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Abstract: Three immunoglobulin (Ig) isotypes have been identified in teleosts, IgM, IgD, and IgT or
IgZ. IgT, a new teleost Ig isotype, plays a vital role in mucosal immunity. However, information on
molecular and functional characteristics of fish IgT is still limited. In this study, an IgT heavy chain
(LcIgT) gene was cloned and characterized in large yellow croaker (Larimichthys crocea). Complete
cDNA of LcIgT was 1930 bp in length, encoding a protein of 554 amino acids. The deduced LcIgT
contains a VH region and only three CH regions (CH1, CH2, CH4), but no transmembrane region was
predicted. Phylogenetic analysis showed that IgT heavy chain sequences from all fish species are
grouped together. Homology comparison showed that LcIgT shares the highest amino acid identity
of 58.73% with IgT heavy chain in Scophthalmus maximus. The VH domain of LcIgT has the highest
identity of 72.50% with that of Scophthalmus maximus IgT. Relatively, each constant domain of LcIgT
exhibits the highest amino acid identity with that of IgT in Oreochromis niloticus (67.61% identity for
CH1, 61.11% identity for CH2, and 63.74% identity for CH4). LcIgT was constitutively expressed in
various tissues tested, with the highest levels in mucosa-associated tissues such as gills and skin.
After Cryptocaryon irritans infection, the mRNA levels of LcIgT were significantly up-regulated in
the spleen (3.27-fold) at 4 d, in the head kidney (3.98-fold) and skin (2.11-fold) at 7 d, and in gills
(4.45-fold) at 14 d. The protein levels in these detected tissues were all significantly up-regulated; the
peak of its up-regulation was 6.33-fold at 28d in gills, 3.44-fold at 7d in skin, and 3.72-fold at 14d in
spleen. These results showed that IgT response could be simultaneously induced in both systemic
and mucosal tissues after parasitic infection and that IgT may be involved in systemic immunity and
mucosal immunity against parasitic infection.

Keywords: immunoglobulin T; large yellow croaker (Larimichthys crocea); expression modulation;
parasitic infection

1. Introduction

Immunoglobulins (Igs) consist of two light (L) chains and two heavy (H) chains [1],
which have a critical role in the vertebrate adaptive immune system as an important class
of immune effector molecules. Five Igs isotypes have been identified in mammals: IgM,
IgG, IgA, IgD, and IgE, based on the difference of heavy chain [2]. In teleosts, only three Igs
isotypes, IgM, IgD, and IgT or IgZ are discovered as yet [3–7]. IgM is the most predominant
and stable Ig in systemic immunity, while IgT or IgZ is considered an Ig specialized in
mucosal immunity in teleosts [8]. IgD has an unknown function in teleosts, but studies
have suggested that IgD might be involved in surveillance and immune regulation as an
antigen-binding receptor [9].
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IgT or IgZ has been identified in several teleost fish, including rainbow trout (On-
corhynchus mykiss) [6], zebrafish (Danio rerio) [10], fugu (Takifugu rubripes) [11], common carp
(Cyprinus carpio) [12], Japanese flounder (Paralichthys olivaceus) [13], turbot (Scophthalmus
maximus) [14], European seabass (Dicentrarchus labrax L.) [15], three-spined stickleback (Gas-
terosteus aculeatus) [15], Pacific bluefin tuna (Thunnus orientalis) [16], and Atlantic salmon
(Salmo salar) [17]. Interestingly, some teleost species possess multiple IgT subclasses, such
as rainbow trout with three subclasses, termed IgT1, IgT2, and IgT3 [18], zebrafish with
two functional molecules, IgZ and IgZ-2 [7], common carp with IgZ1 and IgZ2 [12], and
Atlantic salmon with IGH-A and IGH-B [17]. Nevertheless, no IgT ortholog has been found
in channel catfish (Ictalurus punctatus) [19] and medaka (Oryzias latipes) [20] until now.

