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Abstract: Off-flavors in fish and water are considered a worldwide problem. Several factors, such
as the presence of phosphorus, micronutrients, and organic matter, contribute to phytoplankton
proliferation and the production of off-flavors. Geosmin and 2-methylisoborneol are the most
common off-flavors that confer the smell of earth or mold to water and fish. These metabolites are not
considered toxic, but they can be easily transferred from water to living organisms and accumulate in
the biota, up the trophic levels and to consumers, including fish species. Numerous processes have
been studied to eliminate or reduce the presence of off-flavors in recirculating aquaculture systems.
Managing off-flavors must be eco-friendly and consumer-friendly. Strategies against off-flavors must
be efficient and low-cost. However, these solutions may be different for each fish production system.
We review herein the main compounds produced by cyanobacteria that can accumulate in fish used in
aquaculture that can affect the quality of food, as well as production costs and consumer preference.

Keywords: cyanobacteria; geosmin; 2-methylisoborneol; bioaccumulation

1. Introduction

Aquaculture has grown worldwide annually; the sector has expanded significantly in
recent years, and total production, trade, and consumption have reached all-time highs in
recent years [1]. The world’s aquaculture fish production inland was 47 million tons of live
weight in 2018. The Asian continent has dominated the world’s fish production, with an
89% share of aquaculture production in the last two decades. Among the main producing
countries, China, India, Indonesia, Vietnam, Bangladesh, Egypt, Norway, Chile, and Brazil
stand out [1,2].

Different aquaculture systems have been used for fish production, such as water-based
systems (e.g., onshore/offshore), land-based systems (e.g., rainfed ponds, flow-through
systems, tanks, and raceways), integrated farming systems (e.g., livestock-fish, agriculture,
and fish dual-use aquaculture and irrigation ponds), recycling systems (e.g., high control
enclosed systems, more open pond-based recirculation) [3].

However, recirculating aquaculture systems (RAS) have gained prominence, as they
are indoor systems that permit fish farmers to manage environmental conditions year-
round; they characterize an ideal alternative to open fish culture systems [4]. These
systems may contribute to reducing environmental problems by minimizing water demand
and managing effluent discharge [5]. However, several factors, such as the presence
of phosphorus, micronutrients, and organic matter, can affect the quality of the water.
Studies have shown that these compounds are associated with the heightened growth
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of phytoplankton that can produce off-flavors as secondary metabolites [6–8]. These off-
flavors are easily bioaccumulated by fish and reduce their market value [9].

Some microorganisms are responsible for synthesizing secondary metabolites that
may alter the taste, odor, and color of foods, which are known as off-flavors and taste/odor
compounds (TOCs). These metabolites are a major concern in a wide range of environments
as they make end products undesirable [9–11]. Thus, it is important that the fish production
system incorporates approaches that enable preventive actions, instead of having a large
production of fish with off-flavor with reduced market value [12,13]. Therefore, the general
objective of this review is to aggregate information about the main TOCs produced by
cyanobacteria and other phytoplankton, how these compounds affect aquaculture, fish
consumption and commercialization, and the main detection and purification methods.

2. Off-Flavor Compounds in the Environment: An Overview

Climate change and anthropogenic factors, such as nutrient enrichment, pollutant
load, increased temperature, and exposure to sunlight, can lead to increased blooms of
cyanobacteria and other phytoplanktonic species [14–16]. Usually, the blooms occur in
summer and early autumn, a period with favorable conditions such as warmth, ample
sunlight, and a stable or low water flow. These cyanobacterial blooms are generally
responsible for the appearance of undesirable metabolites, are toxic in many cases or
non-toxic as off-flavors [17] and are increasing annually worldwide [18,19].

The main derivatives of alga, fungi, cyanobacteria, and other microorganisms (Acti-
nomycetales and Myxococcales) are commonly identified as terpenoids, carotenoid deriva-
tives, fatty acids, and sulfur compounds [20–24]. These metabolites confer flavors and
smell described as “earthy”, “muddy” or “moldy” [25]. Studies have described that
the main metabolites that impart earthy, moldy and tobacco odor in water and food are
the volatile compounds such as 2-methylisoborneol (MIB), geosmin (GEO), 2-isopropyl-
3-methoxypyrazine (IPMP), 2-isobutyl-3-methoxypyrazine (IBMP), β-Cyclocitral, and β-
Ionone [26–29]. The main physical-chemical properties of these compounds are presented in
Table 1. Among the TOCs produced by cyanobacteria and other microorganisms, GEO, and
MIB are the TOCs most commonly found in fish and water. They are also the most difficult
to remove through oxidation, which is the process applied in water purification [6,30,31].

