmol·gww−1) 1.02 ± 0.19 1.13 ± 0.26 1.38 ± 0.27 0.556

Muscular triglycerides
(µmol·gww−1) 80.7 ± 7.9 78.1 ± 5.7 81.4 ± 7.2 0.941

Muscular lactate
(µmol·gww−1) 51.66 ± 3.54 56.36 ± 2.71 62.80 ± 3.12 0.057

3.3. GH, IGF-I, and Cortisol in Plasma

In general, low amplitude in the response of plasma GH and IGF-I was observed
after the supplementation of feed with the peptide, although a positive and significant
effect was observed in GH plasma levels in a dose-dependent manner (Figure 2A). IGF-I
values on fish fed with D100 diet increased slightly over those observed in controls, while
the level of IGF-I was significantly lower in fish ingesting the D500 diet with respect to
those who ingested the D100 diet (Figure 2B). This resulted in a statistically significant
reduction in IGF-I/GH ratio in animals ingesting the D500 diet with respect to both CTRL
and D100 diets (Figure 2C). No differences were found in the circulant levels of cortisol
among experimental diets (Table 2).
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Figure 2. Plasma Gh (A) and Igf-ilevels (B) in gilthead seabream juveniles fed with GHRP-6 peptide
supplementation. Igf-i/Gh ratio (C). The results are expressed as the mean ± SEM of 12 fish for each
experimental group. Different letters in each group indicate significant differences among treatments
(one-way ANOVA, followed by Tukey’s test; p < 0.05). CTRL: control; D100: 100 µg GHRP-6/kg of
feed; D500: 500 µg GHRP-6/kg of feed.

4. Discussion

There are currently numerous studies on the effects of different additives, both natural
and synthetic, incorporated into diets to increase growth performance in fish species of
interest for aquaculture production. The addition of the peptide GHRP-6 or other ghrelin
homologues in commercial feed may represent a suited change in the composition of future
diets aimed at maximizing fish growth performance, at least for some developmental stages,
which would translate into a greater aquaculture production and efficiency. However, this
approach has not been assessed before in a marine fish. In this study, we analyzed for the
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first time the effect of this peptide on growth performance for a marine fish, the gilthead sea
bream (S. aurata). In general, all the growth indices showed an increase with the addition of
the peptide to the diets, compared to the non-supplemented control diet (Table 1), whereas
survival was not affected during the trial with any of the doses tested (no mortality was
observed in any of the experimental tanks).

Even at the lowest inclusion level, this peptide had a positive effect on the final
body mass, as well as on the specific growth rate when included in diets and offered in a
medium-term feeding trial (Figure 1, Table 1). Similar results were found in tilapia juveniles
(Oreochromis sp.), where the groups supplemented with concentrations of 100 µg GHRP-
6/kg of feed and 500 µg GHRP-6/kg of feed showed a significant increase in their body
weight [27]. Furthermore, in previous studies carried out with other ghrelin homologues,
such as the A233 peptide in a proportion of 600 µg A233/kg of feed, groups supplemented
with the peptide also increased their body weight compared to the control diet [34]. In this
regard, it is important to relate the data obtained on the increase in body weight (WG) with
the increase in the size of the animals to know if isometric growth is occurring, evidenced
by an increase in biomass proportional to the size, or not [35]. To confirm this relationship,
the Condition Factor (K) was used, which represents the relationship between the body
mass of each individual versus their length (furcal) [36]. This index is commonly used to
compare the condition or wellbeing of fish, whereas its optimum dependents on the species
and age/size. Optimum values in the case of the gilthead sea bream vary from 1.5 to 2.5 [37].
Our results reveal that all groups presented a Condition Factor index within the optimal
range for this species, although diets supplemented with the peptide GHRP-6 had a higher
value (Table 1). Thus, there may be an added benefit of these supplemented feeds if they
promote fast muscle growth instead of fat deposition. Indeed, a strong positive correlation
is known to occur between K and total lipid content in fish [38]. Other main contributing
factors such as gonad weight (i.e., maturation) and gut fill are not issues in our experiment,
as fish were immature juveniles, and they were fasted overnight before samplings. It is
worthy to note that HSI and MSI indices did not show significant variations, indicating
that none of the diets tested caused higher hepatic or mesenteric accumulation of fat than
that produced by the control diet. This is also supported by the absence of differences in
triglyceride content among dietary treatment in the tissues examined. Thus, the observed
increase in K factor can be considered be to results from somatic growth, and indicate that
supplemented diets orchestrated a dietary energy partitioning that favors metabolism and
growth rather than accumulation, thus not implying undesirable fatter fish. Indeed, this
issue is strongly suggested since triglycerides did not show variations in muscle. Whether
this effect could be produced by hyperplasia and/or hypertrophy deserves further studies.