Two forms of IgT, membrane-bound IgT (mIgT) and secreted IgT (sIgT), exist in teleosts.
The heavy chain of both IgT forms contains a variable region (VH) and 2–4 constant regions
(CH), while the mIgT possesses additional single- or double-spinning transmembrane
regions (TMs). The CH number of IgT varies among different species; for example, four
CH domains are found in most teleosts, whereas only two exist in fugu [11] and three in
stickleback [21] and emerald rock cod [22]. IgH gene locus in teleosts has multiple variables
(V), diversity (D), joining (J), and constant (C) segments in the following order: (Vn-Dn-
Jn-Cn) [10,16]. RAG-1 and RAG-2 assemble the V, D, and J segments by recognizing the
recombination signal sequences at the borders of the V, D, and J segments [23]. IgT heavy
chain (τ) exons are located either in the 5′ regions of the D and J gene segments of IgM
and IgD heavy chains in zebrafish [10] and stickleback [24] or inserted within the V gene
segments of IgM and IgD heavy chains in rainbow trout [6] and Atlantic salmon [25], which
has resulted in the evolution of a distinct B cell lineage. The structure and feature of the IgT
heavy chain genes in teleosts are diversified with the evolution of species, which might
cause differential functional characteristics of IgT. Thus, the cloning of IgT genes from more
fish species could increase the understanding of the molecular structure of fish IgT.

Tissue expression of fish IgT genes has been widely studied, and patterns were variable
among different species. The mucosa-associated tissues such as gills and gut were found to
be the primary tissues that IgT was expressed in several species [6,17,21,22]. The zebrafish
IgZ1 was detected only in the kidney, whereas IgZ-2 was in the kidney and skin [7]. The
high IgT expression levels in common carp were found in gills, head kidney, muscle, and
brain [26]. The flounder IgT was highly expressed in the spleen, liver, and gills [13]. After
Edwardsiella tarda infection, the flounder IgT expression was strongly induced in gills, skin,
spleen, and head kidney [13]. The turbot IgT was up-regulated after infection with Vibrio
anguillarum in gills, skin, kidney, spleen, liver, and gut [14]. The trout IgT expression was
significantly increased when infected with parasites or bacteria, mainly in mucosal tissues
including gut [27], skin [28], gill [29], and nasal [30]. These data suggested that teleost
IgT may participate in both systemic and mucosal immunity against pathogens, especially
in mucosal immunity. Therefore, expression analyses of IgT molecules based on various
pathogen infections will provide valuable clues to fish IgT function in-depth knowledge.

Large yellow croaker, belonging to the Perciformes, is an important mariculture
fish in China, with the highest annual production among marine species [31]. In recent
years, the outbreak of infectious diseases caused by various pathogens, including bacteria,
viruses, and parasites, has severely affected the development of large yellow croaker
farming [32–34]. Cryptocaryon irritans, a ciliate ectoparasite, can infect large yellow croakers,
leading to high mortality and huge economic losses [35]. Understanding the function of the
immune system of L. crocea will contribute to the prevention and control of the infectious
diseases that occur in this species. Igs are an important class of immune effector molecules
in the vertebrate adaptive immune system. A previous study elucidated the molecular
characteristics of IgM heavy and light chain genes in large yellow croakers, and their
expression patterns upon immune stimuli were also analyzed [36,37]. Here, we describe
the cloning and molecular characterization of a secretory IgT heavy chain (LcIgT) in large
yellow croaker. The expression pattern of LcIgT in several tissues was analyzed. After
a challenge with C. irritans, the expression changes of LcIgT mRNA and protein were
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determined by real-time PCR (RT-PCR) and western blotting. These results will contribute
to the understanding of the molecular and functional characteristics of fish IgT.

2. Materials and Methods
2.1. Experimental Infection and Tissue Preparation

Healthy large yellow croakers (body weight: 20 ± 3.6 g; length: 9 ± 1.5 cm) were
obtained from a mariculture farm at Fujian, China. The fish were maintained in a 3000-L
aerated water tank with a flow-through seawater supply at 25 ◦C. The individuals were
acclimatized for 7 days prior to being used for the challenge experiments. Then, fish were
divided into two groups and cultured in separate 3000-L closed tanks. Thirty fish in the
experimental group were infected with 3000 theronts of C. irritans per fish by bath for
4 h. The infection was performed in a 100-L fiberglass aquarium with about 60-L water
containing a proper number of theronts of C. irritans and then transferred into 3000-L
aerated water tanks with fresh seawater. Another thirty fish were treated in the same way
but without C. irritans, and designated as the control group. The fish were euthanized with
eugenol, and various tissues including spleen, head kidney, skin, and gills were sampled
from five fish of each group at different time points (4 d, 7 d, 14 d, 21 d, 28 d, 35 d) after
infection. These isolated tissues were frozen immediately in liquid nitrogen and stored at
−80 ◦C before RNA extraction. The Committee on the Ethics of Animal Experiments of the
Chinese Academy of Sciences approved all experiments on animals.