Table 1. Physico-chemical properties of main off-flavor TOCs.

Compound Chemical
Structure

Chemical
Formula

Molecular
Weight

CAS
Number

Water
Half-Life Log Kow

Water
Solubility
(mg·cm3)

MIB
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Compound 
Chemical 
Structure 

Chemical 
Formula 

Molecular 
Weight 

CAS 
Number 

Water 
Half-Life 

Log 
Kow 

Water 
Solubility 
(mg·cm3) 

MIB 
 

C11H20O 168.3 2371-42-8 19.5 days 3.13 0.45 

GEO 
 

C12H22O 182.3 16423-19-1 24.5 days 3.7 0.0512 

IPMP  C8H12N2O 152.2 25773-40-4 n.a. 2.41 61.4 

IBMP  C9H14N2O 166.2 24683-00-9 n.a. 2.72 20.9 

β-Ionone  C13H20O 192.2 14901-07-6 n.a. 2.9 0.104 

β-Cyclocitral 
 

C10H16O 152.2 432-25-7 n.a. 2.4 Insoluble 

n.a. = not available. 

O
O

C11H20O 168.3 2371-42-8 19.5 days 3.13 0.45

GEO
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O
O
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C10H16O 152.2 432-25-7 n.a. 2.4 Insoluble 

n.a. = not available. 

O
O C10H16O 152.2 432-25-7 n.a. 2.4 Insoluble

n.a. = not available.

Initially, GEO was isolated and identified as sesquiterpenoid alcohol degraded in
cyanobacteria at the gills and skin, and are the main site of GEO and MIB on uptake due to
contact with [32], while MIB was isolated as methyl monoterpene in actinomycetes [33].
Anabaena strains produce TOCs, and according to Oh et al. [34], this strain has shown that
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the lowest MIB production was achieved at lower temperatures (<20 ◦C), while a lower
production of GEO was achieved at high light intensity (>100 µmol/m2/s) [34]. GEO is
a semi-volatile metabolite that remains stored in vacuoles inside cells and its release to
ambient water is due to the decomposition of cyanobacteria biomass or cell death [17]. Some
researchers have shown that GEO is a residual metabolite that provides an energy benefit
to bacteria production since more energy is required for the production of chlorophyll-a
(Chl a) than for the production of GEO, and thus when cyanobacteria do not need Chl a,
GEO production occurs. Although some studies are being carried out to understand the
mechanisms of GEO production, its biological function in the cell has not yet been fully
elucidated [35].

One of the first reports of MIB and GEO altering the flavor and quality of water and
commercially farmed fish was in 1931, in the African lungfish Protopterus aethiopicus, and
named by the Indians “mudfish” [36]. Since 1970, these episodes have been reported in
the United States [37], the Netherlands [38], and Japan [39]. In addition, problems have
been reported with changes in the taste and odor of water for human consumption in Asia,
Australia, North America, and Europe [40]. Over the past two decades, the number of TOC
episodes in treated water and customer complaints have increased [41]. Additionally, in
some countries, consumer acceptance of off-flavors in water is mixed [42].

The production of fish, such as the rainbow trout (Oncorhynchus mykiss), tilapia (Ore-
ochromis niloticus and O. aureus), Arctic charr (Salvelinus alpinus), largemouth bass (Mi-
cropterus salmoides), and Atlantic salmon (Salmo salar) in RAS have been affected by the
presence of unpleasant flavors caused by GEO and MIB [9]. These metabolites have been
found at high levels in fish reared in ponds, cages, and other farming systems, as well as in
municipal water, causing off-flavor problems [43].

Humans are able to detect TOCs in water at concentrations of 10 ppt or less. Although
several studies have shown that these metabolites are non-toxic and pose no risk to health or
food safety [44,45], off-flavors have a major impact on taste and make consumers unwilling
to buy or consume the final product. As a result, fish farmers must frequently analyze the
quality of water and fish.

