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Abstract: Most mango farms classify the maturity stage manually by trained workers using external
indicators such as size, shape, and skin color, which can lead to human error or inconsistencies.
We developed four common machine learning (ML) classifiers, the k-mean, naïve Bayes, support
vector machine, and feed-forward artificial neural network (FANN), all of which were aimed at
classifying the ripeness stage of mangoes at harvest. The ML classifiers were trained on biochemical
data and then tested on physical and electrical data.The performance of the ML models was compared
using fourfold cross validation. The FANN classifier performed the best, with a mean accuracy of
89.6% for unripe, ripe, and overripe classes, when compared to the other classifiers.

Keywords: mango; machine learning; ripeness; classification; k-means; support vector machine;
artificial neural networks

1. Introduction

The classification of mango fruit according to ripeness stage is important for successful
marketing because variability in ripeness affects eating quality as well as postharvest shelf
life and selling strategies [1–3]. Ripe mangoes have a pleasant flavor and aroma. However,
they allow the development of numerous diseases [4]. Overripe mango fruit has lower or
even no retail value, resulting in severe profit loss and resource waste. During ripening,
the mango fruit undergoes several changes, including the conversion of starch to sugars,
an increase in pH, the degradation of the cell wall, the biosynthesis of carotenoids, and the
formation of fragrances [5–7]. In theory, any of these changes can be used as an indicator
of fruit ripening. However, climate, horticultural practices, and cultivars all influence
the indicator for fruit ripeness, resulting in variations in the indicator [8,9]. Some mango
cultivars, such as the “Nam Dok Mai Si Tong” cultivar, lack an obvious indicator, making
classification difficult.

The mango cultivar “Nam Dok Mai Si Tong” is grown widely in Thailand and is
popular for consumption and is exported to Japan, Korea, Vietnam, China, and Malaysia.
This cultivar has a golden yellow skin, like that of a ripe mango, even when it is still on
the plant, and the flesh is fragrant, sweet, aromatic, and juicy with no fibrous tissue when
ripe [10]. Most “Nam Dok Mai Si Tong” mango farms manually classify the ripeness stage
using external indicators such as size, shape, and skin color as assessed by trained, experi-
enced individuals. This may lead to inaccuracies or inconsistencies [11,12]. Studies have
shown that the external indicators of mango fruit are often unreliable [13,14]. Although fruit
internal indicators, such as total soluble solids (TSS) and titratable acidity (TA), are more
accurate classifications than measurements of the external characteristics, measurements of
these parameters are time-consuming and require the destruction of the fruit sample [15].

In recent decades, several technologies used for nondestructive assessment of the inter-
nal quality features of fruit have been developed and evaluated. These technologies include
NIR spectroscopy, magnetic resonance imaging (MRI), hyperspectral imaging (HSI), and
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acoustic sensors [12,14,16–18]. However, there are some limitations to these technologies.
MRI technologies are integrated with expensive equipment. HSI requires high-performance
computing systems because of the vast amount of data used for image processing tasks.
With acoustic techniques, it is hard to match the impedance between the sensors and the
fruit sample. Compared to other technologies, handheld and portable NIR spectrometers
are the most advanced in many aspects, such as miniaturization, software enhancement,
and expanding the operating wavelengths into the visible range. A commercial Vis/NIR
spectrometer with wavelengths ranging from 310 nm to 1100 nm was recently used to assess
the soluble solid concentration, dry matter, and flesh firmness in stone fruits at harvest [19].
In general, NIR spectral data are analyzed and correlated with fruit traits using multiple
linear regression (MLR) and partial least squares regression (PLS). To predict the mango
maturity index, the PLS model obtained from portable NIR spectroscopy at wavelengths
ranging from 1200 to 2200 nm was found superior to the MLR model [20]. Updates to NIR
spectrometers and the machine learning models used for maturity prediction of various
fruits have recently been reviewed [17].

Recently, there has been an interest in utilizing machine learning (ML) methods to
construct models for predicting mango ripeness [21–23]. The ML techniques are classified
into two types: unsupervised and supervised. Unsupervised ML is typically used for data
visualization and clustering within the input data, whereas supervised ML is typically
used for predicting a known output from a set of inputs. The k-means algorithm is an
unsupervised learning approach for clustering and visualizing nonlinear relationships
of data without requiring explicit knowledge of the underlying correlations between the
variables [24]. Various supervised ML classifiers often used for autonomous decision
making include support vector machines (SVM) [25,26], random forests (RF) [27], k-nearest
neighbors (KNN) [28], and artificial neural networks [28], each of which has varied levels
of model complexity.

The accuracy of supervised ML classifiers is affected by unbalanced amounts of
labeled data for learning, because a lack of data for minority classes may produce biased
learning classification in ML classifiers. The class imbalance is typical of many real-world
data classifications [29–31]. Several methods have been developed to overcome these
negative effects, including the synthetic minority oversampling technique (SMOTE) [32].
The SMOTE approach creates artificial minority samples by interpolating between existing
minority samples and their closest minority neighbors. To improve the SMOTE method,
the technique employs the Tomek links [33] method to remove noisy data.

The changes in skin color of ripe mangoes were used as the input to SVM, KNN,
Gaussian naïve Bayes (GNB), and back-propagation neural network classifiers to clas-
sify mangoes according to their ripening stages with a mean accuracy of greater than
80% [34–38]. The changes in skin color of the cultivar used in their experiments were easily
noticed by human eyes.

This study presents an approach to assess the ripeness stage of “Nam Dok Mai Si Tong”
mango with unsupervised and supervised ML techniques. The skin color of this cultivar
is yellow in all ripeness stages (unripe, ripe, and overripe stages). The objective of this
study was to develop models for predicting the ripeness stage of mangoes at harvest based
on chemical as well as physical (weight, skin color) and electrical (capacitance, voltage)
qualities. We used well-known machine learning classifiers to predict the maturity and
ripeness of fruits.