Growth enhancement was accompanied in our study by an increase in plasma Gh
levels in a dose-dependent manner with respect to the peptide inclusion. This effect was
expected, as the GHRP-6 is considered a strong GHS. Previous studies showed that the
GHRP-6 is able to stimulate Gh secretion in tilapia primary cultures of pituitary cells [25,26].
The GHS dependent increase in serum Gh in tilapia juveniles also increased transcription
of Igf-i in the liver, when the peptide was administered intraperitoneally and orally [27].
However, although we did not measure gene expression in liver, we found no evidence of
this effect. Indeed, in our study plasma Igf-i levels decreased with the D500 diet (Figure 2B).
This agrees with the previously reported inverse correlation between circulating Gh and
Igf-i in sea bream, likely due to an Igf-i feedback inhibition on pituitary Gh synthesis
and secretion [39]. In spite of this, the improved growth response was somewhat unex-
pected given that plasma Igf-i reflects differences in growth potentiality between S. aurata
strains [40] and genetic families [41], as occurs in other fish because of its widely known
stimulating effect on myogenic cell proliferation, differentiation, and protein synthesis.
Yet, it has been suggested that the correlation between Igf-i and growth can reflect scarce
variations in fish [14], and it can be variable across fish species and physiological contexts
due to the actions of a wide range of endogenous and exogenous factors [14,42]. For
instance, a certain seasonal lag has been found among circulating Igf levels and growth
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rates in the production cycle of gilthead sea bream [43]. In our study, the inclusion of the
peptide induced the secretion of Gh but also increased feed intake (see below), and this
may promote different physiological responses depending on the doses of the peptide. For
instance, higher ingestion may lead to higher energy availability and storage, but concomi-
tantly an increase in Gh levels may favor a flux of lipids from adipose tissue toward the
skeletal muscle to fuel growth, because of its lipolytic action [39]. Even so, more studies are
required on the mode of action of GHRP-6 in marine fish, which may differ to some extent
from freshwater fish.

On the other hand, both experimental diets (D100 and D500) showed higher feeding
efficiency (FE), which translates into better feed conversion. The control group showed
62% conversion, while the experimental groups presented higher values with 79% and 80%
conversion for groups D100 and D500, respectively, which represents an improvement of
17–18%. These results are interesting from the aquaculture industry perspective, given that
the efficiencies shown here at a constant temperature of 19 ºC are close to those reported
for this species of fish grown in summer conditions, with temperature between 23 ºC and
27 ºC, and with higher metabolic rates and feed intake [5,40,41]. However, the peptide
produced an increment in feed intake at 19 ºC with respect to that of control fish, which can
be understood as a likely promoted metabolism and growth at low temperature. Indeed,
plasma cholesterol and hepatic glycogen reflected the variations observed in feed intake. In
line with this, ghrelin is involved in the regulation of feed intake and is known as the hunger
hormone [14]. Previous studies in other species such as golden carp (Carassius auratus) or
tilapia using ghrelin analog peptides through different procedures (e.g., oral administration
or intraperitoneal injection) produce increases in the feed intake [27,28,34,44,45]. These
previous results are in accordance with the observations of this work. The positive effect of
GHRP-6 on feed intake of the gilthead sea bream can be considered as a good feature in
terms of production together with the higher FE registered.