Studies have shown that in aquatic environments, the main producers of GEO and MIB
are cyanobacteria of the genera Anabaena, Aphanizomenon, Lyngbya, Oscillatoria, Phormidium,
Planktothrix, and Pseudanabaena [34], while in soil, the main producers of these metabolites
are actinobacteria [24,46,47]. As cyanobacteria blooms are known to affect water and
fish quality, the Australian government has initiated strategic management to prevent
the occurrence of excess phytoplankton in drinking water through early analysis and
monitoring of the number of cells and species present. Thus, it was possible to predict the
magnitude of the problem and plan solution strategies [48]. Additionally, it is relevant
to work to minimize the risks of having the bloom caused by the excess of cyanobacteria.
Studies have shown that it is necessary to maintain constant monitoring of water nutrients,
especially phosphorus and nitrogen [48,49], and to invest in a more advanced analysis that
enables the prediction of the risk of blooming.

3. Off-Flavor Detection Methods

Sensory analyzes have been widely used in the assessment of fish and drinking water
quality. According to Dietrich [50], standard methods include the use of tools, such as the
odor threshold number (TON) and flavor profile analysis (FPA) for sensory analysis. These
methods reflect the maximum level of dilution at which an odor is still perceptible. The
revisions cited in [50] are based on gas chromatography coupled to mass spectrometry
(GC/MS) with different strategies of extraction techniques that have been used to identify
and quantify the types of several off-flavors [51,52]. Headspace solid-phase microextraction
(HSPME) has been recommended as a suitable method for volatile compounds’ quantitation
in source water, due to its better selectivity towards target compounds [17,24]. Stir bar
sorbent extraction (SBSE) is a technique that is highly sensitive to TOCs and has good
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reproducibility [53,54]. In addition, several methods used to analyze TOCs more quickly
and accurately are being developed [55,56].

Furthermore, molecular biology techniques have been studied to monitor and identify
early microorganisms and genes involved in the production of TOCs in aquatic environ-
ments. In this sense, the geoA gene, which encodes the bi-functional enzyme GEO synthase,
has been used as a molecular marker [20,23,56,57]. Additionally, the 16S rRNA gene is often
used to identify prokaryotic microorganisms and cyanobacteria and has been combined
with other markers, such as geoA for molecular analysis (Table 2). In addition, researchers
have created a reference database in order to monitor the toxinogenic taxa that form blooms
and act as an effective early warning system for the growth of potentially harmful blooms.

Genes involved in the synthesis of MIB were first identified in actinomycetes [58] and
subsequently, these genes were also reported in cyanobacteria [20]. Phylogenetic analysis
suggests that the MIB synthase gene was spread by horizontal transfer and that this gene
has a common origin in cyanobacteria and actinomycetes. However, the organization of
the genes was different in cyanobacteria, suggesting that recombination events may have
occurred during evolution [59]. In any case, the biosynthetic mechanism of MIB occurs in
two stages, first, a reaction occurs where geranyl diphosphate (GPP) is converted by methyl-
transferase into methyl-GPP, and then MIB synthase cyclizes methyl-GPP into MIB [58],
while the GEO mechanism is related to the cyclization of the precursor sesquiterpene C15.

Table 2. Primer pairs were used for PCR and sequencing of geoA, MIB synthase, and 16S rRNA genes
to assess concentrations of off-flavor compounds.

Target Gene Primer Sequence 5′-3′ Product Length Reference

geoA

geo78F GCATTCCAAAGCCTGGGCTTA
912 pb

[20]

geo971R CCCTYGTTCATGTARCGGC

geo982R ATCGCATGTGCCACTCGTGAC 905 pb

MIB synthase

MIB3313F CTCTACTGCCCCATTACCGAGCGA
913 pb [60]

MIB4226R GCCATTCAAACCCGCCGCCCATCCA

MIB3324F CATTACCGAGCGATTCAACGAGC
726 pb

MIB4050R CCGCAATCTGTAGCACCATGTTGA

16S rRNA
27F AGAGTTTGATCMTGGCTCAG

850 pb [61]
1492R TACGGYTACCTTGTTACGACTT

Accurate diagnostic tools for detecting GEO and MIB producers are important in mon-
itoring water reservoirs for quality purposes. The monitoring of microbial communities
in aquaculture production can provide a tool for future microbial management in order
to guarantee stability in fish production performance. In addition, biomolecular methods,
such as conventional and quantitative PCR (qPCR), are widely used techniques. Further-
more, qPCR has been a great tool for the early detection and monitoring of cyanobacteria
and toxins, especially when they are present in small quantities.