2. Materials and Methods
2.1. Mango Samples

Mangoes of the variety “Nam Dok Mai Si Tong”, at a commercial orchard in Nakorn
Ratchasima province, Thailand, were tagged in November 2018, when they were approxi-
mately 5 mm in diameter. The commercial maturation stage for “Nam Dok Mai Si Tong”
for export has been determined to be 85–95 days after fruit set (DAFS) [10]. From January
to February 2019, the mangoes were harvested four times, at 80, 90, 100, and 110 DAFS.
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Mango samples were brought to a laboratory at Kasetsart University in Bangkok on the
same day they were harvested. At each harvesting, we divided mango samples into two
groups: one that contained twenty-five samples for evaluation of biochemical, physical,
and electrical properties; and one that contained five samples for measurement of only
physical and electrical qualities. The mango samples in both groups were measured on
days 1, 3, 5, 7, and 9 after harvest. The biochemical examination of mango samples in one
group was not carried out so that the same mangoes were tested for 9 days. A total of
120 mango fruits were used in this research.

2.2. Measurement of Properties of Mango
2.2.1. Physical Properties

The mangoes were weighed individually with an electronic balance (DH-2000, Dongguan,
Guangdong, China) accurate to 0.01 g.

The CIELab color space has been proven to be better related to maturity in several
fruit crops than other color spaces [39,40]. The a* value corresponds to the degree of red
or green color; the –a* value is green, and the a* value is red. Specifically, a* and hue
angle are two good indicators of fruit maturity in peach [41], nectarine [42], and most fruits
that turn from green to red. CIELab color parameters can be derived from RGB by image
processing. The skin colors at the top (near stem), center, and bottom of each fruit on both
sides of the mangoes were measured in RGB color space using ColorMax sensors (EMX
Industries, CM1000-7-25, Johnston Parkway Cleveland, OH, USA), and the average of RGB
color values was calculated.

2.2.2. Biochemical Properties

For biochemical measurements, we selected 5 of 25 mango fruits on day 1 and 5 of
20 mango fruits on day 3 (from those that were left from the previous two days). The process
was repeated, and all mangoes were completely measured on day 9.Total soluble solids
(TSS) and titratable acidity (TA) were determined from the extracted mango juice using
a digital refractometer (ATAGO, PAL-1, Shiba-koen, Minato-ku, Japan) and a pHmeter
(HANNA, HI98127, Woonsocket, RI, USA). The extracted mango juice was manually
titrated to pH 8.1 with 0.1 mol/L NaOH for TA.

2.2.3. Electrical Properties

The capacitance of each mango and the voltage across the plates of the parallel-plate
capacitor sensor were measured using methods as described in previous works [43–45]
with a handheld LCR Meter (Keysight, U1733C, Santa Rosa, CA, USA) set to a frequency
of 100 kHz (Figure 1). The parallel-plate capacitor sensor was constructed to measure the
capacitance of mangoes. It had two rectangular copper plates, each approximately 0.15 m
long, 0.1 m wide, and 0.005 m thick, mounted on the linear guide rails to adjust the spacing
between the plates.
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2.3. Data

The data measured from mango attributes included 10 variables: weight, red color,
green color, blue color, TSS, TA, TSS–TA ratio, capacitance, voltage, and the ratio of capac-
itance and weight. The biochemical data were used for the k-means method. Since the
results of the k-means method revealed class imbalances, the SMOTETomek was applied
to generate synthetic data for balancing and cleaning the data of classes. The balanced
classes of ripeness stages and physical and electrical data were utilized to train the GNB,
SVM, and FANN classifiers; the balanced classes of ripeness stages were employed as the
target variables. The data from 100 mango fruits were input to the GNB, SVM, and FANN
algorithms for training and for fourfold cross validation. After comparing the performance
of GNB, SVM, and FANN algorithms, the best performing ML model was selected and
further tested with the data from 20 mangoes.

2.4. Machine Learning Methods
2.4.1. k-Means

k-means is an unsupervised learning algorithm for clustering data objects based on
their similarity. The k-means algorithm starts by choosing a number of clusters. Each cluster
is identified with its centroid, which is the average of all data points in the cluster. Each
data object is then assigned to its nearest centroid while minimizing the distance between
objects. The centroid of each cluster is then recomputed. The distance between clusters is
calculated, aiming at a minimum total sum of square errors. This procedure is repeated
until no data points change the centroids.

2.4.2. Gaussian Naïve Bayes (GNB)

GNB is a probabilistic classifier that employs Bayes’ theorem for computing the
conditional probability of the class that the attribute values belong to. The GNB classifier
assumes independence, and the Gaussian distribution of attributes. The GNB algorithm
starts by calculating the prior probability for given class labels. The likelihood probability
for each attribute is then computed for each class. The posterior probability is calculated
by inserting the prior and likelihood probability values into the Bayes formula. Finally,
the input attribute is determined to the class with the greater probability. To avoid zero
probability, we used Laplace’s rule with a smoothing parameter of 0.01.

2.4.3. Support Vector Machine (SVM)

SVM is a binary classifier that finds linear hyperplanes that maximize class separa-
tion [46]. SVM simulates decision boundaries between classes by mapping the data to a
higher-dimensional space to find a separable hyperplane between classes. Because SVM is
a binary classifier, several classifiers must be built and aggregated to be used for multiclass
classifications. We employed the LIBSVM library [47] in Python. The polynomial kernel
was used with the hyperparameters given in Table 1.

Table 1. Hyperparameters for support vector machines.

Hyper-Parameter

Original Oversampling

Number of Clusters Number of Clusters

2 3 2 3

C 1.26 1.54 2.96 1.32
coef0 0 0 0.5 0.1

gamma 0.1 0.1 1 1
d 3 3 3 3

2.4.4. Feed-Forward Artificial Neural Network (FANN)

The final classification technique studied in this paper was the feed-forward artificial
neural network (FANN). We implemented the FANN algorithms in Python script using



AgriEngineering 2022, 4 36

the Keras package [48]. The architecture of our FANN model was one input layer, two
hidden layers, and one output layer (Figure 2). The input layer had 7 variables, which were
the same as those used in the GNB and SVM analysis. The first and the second hidden
layers had 64 and 128 neurons, respectively. In the activation layers, the rectified linear unit
(ReLU) activation function was utilized. The output layer had either two or three outputs,
according to stages obtained from the k-means technique. The FANN model was trained
using a back-propagation algorithm with the hyperparameters given in Table 2.
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Table 2. Hyperparameters for the feed-forward artificial neural network.