2.2. Complete cDNA Cloning and Sequence Analysis of LcIgT

To obtain the full-length cDNA of large yellow croaker IgT heavy chain (LcIgT) gene,
5′ and 3′ RACE-PCR were performed using the 5′ and 3′-Full RACE Kit (TaKaRa, China).
Primers (Table S1) for the 5′ and 3′ RACE were designed based on IgT heavy chain gene
sequences obtained from the genome database of large yellow croaker (JRPU00000000) [38].
Both 5′ and 3′ RACE-PCR were performed according to the manufacturer’s instructions.
The resulting PCR product was cloned into the pMD19-T simple vector (TaKaRa, Beijing,
China) and sequenced. All sequences were assembled to obtain the full-length cDNA of
the IgT heavy chain. The deduced amino acid sequence of IgT heavy chain was analyzed
for a signal peptide using SignalP software and N-glycosylation sites with the NetNGlyc
1.0 Server. Sequence similarity analysis was performed using the BLAST program (http:
//blast.ncbi.nlm.nih.gov/Blast.cgi, accessed on 12 May 2021). Protein domains were
predicted by Simple Modular Architecture Research Tool (SMART) (http://smart.embl-
heidelberg.de/, accessed on 17 May 2021). The isoelectric point (pI) and the molecular
weight of the deduced IgT protein were calculated by the ExPASy-Compute pI/Mw tool
(https://web.expasy.org/compute_pi/, accessed on 23 June 2021). Multiple sequence
alignment was performed using the ClustalW 2.0. A phylogenetic tree was conducted by
the neighbor-joining (NJ) method using the MEGA 6 program [39]. The bootstrap method
with 1000 replicates was used to examine the veracity of these trees and the statistical
significance of each branch. The amino acid similarity among each CH region of IgT was
also analyzed using protein Blastp at the NCBI (https://blast.ncbi.nlm.nih.gov/Blast.cgi,
accessed on 6 July 2021), and the corresponding phylogenetic trees were constructed as
performed above.

2.3. Tissue Distribution of LcIgT by RT-PCR

To determine the tissue distribution of LcIgT, eleven tissues, including liver, heart,
head kidney, gills, brain, spleen, stomach, intestine, skin, muscle, and blood, were collected
from at least five healthy juveniles. Total RNA was extracted from these tissues using
Eastep® Super Total RNA Extraction Kit (Promega, Shanghai, China), referring to the
manufacturer’s protocol. Subsequently, Oligo dT-Adaptor primer (Promega, Shanghai,
China) was used to reverse-transcribe 1 µg total RNA into the first-strand cDNA. The
cDNA was diluted with RNase-free water and stored at −20 ◦C before RT-PCR. The special
primers (Supplementary Table S1) were used to determine the transcriptional levels of
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LcIgT in all tissues with a QuantStudioTM 1 (Applied biosystems, Thermo, Waltham, MA,
USA) equipped with Design & Analysis Software v1.5.1. PCR was performed in a reaction
volume of 20 µL. PCR amplification was performed under the following conditions: one
cycle of 95 ◦C for 5 min, 40 cycles of 95 ◦C for 30 s, 57 ◦C for 30 s, and 72 ◦C for 1 min,
followed by a final extension of 72 ◦C for 10 min. In addition, β-actin was amplified as the
internal control for RT-PCR. The expression levels of LcIgT were normalized by β-actin
using the 2−∆∆CT method and expressed as the ratio of LcIgT expression levels in the
blood [40]. The collected tissues were examined in triplicate.

2.4. LcIgT Expression Analysis after Infection with C. irritans

To further understand the modulation of LcIgT expression upon C. irritans infection,
four tissues (spleen, head kidney, gills, and skin) were isolated at 4 d, 7 d, 14 d, 21 d, 28 d,
and 35 d post-infection as above. Total RNA extraction and first-strand cDNA synthesis
were performed as the previous protocol. Then these templates were used for RT-PCR
with respective primer sets of LcIgT and β-actin genes. RT-PCR conditions were the same
as described above. The relative expression levels of LcIgT were normalized by β-actin
and expressed as fold changes by comparing the normalized gene expression levels of
C. irritans-infected fish with those of the non-infected fish (defined as 1) at the same time
point. The samples were detected in triplicate.