4. Transfer of Off-Flavor Compounds, Bioaccumulation in Fish, and Toxicity

Off-flavors in foods may derive from environmental pollutants, the growth of mi-
croorganisms or algae, oxidation of lipids, or endogenous enzymatic decomposition in
foods. Additionally, these compounds can be absorbed and accumulated in fish tissues [61].
According to Aschner et al. [62], earthy flavors in fish grown in tanks with phytoplankton
are common, suggesting that fish can absorb off-flavors, such as GEO and MIB not only by
osmosis but also by feeding on the biomass of phytoplankton (cyanobacteria).

Recent studies have also shown that off-flavors were present in the stomach and
intestinal mucous layer of fish, suggesting that fish can actively feed on potential off-flavor-
producing organisms [23,31,63]. The accumulation of off-flavors may vary due to different
feeding habitats. According to Papp et al. [64], insignificant levels of MIB were found
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in five important species cultivated in Hungarian aquaculture: the planktivorous silver
carp (Hypophthalmichthys molitrix), the herbivorous grass carp (Ctenopharyngodon idella),
the omnivorous common carp (Cyprinus carpio), the omnivorous Nile tilapia (Oreochromis
niloticus) and the carnivorous African catfish (Clarias gariepinus), however the highest
concentrations of GSM were found in the bottom-feeding common carp fillet, being higher
than in the silver carp or African catfish.

Furthermore, TOCs can be absorbed and accumulated in lipid-rich fish tissues, since
GEO and MIB have lipophilic properties, and due to this characteristic, tend to accumulate
in fishes with a higher fat content [65]. In fishes, it is assumed that the gills and skin are the
main sites of GEO and MIB on uptake due to the contact with water with off-flavors [65].
The absorption of GEO through the skin, intestine, and stomach has also been proposed as
an alternative source. Studies through sensory analysis have shown that the absorption
and digestion of cyanobacteria containing GEO could result in the accumulation of GEO in
fish flesh [63,66,67]. Lukassen et al. [23] described the high abundance of GEO-producing
microorganisms in the intestinal mucous and also digesta, suggesting that the digestive
system in fish is a relevant source of GEO and probably other off-flavours in fish that until
now, has been neglected.

While GEO and MIB are absorbed and accumulate in fish quickly, compound clearance
is a slow process that takes several days to reach a level below human perception; for
example, sensory thresholds of 0.9 µg/kg for GEO and 0.7 µg/kg for MIB in rainbow trout
have been suggested [67–69].

The toxicity of TOCs is frequently found in experiments with human cells and most
results show low effects. According to Burgos et al. [70], only 2-MIB and GEO concentra-
tions above 100 and 75 µg/mL, respectively, were cytotoxic to HepG2 cells (human liver
cells). Additionally, the concentrations studied were not able to induce DNA damage.

Usually, when cytotoxicity is observed, the concentrations of these off-flavors are
much higher than those that occur in aquatic environments and fish. Thus, environmen-
tally relevant concentrations of GEO and MIB are not expected to exhibit cytotoxicity or
genotoxicity to humans. Considering the low toxicity of GEO and MIB, there are a limited
number of studies on the biological effects on human health of off-flavors.

5. Depuration of Off-Flavors in Fish

Numerous processes have been studied and tested to eliminate or reduce the formation
of GEO, MIB, and other TOCs in RAS, as well as ozonation [71], advanced oxidation pro-
cesses (AOPs) [72], algicides [73], adsorption, i.e., with activated carbon [69], zeolites [74],
and ultrasonic methods. According to Nam-Koong et al. [75], ultrasound-induced cav-
itation significantly reduces TOCs in tap water and both freshwater RAS and saltwater
RAS. However, it is still necessary to perform studies of this treatment in RAS to assess its
economic and technical viability.