Hyperparameter
Number of Clusters

2 3

Number of hidden layers 2 2
Epoch 600 600

Learning Rate 0.01 0.01
Hidden layer 1 64 64

Dropout 1 0.1 0.1
Activation function 1 relu relu

Hidden layer 2 128 128
Activation function 2 relu relu

Output Layer 2 3

2.5. Summary of Overall Procedure

According to published literature, taste and skin color are key parameters that influ-
ence consumer acceptability and preference [49]. The total soluble solids (TSS) and titratable
acidity (TA) of “Nam Dok Mai Si Tong” mangoes are strongly correlated with the ripeness
stage at harvest of mangoes [10,50]. This mango has an inherent skin color that attracts
consumers. As a result, we decided to classify mangoes into groups using biochemical
properties (namely, TSS and TA) and to employ machine learning techniques to transform
the correlation between the physical and electrical properties and the biochemical proper-
ties into a predictive model. The procedures for predicting the ripeness stage of mangoes
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are shown in Figure 3. The process began by separating mangoes into two groups: one for
measuring physical, electrical, and biochemical properties of mangoes and one for measur-
ing only physical and electrical properties. The k-means unsupervised learning algorithm
was chosen to visualize the data distributions of the biochemical data of mangoes (TSS and
TA) and to find outliers.The biochemical data were fed into the k-means algorithm, which
was used to label stages for each mango. Fortunately, the k-means algorithm reported no
outliers in our biochemical data. However, it disclosed a class imbalance in the number of
mango samples, which is common in practice data classifications. Thus, the SMOTETomek
technique was used for data oversampling. Three supervised ML techniques, namely GNB,
SVM, and FANN, have already been used in literature for classification of the ripeness stage
in several fruit crops. We wanted to find the most suitable ML algorithm for predicting
the ripeness stage of mangoes. For this reason, we compared the performances of the
GNB, SVM, and FANN classifiers using fourfold cross validation on both the unbalanced
and balanced datasets of classes by considering the percent of corrected predictions. The
results showed that the FANN classifier outperformed the others. We employed datasets
of biochemical, physical, and electrical variables (100 data) from 100 mangoes to test the
GNB, SVM, and FANN, while datasets of physical and electrical variables (100 data) from
20 mangoes were used as external datasets to validate the FANN model. The ML algorithms
were implemented in Python using the scikit-learn and Keras packages.
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2.6. The Optimal Number of Clusters

The elbow and silhouette methods were employed to evaluate the optimal number of
clusters of ripeness stage of mango fruits [51].

2.6.1. Elbow Method

The elbow method calculates the total of squared errors of data points in a cluster
and the centroids of clusters, which is known as the distortion score. The number of
squared errors decreases, indicating an improvement in clustering quality. When the total
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of squared errors is plotted against the number of clusters, the optimal number of clusters
is revealed as a significant change in slope, which is known as an elbow.

2.6.2. Silhouette Method

The silhouette method determines the proper number of clusters in a dataset by
measuring cluster separation distance. The silhouette coefficient (SC) lies between −1
and 1, with negative and positive values indicating that the samples are in the wrong and
correct cluster, respectively. Higher SC values indicate better quality of clustering.

2.7. Evaluation of Classifier Performance

The performance of ML classifiers was evaluated using k-fold cross validation. The
process starts by choosing a number, k, and partitioning the data into k subsets: k-folds.
Next, the data of one of k − 1 folds israndomly chosen for training, while that of another
is used to test the classifier. The error rate of the test is then computed. This process was
repeated with a different randomly selected training and testing dataset. In this study, the
process was repeated 4 times, and an average error rate was computed for these 4 runs, i.e.,
fourfold cross validation was performed. The accuracy of the ML classifier was computed
as the ratio between the sum of the true results and the sum of the true and false results,
while the precision was calculated as the ratio of true outcomes to the sum of true and
false outcomes.

3. Results

The images of the example mangoes at 80 days old are shown in Figure 4. Notice that
the skin color of these mangoes was similar from day 1 to day 9 after harvest. Therefore,
the color attributes used in this study (RGB) were not good indicators for classifying
ripeness. We used the pandas library in Python to calculate the data collected as described
in the Section 2. Table 3 shows the average and standard deviation for the original data
of the titratable acidity (TA), total soluble solids (TSS), TSS/TA ratio, weight, voltage,
capacitance, weight/capacitance ratio, and red (R), green (G), and blue (B) skin colors of
100 mango samples.
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Table 3. The average and standard deviation for biochemical, physical, and electrical properties of
100 mango samples.

Variables Average Standard Deviation

TA (g/L) 2.7 0.9
TSS (◦Brix) 10.6 2.5
TSS/TA 5.3 5.5
Weight (g) 344.5 49.0
Voltage (mV) 646.8 18.5
Capacitance (pF) 2.22 0.20
Weight/Capacitance 154.3 14.2
R (%) 44.0 1.0
G (%) 40.9 0.8
B (%) 15.3 1.3

3.1. k-Means Clustering Results

Figure 5 shows scatter plots of biochemical data of 100 mangoes using the k-means
clustering with k = 2 clusters (Figure 5a–c) and k = 3 clusters (Figure 5d–f). The results from
the k-means algorithm showed clear boundaries between clusters, which suggested that
the k-means method using TSS, TA, and TSS/TA was adequate to separate the ripening
stages of mangoes. For two-ripenessclass clustering, the distribution of data in the unripe
cluster was denser than that in the ripe cluster. The numbers of mangoes in the unripe and
ripe stages were 81 and 19, respectively (Table 4). For three-ripeness class clustering, the
distribution of data in the unripe cluster was denser than those in the ripe and overripe
clusters. The numbers of mangoes in the unripe, ripe, and overripe stages were 60, 30, and
10, respectively (Table 4). There was some overlap between mango samples within their
own clusters. This indicated the similarity of the TSS and TA of mangoes. A negative rela-
tion between TSS and TA during the ripening of mangoes was shown, which is consistent
with previous studies [50,52]. Mangoes in the overripe cluster showed the highest TSS,
indicating more ripeness, and were sweeter than mangoes in the unripe and ripe stages.