2.5. Western Blotting Analysis of LcIgT Expression

To detect the modulation of LcIgT protein levels, each tissue was homogenized in a ho-
mogenizer IKA T10 (Truelab, Shanghai, China) with RIPA lysis buffer (Beyotime, Shanghai,
China) containing 2% protease inhibitor, and instantly centrifuged at 4 ◦C (13,000× g for
5 min). Under the reducing conditions, the supernatants of lysate were separated by 12%
SDS-PAGE, and then the proteins were transferred to polyvinylidene difluoride (PVDF)
membranes (GE, Boston, MA, USA). The membranes were immersed in blocking buffer,
consisting of TBST buffer containing 0.2% Tween-20 (Sangon Biotech, Shanghai, China)
and 5% nonfat dried milk for 1 h at room temperature with shaking to block completely.
Then the membranes were incubated in blocking buffer with primary antibody (1.2 µg/mL
mouse anti-IgT mAb, 1:1000; prepared in our laboratory [41]) overnight at 4 °C. The mem-
branes were rinsed twice with TBST for 10 min each time, following incubation with diluted
secondary antibody, HRP-labelled Goat Anti-Mouse IgM (1:5000, Thermo Fisher Scientific,
Waltham, MA, USA), shaken for 1 h at ambient temperature. After three extra washes with
TBST as described above, the membranes were covered up with detection solution, a mix-
ture of an equal amount of detection solution A and B, and placed in a gel imaging system
(Azure Biosystems, Dublin, CA, USA) to detect. Alternatively, β-tubulin was selected as the
internal control to achieve protein quantification. The samples were detected in triplicate.
Image J v1.8.0 software was used to analyze the protein gray values of IgT.

2.6. Statistical Analysis

All data of each repeated experiment were analyzed by GraphPad Prism 8 software
and denoted as the mean ± standard error of the mean. Using IBM SPSS Statistics 19.0, the
analysis of independent samples t-test and one-way ANOVA was applied to the data of
each group, and the p-value < 0.05 represents statistical difference.

3. Results
3.1. Identification and Characterization of LcIgT cDNA

The cloned LcIgT cDNA sequence (GenBank accession number: MW450786) was 1930 bp
long, containing an open reading frame (ORF) of 1665 bp, a 5′-untranslated region (5′-UTR)
of 31 bp, and a 3’-UTR of 234 bp with a putative atypical polyadenylation signal sequence
AATAAA (Supplement Figure S1). The ORF of LcIgT encodes a protein of 554-amino acids (aa),
containing a putative 29-aa signal peptide, a 117-aa variable region (VH, H47-E163), and three
constant domains (CH1, D164-G236; CH2, T259-T331; CH4, M453-N542), but no transmembrane
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region was predicted, indicating that LcIgT cDNA sequence cloned here encodes a secreted
form of IgT heavy chain. The LcIgT sequence contains twelve conserved cysteine residues
(Cys51, Cys123, Cys158, Cys170, Cys227, Cys264, Cys321, Cys361, Cys422, Cys478, Cys528, and
Cys553) and two potential N-glycosylation sites (N398 and N499). Additionally, LcIgT has a
predicted molecular weight of 58.69 kDa and an isoelectric point of 7.18.

3.2. Multiple Sequence Alignment and Phylogenetic Analysis of LcIgT

The multiple alignments of amino acid sequences of LcIgT and other known teleost
IgT heavy chains showed the conservation of typical Ig structural domains (Figure 1), with
a VH and two-four CH domains. LcIgT contains three CH domains, CH1, CH2, and CH4,
which were different from other fish IgT heavy chains at CH number and arrangement.
Homology comparison showed that LcIgT shares the highest amino acid identity of 58.73%
to Scophthalmus maximus IgT heavy chain (Table 1). Then, the VH and CH domains of
LcIgT were compared with the corresponding VH and CH domains in other teleosts IgT.
As shown in Table 2, the VH domain of LcIgT has the highest identity of 72.50% to that of
Scophthalmus maximus IgT. Nevertheless, the CH1, CH2, and CH4 domains of LcIgT all share
the highest identity to those of Oreochromis niloticus IgT with 67.61%, 61.11%, and 63.74%
identities, respectively.