Finally, the ILI did not show differences among the three treatment groups. It is known
that there is a strong correlation between diet and ILI, where animals that are naturally fed
diets based mainly on plant compounds (herbivores) have longer intestines than animals
naturally fed higher levels of animal protein (piscivores) [46]. However, some carnivore
fish exhibit certain flexibility, and when exposed to changes in their usual diet toward more
vegetable proteins, their intestines undergo morphological adaptations for a better use of
the new diet. This feature has been previously shown in the gilthead sea bream [6,41]. In
our study, we used a specific diet for this species with a high content of animal protein,
which was only supplemented with the studied peptide and without introducing major
changes in its formulation. Therefore, it was expected that the animals did not have to adapt
their absorption surface (i.e., intestinal length). However, more studies are required to
know if the improvement on FE index may be influenced by other changes at the intestine,
such as changes in the conformation of the enterocytes (e.g., increased surface area or length
of the microvilli), changes in paracellular routes that improve the absorption of nutrients,
or even changes in the trans-epithelial selectivity of the intestine [4].

In addition, no significant differences were found in glucose values in the tissues
analyzed (Table 2). It has been proposed that glycolysis in fish is more important as a
supplier of biosynthetic products than as a way of producing pyruvate for its subsequent
oxidation [47]. The glucose values obtained, being similar for the three diets, show that
the experimental peptide GHRP-6 incorporated by ingestion does not alter the metabolic
pathways related to glucose utilization. This result matches with previous observations in
studies focused on the incorporation of other additives in the teleost diet, such as trypto-
phan, heptanoate or compounds extracted from medicinal herbs and microalgae [5,48,49],
where the animals under non-stressful conditions presented a balance in glucose values
similar to those observed in this experiment. Lactate, on the other hand, presents lower
values for the D100 diet than in the CTRL and D500 diets. This result suggests that the
D100 diet may favor oxidative over anaerobic metabolism in white skeletal muscle, or that
lactate uptake and elimination by the liver or other tissues is encouraged. Thus, lactate
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production or accumulation after high metabolic demand caused by stress, physical exer-
cise or oxygen concentrations below that needed to sustain mitochondrial aerobic activity
has been previously demonstrated in this fish species [50,51]. Although, our results were
obtained in free-swimming and resting fish, and low plasma cortisol levels demonstrated
that all groups maintain a homeostatic state. The positive effect of the D100 diet on aerobic
metabolism may be the result of more metabolites being metabolized in the mitochondria
through aerobic processes, such as fatty acids or glucose. This fact could suggest a greater
energy production without the need to require anaerobic routes more than its production
and withdrawal for extra energy supply, thus presenting a homeostatic load with similar
levels in the other energy substrates analyzed (glucose, TAG and proteins) with the control.

5. Conclusions and Open Issues

In the present study, we demonstrated for the first time that GHRP-6 stimulates growth
performance in juveniles of a marine fish, the gilthead sea bream, when administered as a
feed additive. In general, growth is favored by diets supplemented with both concentrations
of the peptide, even under a temperature condition (19 ◦C) far from the optimal for this
species growth. On the other hand, no physiological or metabolic alterations were detected
in studied individuals, finding even better aerobic food management by the specimens fed
the D100 diet. The higher inclusion of GHRP-6 (500 µg/kg) significantly increased plasma
Gh levels with respect to controls, in agreement with the GH secretagogue effects of ghrelin.
However, similar growth outcome and differences between GHRP-6 inclusion levels in
aerobic metabolism (D100), and Gh and Igf-i plasma levels, suggest that improvements
in culture performance may have occurred through different mechanisms. Thus, this
peptide can be considered as a viable supplement for increasing the production efficiency
of gilthead sea bream although more studies are required to better understand its mode
of action at different inclusion levels, including to delve into the biological effects of GHS
on marine fish growth and feed efficiency. On the other hand, it must be considered that
the use of this peptide as an additive during the processing of commercial foods can be
developed to benefit animal health and nutrition [52], and though steam cooking and
extrusion at high temperatures can lead to its partial denaturation, results reported in
this work strongly suggest the stability of the compound during manipulation. Future
studies that address the appropriate way to incorporate this peptide in commercial diets
are necessary. For example, a recent study in rainbow trout tested the inclusion of the
neuropeptide PACAP (pituitary adenylate cyclase activating peptide) in the diet through
an oil-based preformulation of the peptide using water-in-oil (W/O) emulsions from a
dispersed aqueous phase and a continuous oily phase, with good results [53]. This work
opens a new path for deeper investigations of the effects and possible applications of the
GHRP-6 peptide as an additive in diets for farmed marine fish.
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