Table 4. Comparison of the original data and oversampling data for training ML classifiers.

Model
Number of

Clusters

Imbalance Class Oversampling Data

(Original Data) (SMOTETomek Data)

Unripe Ripe Overripe Unripe Ripe Overripe

GNB
2 81 19 None 79 79 noneSVM

FANN
GNB

3 60 30 10 58 57 59SVM
FANN

3.2. The Optimal Number of Clusters
3.2.1. Elbow Method

Figure 6 shows the elbow results versus the number of clusters for the same biochemi-
cal data. The elbow method indicated that the optimal number of clusters was three.
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3.2.2. Silhouette Method

Figure 7 depicts a plot of the SC value versus the number of clusters for biochemical
data of 100 mangoes. The silhouette method showed that the optimal number of clusters
was two.
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Figure 7. The optimal numbers of clusters calculated with the silhouette method for the same data as
used in Figure 6.

Unfortunately, the results from the silhouette and elbow methods were inconsistent.
Even though two clusters was previously thought to match the natural number of ripeness
stages, we investigated the performance of three supervised machinelearning classifiers in
predicting mango ripeness stages for two and three classes.

3.3. Results of Oversampling Data

Results from the k-means clustering described in Section 2.5 showed an unequal
number of mango samples for both two and three ripeness classes. For two ripeness classi-
fications, the unripe class was the majority mango class, and the ripe class was the minority
class. For three ripeness classifications, the unripe class was the majority mango class, and
the overripe class was the minority class. We employed the SMOTETomek oversampling
algorithm to generate additional training samples to balance the data distribution in mi-
nority classes. Table 4 displays the number of mango samples prior to and following the
SMOTETomek technique. The numbers of mangoes in the unripe and ripe classes after
oversampling data were 79 and 79, respectively. The numbers of mangoes in the unripe,
ripe, and overripe classes after oversampling data were 58, 57, and 59, respectively. The
distribution of the amount of data after oversampling with the SMOTETomek algorithm is
depicted in Figure 8.
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Table 5 displays that the averages and standard deviations of the oversampling data of
10 variables, the same as those given in Table 4, from 100 mango samples, were not much
different from the statistics regarding the original data. Regarding the two classes (ripe
and unripe) and three classes (ripe, unripe, and overripe), Table 6 shows that no significant
difference was found between the averages and standard deviations of the original data
and oversampling data for the 10 variables listed in Table 4 from 100 mango samples.

Table 5. The average and standard deviation of the oversampling data of 10 variables, the same as
those given in Table 4, from 100 mango samples.

Variables
2-Class SMOTETomek Data 3-Class SMOTETomek Data

Average Standard Deviation Average Standard Deviation

TA (g/L) 2.2 1.0 2.1 1.0
TSS (◦Brix) 12.1 2.8 12.2 2.9

TSS/TA 8.0 7.2 8.9 7.9
Weight (g) 353.5 45.6 351.1 44.9

Voltage (mV) 650.3 18.4 649.6 17.5
Capacitance (pF) 2.26 0.20 2.26 0.19

Weight/Capacitance 156.1 13.7 155.4 13.6
R (%) 44.2 1.0 44.3 1.1
G (%) 40.8 0.7 40.8 0.6
B (%) 15.1 1.2 14.9 1.2

Table 6. The average and standard deviation of the original data and over sampling data of 10
variables, as in Table 4, from 100 mango samples.

Variables

Imbalance Class Oversampling Data

(Original Data) (SMOTETomek Data)

2 Classes 3 Classes 2 Classes 3 Classes

Unripe Ripe Unripe Ripe Overripe Unripe Ripe Unripe Ripe Overripe

TA (g/L) 3.0 (0.7) 1.4 (0.5) 3.3 (0.6) 2.3 (0.5) 0.9 (0.3) 3.1 (0.7) 1.4 (0.5) 3.3 (0.6) 2.2 (0.4) 0.9 (0.3)
TSS (◦Brix) 9.6 (1.7) 14.4 (1.5) 9.1 (1.5) 11.9 (1.5) 15.3 (1.3) 9.7 (1.7) 14.5 (1.2) 9.1 (1.5) 11.9 (1.3) 15.4 (1.1)

TSS/TA 3.4 (1.1) 13.3 (8.3) 2.9 (0.6) 5.5 (1.5) 18.6 (9.2) 3.3 (1.1) 12.7 (7.6) 2.9 (0.6) 5.5 (1.2) 18.0 (7.1)
Weight (g) 338.6 (48.5) 369.3 (43.7) 334.5 (48.2) 357.3 (45.6) 366 (52.1) 337.1 (48.1) 369.8 (36.6) 334.9 (48.2) 359.0 (40.0) 359.4 (42.2)

Voltage (mV) 644.1 (17.4) 658.1 (19.4) 640.6 (14.9) 656.9 (19.0) 653.6 (23.3) 643.1 (16.4) 657.6 (17.5) 640.3 (14.4) 657.5 (16.0) 651.1 (17.7)
Capacitance

(pF) 2.20 (0.19) 2.34 (0.21) 2.17 (0.17) 2.33 (0.20) 2.29 (0.24) 2.19 (0.18) 2.33 (0.19) 2.17 (0.17) 2.35 (0.17) 2.26 (0.19)

Weight/
Capacitance 153.3 (14.1) 158.3 (14.3) 153.9 (15.0) 153.0 (11.6) 160.2 (16.1) 153.3 (14.2) 158.8 (12.6) 154.3 (15.1) 152.9 (10.6) 159.0 (14.0)

R (%) 43.7 (0.9) 44.7 (1.1) 43.7 (0.9) 44.0 (0.9) 45.4 (0.8) 43.8 (0.9) 44.7 (0.9) 43.6 (0.9) 44.0 (0.7) 45.4 (0.7)
G (%) 41.0 (0.9) 40.5 (0.3) 41.1 (0.9) 40.5 (0.5) 40.7 (0.3) 41.0 (0.9) 40.5 (0.3) 41.1 (0.9) 40.5 (0.4) 40.7 (0.2)
B (%) 15.4 (1.3) 14.8 (1.2) 15.4 (1.2) 15.6 (1.3) 13.9 (0.8) 15.4 (1.3) 14.8 (1.1) 15.4 (1.2) 15.6 (1.0) 13.9 (0.6)

The values are the averages, with their standard deviations in the brackets.