Figure 1. Alignment of the predicted large yellow croaker IgT heavy chain amino acid sequence
with other known IgT heavy chain molecules. The conserved amino acids are indicated in blue fill.
The predicted signal peptide sequence of large yellow croaker IgT heavy chain is indicated in italics.
The CH domains are divided into three domains (CH1, CH2, and CH4). The conserved cysteines and
tryptophan are marked with red asterisk and triangle. The first cysteine corresponds to the cysteine
required for binding to the light chain. Potential glycosylation sites (NIS and NDS) are shown with a
red dotted box.
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Table 1. The IgT heavy chain protein sequences used for phylogenetic analysis.

Species
IgT Heavy Chain (Identity, %)

NCBI Accession Number
Entire Sequence

Larimichthys crocea 100 MW450786
Scophthalmus maximus 58.73 AMQ49170.1
Sparus aurata 56.10 ASK39430.1
Paralichthys olivaceus 55.88 ANS12795.1
Dicentrarchus labrax 55.04 AKK32388.1
Epinephelus coioides 53.96 ACZ54909.1
Oncorhynchus mykiss 44.14 AAW66978.1
Oreochromis niloticus 36.84 AUV64181.1
Danio rerio 32.14 ABF19723.1
Ctenopharyngodon idella 28.24 AAT67444.1

Table 2. The amino acid identity analysis of the VH and each CH domain of IgT heavy chain between
L. crocea and other fish species.

Species
IgT Heavy Chain (Identity, %)

VH CH1 CH2 CH4

Larimichthys crocea 100 100 100 100
Scophthalmus maximus 72.50 61.29 52.05 63.33
Oreochromis niloticus 41.05 67.61 61.11 63.74
Paralichthys olivaceus 56.10 61.29 52.05 63.33
Epinephelus coioides 43.97 66.20 56.94 63.74
Sparus aurata 47.47 62.90 61.11 60.24
Dicentrarchus labrax 51.90 47.89 56.94 58.43
Oncorhynchus mykiss 44.21 50.00 40.85 47.73
Ctenopharyngodon idella 45.30 35.14 35.14 25.97

To understand the relationship between the IgT heavy chain of large yellow croaker
and other teleosts, a phylogenetic tree was constructed with the protein sequences from
various species. As shown in Figure 2, the IgT, IgM, and IgD of all species were clustered
into three respective groups. Additionally, the constructed phylogenetic tree also showed
that the corresponding CH1, CH2, CH3, and CH4 domains of the IgT heavy chain of the
teleosts were clustered together, although LcIgT lacks CH3 domain (Figure 3).

3.3. Tissue Distribution of LcIgT by RT-PCR

Tissue expression analysis showed that LcIgT mRNA was expressed in all tested
tissues of large yellow croaker, including liver, heart, head kidney, gills, brain, spleen,
stomach, intestine, skin, muscle, and blood (Figure 4). The highest expression levels of
LcIgT were detected in gills, while the lowest levels were in blood. These results indicated
that LcIgT transcripts were constitutively expressed in all tissues tested, with the highest
expression levels in gills.