Photocatalysis-based methods, such as modified TiO2 with sunlight and palladium-
modified tungsten trioxide photocatalyst, have been studied [76,77]. This technique uses
degradation by means of light (oxidation/reduction), which is caused by the activation of a
catalyst resulting from ultraviolet (UV) or visible radiation to which it has been subjected.
Currently, this method is considered promising, since it has been used to remove GEO and
MIB in drinking water [78]. However, the implementation of this technique on a full scale
in RAS is still unfeasible due to the impossibility of carrying out the process with a batch
reactor and the high cost of the process [79].

Despite the diversity of methods presented, depurating using clean water is still the
most effective process available to eliminate off-flavors [65,80]. This occurs because it is a
relatively simple and highly effective method, based on the idea that with the circulating
aqueous environment and a concentration gradient, the bioaccumulated compounds will
be diffused freely out of the fish [68,81].

Depuration can take from days to weeks, depending on several factors, such as pre-
liminary concentrations of GEO and MIB, the volume of water available in the process, the
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species, and the size of the fish [69], in addition to other factors such as water tempera-
ture [81–84]. According to Lu [85], the concentration of MIB and GEO in the dorsal and
ventral tissue of Japanese sea bass (Lateolabrax japonicus) decreased by 50% after 10 days
of depuration. The lipid content and weight of fish are directly correlated with the abil-
ity to absorb off-flavor compounds such as GEO and MIB, since these compounds are
lipophilic [81]. During the depuration process, fish are not fed, ensuring a good water
quality and having the most effective depuration possible, which can lead to significant
weight loss and generate financial losses [80]. Therefore, it is essential that the depuration
is performed as quickly and efficiently as possible.

According to an experiment carried out by Lindholm-Lehto et al. [85], the feeding of
European whitefish (Coregonus lavaretus) during the process of depuration of TOCs resulted
in a significant increase in the rate of elimination of GEO from the ovary—this being a more
rapid elimination compared to hungry fish. In addition, the retention of food during long
periods of purification causes a reduction of fish weight, lipid content, and color of the
fillet, resulting in lower quality products [69].

Lipophilic compounds such as off-flavors are eliminated from fish by passive diffu-
sion through the gills and/or skin, or by metabolizing these compounds into more polar
compounds that are excreted in the urine (via the kidneys) or the feces (secreted in bile—
gallbladder) [86,87]. Pharmacokinetic studies of MIB in catfish have shown a rapid total
clearance of the compound [82,83], suggesting that urinary excretion is responsible for only
a minor portion of total loss and elimination through the gills or rapid biotransformation
with subsequent clearance of metabolites.

Sensory analyzes showed that approximately 6 days of purification in clean water
were required for the GEO concentrations to decrease below the concentration of the sen-
sory threshold, going from 90 µg/kg to 8 µg /kg in channel catfish [83,88]. GEO appears
to be eliminated a little more slowly from rainbow trout than from channel catfish [89],
probably because the low water temperatures used in trout culture reduce the rate at which
the compound is eliminated from the fish. Studies have shown that water temperature is
an important variable for clearance, and the higher the temperature, the greater the elimi-
nation of these compounds due to a decreased oxygen solubility and increased branchial
ventilation [68,81].

Fish may eliminate MIB more quickly than GEO. Studies have indicated that depu-
ration rates are affected by fish lipid content and water temperature [83,88,90], and that
extremely fatty fish kept in cold water (<10 ◦C) may require a week or more to eliminate the
unpleasant taste. Under depuration conditions (lean fish temperatures and hot water), the
fish can be purified from the TOCs in less than 60 h. However, Lindholm-Lehto et al. [65]
described that it takes up to 16 days to eliminate MIB in European whitefish, but a shorter
time could be sufficient to eliminate GEO. In this study, the authors mixed clean water into
the circulating water, which would consequently wash away off-flavor compounds over
a longer depuration time. Additionally, the GEO decrease in compounds occurred in a
very similar way in all parts of the body of the fish, even though the initial concentrations
were different [65]. In addition, the fat content decreased by up to 50% compared to the
original values during clearance and showed the effect of fasting. However, optimizing
the depuration time is crucial to reduce production costs while still producing high-quality
fish products.

Thus, several studies are being developed in order to reduce RAS depuration time [80].
In this sense, Davidson et al. [89] tested different operational cleaning methods and accord-
ing to their results, cleaning systems without water aeration in the gas transfer columns
resulted in a greater and faster reduction of the TOCs in Atlantic salmon (Salmo salar)
in RAS.