3.4. Comparison of Machine Learning Models

We classified mango ripeness using GNB, SVM, and FANN classifiers. The data for
training the ML classifiers were mango weight, skin color, capacitance, and voltage across
parallel-plate sensors. The performance of the classifier models was evaluated using
fourfold cross validation. Table 7 shows the results of the ML models for two-class classifi-
cation without any data sampling. The GNB, and SVM, and FANN models had average
accuracies of 73.0%, 75.0%, and 85.0%, respectively. Table 8 manifests the results of the
ML models for three-class classification using original data. For three-class classification,
the average accuracies of the GNB, SVM, and FANN classifiers were 57.0%, 55.0%, and
79.0%, respectively.
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Table 7. Performance of three ML models for two-class classification using original data.

4-Fold CrossValidation for Two Classes

Model Class Precision Avg Precision Std Accuracy Avg Accuracy Std

GNB
Unripe 0.837 0.116

0.730 0.210Ripe 0.400 0.339

SVM
Unripe 0.811 0.078

0.750 0.183Ripe 0.375 0.479

FANN
Unripe 0.917 0.167

0.850 0.300Ripe 0.750 0.500

Table 8. Performance of three ML models for three-class classification using original data.

4-Fold CrossValidation for Three Classes

Model Class Precision Avg Precision Std Accuracy Avg Accuracy Std

GNB
Unripe 0.646 0.154

0.570 0.165Ripe 0.329 0.273
Overripe 0.625 0.479

SVM
Unripe 0.617 0.049

0.550 0.060Ripe 0.308 0.217
Overripe 0.208 0.250

FANN
Unripe 0.913 0.136

0.790 0.266Ripe 0.714 0.323
Overripe 0.771 0.315

The performance data of the three ML models with balanced data that were generated
through the SMOTETomek algorithm for two-class and three-class classifications are shown
in Tables 9 and 10, respectively.

Table 9. Performance of three ML models for two-class classification using oversampling data.

4-Fold CrossValidation for Two Classes (Oversampling)

Model Class Precision Avg Precision Std Accuracy Avg Accuracy Std

GNB
Unripe 0.877 0.055

0.810 0.035Ripe 0.780 0.087

SVM
Unripe 0.940 0.046

0.911 0.068Ripe 0.910 0.122

FANN
Unripe 0.979 0.042

0.936 0.112Ripe 0.914 0.142

Table 10. Performance of three ML models for three-class classification using oversampling data.

4-Fold CrossValidation for Three Classes (Oversampling)

Model Class Precision Avg Precision Std Accuracy Avg Accuracy Std

GNB
Unripe 0.852 0.171

0.666 0.061Ripe 0.562 0.085
Overripe 0.782 0.141

SVM
Unripe 0.848 0.137

0.845 0.044Ripe 0.797 0.089
Overripe 0.934 0.054

FANN
Unripe 0.852 0.103

0.896 0.102Ripe 0.865 0.180
Overripe 0.984 0.031

In the comparison between the results from Tables 7 and 9, and also between the results
from Tables 8 and 10, we found that the machine learning models with oversampling data
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performed significantly better than those without it. Specifically, the performance of
the FANN classifier was improved by approximately 8.3% and 10.6% for two-class and
three-class classification, respectively, using the SMOTETomek algorithm. According to the
findings, the FANN classifier performed better than the GNB and SVM classifiers. We noted
that classification accuracy and precision were sufficient for supervised ML classifiers in
the categorization classification of mango ripeness into both two and three stages.

3.5. Model Validation and Discussion

In Section 3.4, we performed fourfold cross validation of the GNB, SVM, and FANN
models and compared their accuracies. The results dictated that the FANN model outper-
formed the others (Tables 7–10).

To make certain that our FANN model was an effective model for ripeness stage
classifying, we used the external unseen physical and electrical data from 20 mangoes for
further validation. The results are shown in Table 11. “Nam Dok Mai Si Tong” mangoes
are generally picked for export on days 85–95 after fruit set. In this work, mangoes were
harvested at 80, 90, 100, and 110 days after fruit set (DAFS).

Table 11. Results of the performance of the FANN model after 4-fold cross validation in ripeness
classification were tested on the external unseen 20 mangoes for 4 different sets: 80, 90, 100, and
110 days after fruit set. Each set of mangoescontained five mangoes, which were labeled as 1, 2, 3, 4,
and 5.

DAFS Day after Harvest Unripe Ripe Overripe

80

1 1, 2, 3, 4, 5
3 1, 2, 3, 4, 5
5 1, 2, 3, 4, 5
7 2, 3, 4, 5 1
9 2, 3, 4, 5 1

90

1 2, 3, 4 1, 5
3 1, 2, 3, 4, 5
5 1, 2, 3, 4, 5
7 1, 2, 3, 4, 5
9 4 1, 3 2, 5

100

1 1, 4 2, 3, 5
3 1, 4 2, 3, 5
5 1, 4 2, 3, 5
7 1, 4 2, 3, 5
9 1, 4 2, 5 3

110

1 1, 2, 3, 4, 5
3 1, 2, 3, 4, 5
5 1, 2, 3, 4, 5
7 3, 4, 5 1, 2
9 1, 2, 3, 4, 5

On day 1 following harvest, the FANN model identified mangoes that were 80 DAFS
as unripe mangoes and those that were 100 and 110 DAFS as ripe mangoes. These results
were as we expected. The 80 DAFS mangoes labeled 1 were predicted by the FANN model
as overripe on day 7 after harvest.