3.4. Modulation of LcIgT Gene Expression after C. irritans Infection

We further analyzed the modulation of LcIgT gene expression after C. irritans infection.
As shown in Figure 5, expression levels of LcIgT in gills, skin, spleen, and head kidney were
significantly up-regulated after C. irritans infection at several time points. LcIgT transcripts
were increased in the spleen at 4 d (3.27-fold increase) and in head kidney and skin at 7 d
(3.98- and 2.11-fold increases, respectively). In comparison, its expression levels in the gills
were substantially up-regulated at 14 d post-infection (4.45-fold increase). Thus, LcIgT
expression was differentially modulated in different tissues after C. irritans infection.
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Figure 2. Phylogenetic tree of IgT heavy chain molecules from large yellow croaker and other fish
species. A polygenetic tree was constructed to show the genetic relationship between large yellow
croaker IgT and other fish species IgT. IgM, IgD heavy chain molecules from fish and vertebrates,
were used as an outgroup. The tree was constructed by MEGA software using the Neighbor Joining
(NJ) method, and the numbers on nodes represent the frequency with which this node is recovered
per 100 bootstrap replications in a total of 1000. Large yellow croaker IgT was marked with a solid red
triangle. GenBank accession numbers for IgT heavy chain sequences are as follows: MW450786 Larim-
ichthys crocea (large yellow croaker) IgT heavy chain, AKA09828.1 Bovichtus diacanthus (Bovichtus)
IgT heavy chain, AUV64181.1 Oreochromis niloticus (Nile tilapia) IgT, ACZ54909.1 Epinephelus coioides
(juvenile grouper) IgZ heavy chain, ASK39430.1 Sparus aurata (juvenile seabream) IgT heavy chain
secretory form, ANS12794.1 Paralichthys olivaceus (Japanese flounder) IgT membrane form, ANS12795.1
Japanese flounder IgT secretory form, AMQ49170.1 Scophthalmus maximus (turbot) IgT secretory form,
AHC31432.1 Thunnus orientalis (Pacific bluefin tuna), AKK32388.1 Dicentrarchus labrax (European
seabass), AAW66980.1 Oncorhynchus mykiss (rainbow trout) IgT membrane form, AAW66978.1 rain-
bow trout IgT secretory form, ANS12795.1 Paralichthys olivaceus (Japanese flounder), ABF19723.1
Ctenopharyngodon idella (grass carp), AAT67444.1 Danio rerio (zebrafish) IgZ1, ACH92959.1 zebrafish
IgZ2. GenBank accession numbers for IgM heavy chain sequences are as follows: AAK69167.1 ze-
brafish IgM secretory form, ABD76396.1 grass carp IgM heavy chain, AAB27359.2 rainbow trout IgM
heavy chain, ACM24795.1 large yellow croaker IgM heavy chain, ACH87158.1 bovichtus IgM secretory
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form, AAX78211.1 juvenile grouper IgM heavy chain, AAA49774.1 Xenopus laevis (African clawed
frog) IgM heavy chain, CAC43280.1 Anas platyrhyncho (duck) IgM heavy chain, NP_001192115.1 Bos
taurus (cattle) IgM heavy chain, and AAS01770.1 Homo sapiens (human) IgM heavy chain. GenBank ac-
cession numbers for IgD heavy chain sequences are: AAW66977.1 rainbow trout IgD membrane form,
AHY86392.1 Nile tilapia IgD membrane form, BAD34541.1 Takifugu rubripes (fugu) IgD, AFI33218.1
juvenile grouper IgD heavy chain, ADD59896.1 IgD heavy chain constant region.

Figure 3. Phylogenetic tree of each constant domain of fish IgT heavy chains. A polygenetic tree
was constructed to show the genetic relationship of each constant domain of IgT heavy chains from
large yellow croakers and other fish species. The tree was constructed by MEGA software using the
Neighbor Joining (NJ) method, and the numbers on nodes represent the frequency with which this
node is recovered per 100 bootstrap replications in a total of 1000. The single constant domain of
large yellow croaker IgT was marked with a solid red triangle.
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Figure 4. Tissue expression profile of LcIgT. The expression levels of the LcIgT gene in eleven tissues
of healthy large yellow croaker (liver, heart, head kidney, gills, brain, spleen, stomach, intestine, skin,
muscle, and blood) were detected by real time-PCR. Total RNA from various tissues of five fish was
isolated and then transcribed into the first cDNA. Error bars represent the mean ± standard error of
the mean (mean ± SEM).

Figure 5. Expression modulation of LcIgT in large yellow croakers infected by C. irritans. Expression
change of LcIgT mRNA upon C. irritans infection was analyzed by real-time PCR. Four tissues, spleen (A),
head kidney (B), gills (C), and skin (D), were collected from five C. irritans-infected fish or non-infected
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fish and used for total RNA extraction. The relative expression levels of LcIgT expressed as fold
changes by comparing the normalized gene expression levels of C. irritans-infected fish with those of
non-infected fish at the same time point. Error bars represent the mean ±SEM. Statistically significant
differences are indicated with asterisks where * p < 0.05, ** p < 0.01.

3.5. Expression Change at Protein Levels of LcIgT after C. irritans Infection

Finally, we investigated the expression change at the protein levels of LcIgT after
C. irritans infection. The protein expression of LcIgT was significantly increased in gills,
skin, and spleen upon C. irritans infection. The results of gray values analysis showed that
the protein levels of LcIgT in the C. irritans-infected group were commonly higher than
those in the control group, with a 3.43-fold increase in the skin at 7 d, 3.72-fold increase in
the spleen at 14 d, and 6.33-fold in gills at 28 d (Figure 6).