6. Effects of Off-Flavors and Consequences for Producer and Consumer

Several studies have analyzed consumer behavior and the acceptability of food based on
sensory (taste, flavor, texture, color, appearance), safety, and nutritional properties [91–94].
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In recent decades, healthy eating habits have received greater attention, and it is widely
recognized that the regular consumption of fish is a possible practice that improves
health [95,96]. Due to its nutritional properties and an awareness of healthy eating, fish con-
sumption has increased worldwide [1,97]. Therefore, it is necessary to produce high-quality
food that is more attractive to consumers [97].

The 2020 edition of the State of The World Fisheries and Aquaculture of the United
Nations Food and Agriculture Organization (FAO/UN) showed that world aquaculture
production grew approximately 5.3% per year in the period from 2001 to 2018 [1]. In addi-
tion, aquaculture for human consumption, totaling 57 million tons, surpassed aquaculture
for non-food purposes, which was responsible for 30.5% of the total production in 2018 [98].

Furthermore, flavor changes in fish flesh are characterized as low product quality and
are generally not appreciated by consumers. Consequently, this results in a large reduction
in fish consumption and negatively affects the marketing of aquaculture products [8], rep-
resenting one of the most significant economic problems in aquaculture [8,69]. According
to Petersen et al. [67], sales of channel catfish in the United States decreased by about 30%
due to off-flavors in fish. Similarly, in Europe, there was also an incidence of off-flavors
in fish, which resulted in losses of up to 20% for UK trout farmers. In France, one in four
rainbow trout had severe concentrations of TOCs, which also resulted in losses for farmers.

Due to the high cost of fish production, producers have been looking for alternatives
to improve fish quality and reduce production costs. Nevertheless, in these attempts, some
producers can raise the cost and reduce the quality. In Thailand, for example, fertilizers
are added to tilapia culture water to induce the natural growth of algae, which are used as
natural food for fish, thus reducing capital investment, however, the depuration process
is expensive [43,99]. In addition, a loss of fish weight during depuration and the death of
some fish due to moving to new tanks can generate additional costs. Some evaluations
point out that the removal of off-flavors raises the annual costs of 10–60 million US dollars
for catfish producers, while others have assessed an increase of 0.25 US dollars per kg of
fish [100,101].

Studies have compared the production and economic performance of fish in different
management systems. According to Whangchai et al. [43] significantly higher amounts
of chlorophyll-a and off-flavor were found in terrestrial lagoons compared to the cage
culture, suggesting that cultivation in lakes may be more expensive due to the cost of the
purification process. As previously mentioned, unfortunately, depuration is a laborious
process that requires a large volume of water and can generally take days to weeks. Thus,
the removal of off-flavors can inflict a significant economic loss, due to delays in harvesting
and the high cost of drinking clean water [17,25,69,101].

7. Conclusions

The production and consumption of fish as human food has grown in recent decades;
however, intensive fish production and high food supply can favor the development of
phytoplankton, especially cyanobacteria. The occurrence of cyanobacterial blooms can
cause serious consequences from aquaculture, as cyanobacteria produce secondary metabo-
lites capable of altering the taste and odor of water and the quality of fish. Although these
substances (GEO and MIB, mainly) are not toxic, they are not appreciated by consumers and
negatively affect the marketing of aquaculture products. Based on toxicity data, off-flavors
in freshwater fish present a low risk to consumers; however, it may indicate fish were
cultivated in the presence of cyanobacteria and eutrophic conditions.

Additionally, the lipid content and weight of the fish are directly correlated with
the ability to absorb compounds with a strange taste, such as GEO and MIB, since these
compounds are lipophilic. In this context, the elimination of these compounds is an
expensive and slow process, in addition to requiring large amounts of water to reach a level
below human perception. Therefore, it is considered of great importance to use accurate
tools for the monitoring and early detection of the presence of microorganism producing
TOCs or TOCs even in low concentrations, such as highly sensitive molecular biology and
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analytical chemistry techniques to avoid expenses associated with the purification process
to eliminate undesirable flavors. For all these aspects, this review synthesizes information
regarding the main TOCs produced by cyanobacteria and other phytoplankton, how these
compounds affect the consumption and commercialization of fish, and the main detection
and purification methods.
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