The 90 DAFS mangoes labeled 1 and 5 were predicted as ripe on day 1 after harvest;
however, they were predicted as unripe from days 2 to 7 after harvest. We thought that
these two samples had a total soluble solid (TSS) overlap between unripe and ripe levels.
This is naturally possible because there is no clear-cut boundary between unripe and ripe
mangoes using biochemical properties as indicators. The 90 DAFS mangoes were indicated
by the FANN model as ripe and overripe on day 9 after harvest.

Most of the mangoes at 100 DAFS and 110 DAFS were predicted to be in the ripening
stage, as expected, since they were harvested after the commercial export practice. The
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100 DAF mangoes labeled 1 and 4 could have been incorrectly predicted by the machine
learning model, since they were forecasted as unripe from day 1 to day 9 after harvest. The
FANN model wrongly predicted the 110 DAFS mangoes labeled 3, 4, and 5 on day 7 after
picking, because these mangoes should have been classified into either the ripe or overripe
stage. The predicted ripeness stage of each batch of mangoes altered from day 1 to day 9
after harvest, as expected.

4. Conclusions

The goal of this study was to develop machine learning models for predicting the
ripeness stage of mangoes at harvest. The procedures for the development of machine
learning classifiers were described. The k-means algorithm was able to distinguish mango
ripening stages either into unripe and ripe or into unripe, ripe, and overripe using biochem-
ical properties. We demonstrated that oversampling data with the SMOTETomek algorithm
improved both the average precision and accuracy of prediction of machine learning classi-
fiers compared to using only the data without oversampling. The feed-forward artificial
neural network was able to classify the data with a significantly higher accuracy than
the Gaussian naïve Bayes and support vector machine algorithms. The Gaussian naïve
Bayes classifier was the worst classifier among the three used. The findings led to the
conclusion that the combination of supervised and unsupervised machine learning tech-
niques presented in this work was successful in classifying the ripeness stage of mangoes,
which is important for the fruit industry. The original measurement data in this research is
publicly available [53]. Further research may involve more samples and cultivars to test
the reliability of our approach.

Author Contributions: Conceptualization, D.W. and S.C.; investigation, P.S.; software, D.W.; analysis,
D.W., P.S. and S.C.; writing—original draft preparation, review and editing, S.C. All authors have
read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The original measurement data supporting the reported results are
available at http://doi.org/10.34740/kaggle/dsv/2998552 (accessed on 20 December 2021).

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Kader, A.A. Fruit maturity, ripening, and quality relationships. Acta Hortic. 1999, 485, 203–208. [CrossRef]
2. Reid, M.S. Maturation and maturity indices. In Postharvest Technology of Horticultural Crops; Kader, A.A., Ed.; University of

California: Oakland, CA, USA, 2002; pp. 55–62.
3. Brecht, J.K.; Yahia, E.M. Postharvest physiology. In The Mango: Botany, Production and Uses; Litz, R.E., Ed.; CABI: Wallingford, UK,

2009; pp. 484–528.
4. Ploetz, R.C. The major diseases of mango: Strategies and potential for sustainable management. Acta Hortic. 2004, 645, 137–150.

[CrossRef]
5. Lizada, C. Mango. In Biochemistry of Fruit Ripening; Seymour, G.B., Taylor, J.E., Tucker, G.A., Eds.; Springer: Dordrecht, The

Netherlands, 1993; pp. 255–271.
6. Evans, E.A.; Ballen, F.H.; Siddiq, M. Mango production, global trade, consumption trends, and postharvest processing and

nutrition. In Handbook of Mango Fruit; John Wiley & Sons, Ltd.: Chichester, UK, 2017; pp. 1–16.
7. Wanitchang, P.; Terdwongworakul, A.; Wanitchang, J.; Nakawajana, N. Non-destructive maturity classification of mango based

on physical, mechanical and optical properties. J. Food Eng. 2011, 105, 477–484. [CrossRef]
8. Coates, L.; Johnson, G.; Dale, M. Postharvest diseases of fruit and vegetables. In Plant Pathogens and Plant Diseases; Brown, J.F.,

Ogle, H.J., Eds.; Rockvale Publications: Armidale, Australia, 1997; pp. 533–548.
9. Brecht, J.K.; Yahia, E.M. Harvesting and postharvest technology of mango. In Handbook of Mango Fruit; John Wiley & Sons, Ltd.:

Chichester, UK, 2017; pp. 105–129.
10. Penchaiya, P.; Tijskens, L.M.M.; Uthairatanakij, A.; Srilaong, V.; Tansakul, A.; Kanlayanarat, S. Modelling quality and maturity of

‘NamdokmaiSithong’ mango and their variation during storage. Postharvest Biol. Technol. 2020, 159, 111000. [CrossRef]

http://doi.org/10.34740/kaggle/dsv/2998552
http://doi.org/10.17660/ActaHortic.1999.485.27
http://doi.org/10.17660/ActaHortic.2004.645.10
http://doi.org/10.1016/j.jfoodeng.2011.03.006
http://doi.org/10.1016/j.postharvbio.2019.111000


AgriEngineering 2022, 4 46

11. Vásquez-Caicedo, A.L.; Neidhart, S.; Carle, R. Postharvest ripening behavior of nine Thai mango cultivars and their suitability for
industrial applications. Acta Hortic. 2004, 645, 617–625. [CrossRef]

12. Jha, S.N.; Narsaiah, K.; Sharma, A.D.; Singh, M.; Bansal, S.; Kumar, R. Quality parameters of mango and potential of non-
destructive techniques for their measurement—A review. J. Food Sci. Technol. 2010, 47, 1–14. [CrossRef] [PubMed]

13. Kienzle, S.; Sruamsiri, P.; Carle, R.; Sirisakulwat, S.; Spreer, W.; Neidhart, S. Harvest maturity detection for ‘Nam Dokmai #4’
mango fruit (Mangifera indica L.) in consideration of long supply chains. Postharvest Biol. Technol. 2012, 72, 64–75.