Figure 6. Western blotting analysis of LcIgT expression in large yellow croaker infected by C. irritans.
Western blotting analyzed the expression of LcIgT protein upon C. irritans infection. (a) Three tissues,
spleen (A), gills (B), and skin (C), were collected from five C. irritans-infected fish or non-infected fish
at 4 d, 7 d, 14 d, 21 d, and 28 d post-infection. CG: control group; IG: infection group. (b) The fold
change values of spleen, gills, and skin, marked with (I), (II), and (III), respectively, were calculated
by normalizing to the control group. Statistically significant differences are indicated with asterisks
where * p < 0.05 and ** p < 0.01.

4. Discussion

The present study characterized a secretory IgT heavy chain (LcIgT) in large yellow
croaker. The deduced LcIgT has the conserved Ig structural characteristics, including
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a VH and three CH domains (CH1, CH2, and CH4), lacking the CH3 domain (Figure 2).
IgT heavy chain in most known teleosts possesses four CH domains, but stickleback and
emerald rock cod IgT heavy chains contain CH1, CH3, and CH4 domains (with a lack of
CH2 domain) [21,22], and fugu IgT heavy chain contain only two CH domains, CH1 and
CH4 [11]. These data indicated that the CH domains of IgT heavy chain might vary in CH
number and arrangement among different teleosts. The cysteine and tryptophan residues,
likely to contribute to the formation of disulfide bonds and the maintenance of the spatial
structure of immunoglobulin [13,14], are well conserved in LcIgT (Figure 2; Cys170, Trp184,
Trp219, Cys227, Cys264, Trp241, Trp313, Cys321, Cys478, Trp492, Trp521, and Cys528). The third
conserved cysteine residue, involved in forming an interchain disulfide bond, and the two
cysteine residues in each CH domain, indispensable for intrachain disulfide bridge in the
tertiary structure of IgT [14], are also conserved in large yellow croaker. The neighbor-
joining phylogeny revealed that LcIgT formed a well-supported clade with IgT molecules
from other fish species. Single domain comparison showed that each CH domain of LcIgT
shared a high amino acid identity with the corresponding domain of IgT in other species,
with the highest identity with those of Oreochromis niloticus IgT. This further supported that
the equivalent evolution extent may occur in each CH domain in teleosts.

Expression analyses showed that LcIgT was constitutively expressed in all tissues
tested, with the highest levels in gills (Figure 5), which was consistent with the results
observed in trout [30], flounder [13], European seabass [15], blunt snout bream [42], and
emerald rock cod [43]. In addition, IgT was also highly expressed in the main mucosal
tissues such as skin and intestine in large yellow croaker and other teleosts [13,14]. Thus,
IgT plays a role in the mucosal immunity of fish. After bacterial infection, the flounder
and turbot IgT expressions were up-regulated in several tissues, especially in gills and
skin [13,14]. In trout, the IgT mRNA was significantly increased in gills, skin, nasopharynx,
and gut after infection with Ichthyophthirius multifiliis or Ceratomyxa shasta [28,30,44]. Be-
sides, significant increases of IgT-specific titers and IgT+ B-cells were detected in the gill,
skin, and nasal mucus of I. multifiliis-infected trout [45]. In our study, the expression levels
of both LcIgT mRNA and protein were found to be up-regulated in gills, skin, and spleen
after C. irritans infection (Figure 6), suggesting that LcIgT may be involved in the systemic
immunity and mucosal immunity against parasitic infection. In the previous study, LcIgT
protein was expressed at the highest levels in the skin [41]. This may be the reason that
the fold change of LcIgT protein in the skin (3.43-fold increase) was not very remarkable
after C. irritans infection. All these data indicated that IgT plays a vital role in the immune
defense against pathogenic infections in fish.

5. Conclusions

In conclusion, we cloned and characterized a secretory IgT heavy chain (LcIgT) from
large yellow croaker. LcIgT was constitutively expressed in all tissues tested, with the
highest levels in mucosa-associated tissues such as gills and skin. After C. irritans infection,
both mRNA and protein levels of LcIgT were significantly up-regulated in systemic and
mucosal immune tissues, suggesting that LcIgT may play a role in the systemic immunity
and mucosal immunity against parasitic infection. However, further investigations are
required to clarify the exact roles in immunity against parasitic infections of IgT in large
yellow croakers.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/fishes7010029/s1, Figure S1: Nucleotide and deduced amino
acid sequences of LcIgT gene (GenBank accession number: MW450786.1), Table S1: Primers and their
sequences used in this study.
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