14. Slaughter, D.C. NondestructiveMaturity Assessment MethodsforMango; University of California: Oakland, CA, USA, 2009; pp. 1–18.
15. Li, B.; Lecourt, J.; Bishop, G. Advances in non-destructive early assessment of fruit ripeness towards defining optimal time of

harvest and yield prediction—A review. Plants 2018, 7, 3. [CrossRef] [PubMed]
16. Zakaria, A.; Shakaff, A.Y.M.; Masnan, M.J.; Saad, F.S.A.; Adom, A.H.; Ahmad, M.N.; Jaafar, M.N.; Abdullah, A.H.; Kamarudin,

L.M. Improved maturity and ripeness classifications of Magnifera Indica cv. Harumanis mangoes through sensor fusion of an
electronic nose and acoustic sensor. Sensors 2012, 12, 6023–6048. [CrossRef] [PubMed]

17. Shah, S.S.A.; Zeb, A.; Qureshi, W.S.; Arslan, M.; Ullah Malik, A.; Alasmary, W.; Alanazi, E. Towards fruit maturity estimation
using NIR spectroscopy. Infrared Phys. Technol. 2020, 111, 103479. [CrossRef]

18. Magwaza, L.S.; Opara, U.L. Analytical methods for determination of sugars and sweetness of horticultural products—A review.
Sci. Hortic. 2015, 184, 179–192. [CrossRef]

19. Scalisi, A.; O’Connell, M.G. Application of visible/NIR spectroscopy for the estimation of soluble solids, dry matter and flesh
firmness in stone fruits. J. Sci. Food Agric. 2020, 101, 2100–2107. [CrossRef]

20. Jha, S.N.; Narsaiah, K.; Jaiswal, P.; Bhardwaj, R.; Gupta, M.; Kumar, R.; Sharma, R. Nondestructive prediction of maturity of
mango using near infrared spectroscopy. J. Food Eng. 2014, 124, 152–157. [CrossRef]

21. Gabriëls, S.H.E.J.; Mishra, P.; Mensink, M.G.J.; Spoelstra, P.; Woltering, E.J. Non-destructive measurement of internal browning in
mangoes using visible and near-infrared spectroscopy supported by artificial neural network analysis. Postharvest Biol. Technol.
2020, 166, 111206. [CrossRef]

22. Nguyen, C.-N.; Phan, Q.-T.; Tran, N.-T.; Fukuzawa, M.; Nguyen, P.-L.; Nguyen, C.-N. Precise sweetness grading of mangoes
(Mangifera indica L.) based on random forest technique with low-cost multispectral sensors. IEEE Access 2020, 8, 212371–212382.
[CrossRef]

23. Sun, J.; Li, S.; Yao, X. A novel method for multi-feature grading of mango using machine vision. J. Comput. 2020, 31, 65–77.
24. Hartigan, J.A.; Wong, M.A. Algorithm AS 136: A K-means clustering algorithm. J. R. Stat. Soc. Ser. C Appl. Stat. 1979, 28, 100.

[CrossRef]
25. Vapnik, V.N. Statistical Learning Theory; John Wiley & Sons: Nashville, TN, USA, 1998; ISBN 9780471030034.
26. Burges, C.J.C. A tutorial on support vector machines for pattern recognition. Data Min. Knowl. Discov. 1998, 2, 121–167. [CrossRef]
27. Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [CrossRef]
28. Hand, D.J.; Mannila, H.; Smyth, P. Principles of Data Mining; Bradford Books: Cambridge, MA, USA, 2001.
29. Chan, P.K.; Stolfo, S.J. Learning with Non-Uniform Class and Cost Distributions: Effects and a Distributed Multi-Classifier

Approach. in Workshop Notes KDD-98 Workshop on Distributed Data Mining. 1998. Available online: http://citeseerx.ist.psu.
edu/viewdoc/summary?doi=10.1.1.35.3392 (accessed on 27 November 2020).

30. Kubat, M.; Holte, R.C.; Matwin, S. Machine learning for the detection of oil spills in satellite radar images. Mach. Learn. 1998, 2,
195–215. [CrossRef]

31. Bauder, R.A.; Khoshgoftaar, T.M. The effects of varying class distribution on learner behavior for medicare fraud detection with
imbalanced big data. Health Inf. Sci. Syst. 2018, 6, 9. [CrossRef]

32. Chawla, N.V.; Bowyer, K.W.; Hall, L.O.; Kegelmeyer, W.P. SMOTE: Synthetic minority over-sampling technique. J. Artif. Intell.
Res. 2002, 16, 321–357. [CrossRef]

33. Tomek, I. Two modifications of CNN. IEEE Trans. Syst. Man Cybern. 1976, 6, 769–772.
34. Minsky, M. Steps toward artificial intelligence. Proc. IRE 1961, 49, 8–30. [CrossRef]
35. Raghavendra, A.; Guru, D.; Rao, M.K.; Sumithra, R. Hierarchical approach for ripeness grading of mangoes. Artif. Intell. Agric.

2020, 4, 243–252. [CrossRef]
36. Mavi, M.F.; Husin, Z.; Ahmad, B.; Yacob, Y.M.; Farook, R.S.M.; Tan, W.K. Mango ripeness classification system using hybrid

technique. Indones. J. Electr. Eng. Comput. Sci. 2019, 14, 859. [CrossRef]
37. Mim, F.S.; Galib, S.M.; Hasan, M.F.; Jerin, S.A. Automatic detection of mango ripening stages—An application of information

technology to botany. Sci. Hortic. 2018, 237, 156–163. [CrossRef]
38. Janardhana, K.; Jesi, V.E.; Vijayaragavan, M.; Kumar, R.B.D.A.N. Non-destructive classification of fruits based on color by using

machine learning techniques. Int. J. Mod. Agric. 2021, 10, 1057–1069.
39. Robertson, J.A.; Meredith, F.I.; Horvat, R.J.; Senter, S.D. Effect of cold storage and maturity on the physical and chemical

characteristics and volatile constituents of peaches (cv. Cresthaven). J. Agric. Food Chem. 1990, 38, 620–624. [CrossRef]
40. Ferrer, A.; Remón, S.; Negueruela, A.I.; Oria, R. Changes during the ripening of the very late season Spanish peach cultivar

Calanda. Sci. Hortic. 2005, 105, 435–446. [CrossRef]
41. Scalisi, A.; Pelliccia, D.; O’Connell, M.G. Maturity prediction in yellow peach (Prunus persica L.) cultivars using a fluorescence

spectrometer. Sensors 2020, 20, 6555. [CrossRef]

http://doi.org/10.17660/ActaHortic.2004.645.81
http://doi.org/10.1007/s13197-010-0004-6
http://www.ncbi.nlm.nih.gov/pubmed/23572595
http://doi.org/10.3390/plants7010003
http://www.ncbi.nlm.nih.gov/pubmed/29320410
http://doi.org/10.3390/s120506023
http://www.ncbi.nlm.nih.gov/pubmed/22778629
http://doi.org/10.1016/j.infrared.2020.103479
http://doi.org/10.1016/j.scienta.2015.01.001
http://doi.org/10.1002/jsfa.10832
http://doi.org/10.1016/j.jfoodeng.2013.10.012
http://doi.org/10.1016/j.postharvbio.2020.111206
http://doi.org/10.1109/ACCESS.2020.3040062
http://doi.org/10.2307/2346830
http://doi.org/10.1023/A:1009715923555
http://doi.org/10.1023/A:1010933404324
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.35.3392
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.35.3392
http://doi.org/10.1023/A:1007452223027
http://doi.org/10.1007/s13755-018-0051-3
http://doi.org/10.1613/jair.953
http://doi.org/10.1109/JRPROC.1961.287775
http://doi.org/10.1016/j.aiia.2020.10.003
http://doi.org/10.11591/ijeecs.v14.i2.pp859-868
http://doi.org/10.1016/j.scienta.2018.03.057
http://doi.org/10.1021/jf00093a008
http://doi.org/10.1016/j.scienta.2005.02.002
http://doi.org/10.3390/s20226555


AgriEngineering 2022, 4 47

42. Scalisi, A.; O’Connell, M.G.; Pelliccia, D.; Plozza, T.; Frisina, C.; Chandra, S.; Goodwin, I. Reliability of a handheld bluetooth-
colourimeter and its application to measuring the effects of time from harvest, row orientation and training system on nectarine
skin colour. Horticulturae 2021, 7, 255. [CrossRef]

43. Juansah, J.; Budiastra, I.W.; Dahlan, K.; Seminar, K.B. Electrical properties of garut citrus fruits at low alternating current signal
and its correlation with physicochemical properties during maturation. Int. J. Food Prop. 2014, 17, 1498–1517. [CrossRef]

44. Teerachaichayut, S.; Terdwongworakul, A.; Keawsumnuk, K.; Rangsi, M.; Seangkeaw, K. A feasibility study for the nondestructive
detection of granulation in tangerine fruit using a capacitance based technique. In Proceedings of the Post Harvest, Food and
Process Engineering, International Conference of Agricultural Engineering-CIGR-AgEng 2012: Agriculture and Engineering for a
Healthier Life, Valencia, Spain, 8–12 July 2012.

45. Wells, B.; Baker, E.; Farwell, A.; Foster, H.; Gao, X.; Gruber, B.; Jones, E.; Vu, D.; Xu, S.; Ye, J. An adjustable parallel-plate capacitor
instrument—Test of the theoretical capacitance formula. Am. J. Phys. 2016, 84, 723–726. [CrossRef]

46. Bishop, C.M. Pattern Recognition and Machine Learning; Elsevier: Amsterdam, The Netherlands, 2006; Volume 128, pp. 338–356.
47. Chang, C.-C.; Lin, C.-J. LIBSVM: A library for support vector machines. ACM Trans. Intell. Syst. Technol. 2011, 2, 1–27. [CrossRef]
48. Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V.

Scikit-learn: Machine learning in Python. J. Mach. Learn. Res. 2011, 12, 2825–2830.
49. Sivakumar, D.; Jiang, Y.; Yahia, E.M. Maintaining mango (Mangifera indica L.) fruit quality during the export chain. Food Res. Int.

2011, 44, 1254–1263. [CrossRef]
50. Rungpichayapichet, P.; Nagle, M.; Yuwanbun, P.; Khuwijitjaru, P.; Mahayothee, B.; Müller, J. Prediction mapping of physicochemi-

cal properties in mango by hyperspectral imaging. Biosyst. Eng. 2017, 159, 109–120. [CrossRef]
51. Rousseeuw, P.J. Silhouettes: A graphical aid to the interpretation and validation of cluster analysis. J. Comput. Appl. Math. 1987,

20, 53–65. [CrossRef]
52. Lebrun, M.; Plotto, A.; Goodner, K.; Ducamp, M.-N.; Baldwin, E. Discrimination of mango fruit maturity by volatiles using the

electronic nose and gas chromatography. Postharvest Biol. Technol. 2008, 48, 122–131. [CrossRef]
53. Worasawate, D.; Sakunasinha, P.; Chiangga, S. Classification of Ripeness Stage of Mango Fruit; Kaggle: San Francisco, CA, USA, 2022.

[CrossRef]

http://doi.org/10.3390/horticulturae7080255
http://doi.org/10.1080/10942912.2012.723233
http://doi.org/10.1119/1.4955143
http://doi.org/10.1145/1961189.1961199
http://doi.org/10.1016/j.foodres.2010.11.022
http://doi.org/10.1016/j.biosystemseng.2017.04.006
http://doi.org/10.1016/0377-0427(87)90125-7
http://doi.org/10.1016/j.postharvbio.2007.09.010
http://doi.org/10.34740/kaggle/dsv/2998552

	Introduction 
	Materials and Methods 
	Mango Samples 
	Measurement of Properties of Mango 
	Physical Properties 
	Biochemical Properties 
	Electrical Properties 

	Data 
	Machine Learning Methods 
	k-Means 
	Gaussian Naïve Bayes (GNB) 
	Support Vector Machine (SVM) 
	Feed-Forward Artificial Neural Network (FANN) 

	Summary of Overall Procedure 
	The Optimal Number of Clusters 
	Elbow Method 
	Silhouette Method 

	Evaluation of Classifier Performance 

	Results 
	k-Means Clustering Results 
	The Optimal Number of Clusters 
	Elbow Method 
	Silhouette Method 

	Results of Oversampling Data 
	Comparison of Machine Learning Models 
	Model Validation and Discussion 

	Conclusions 
	References

