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Abstract: Turbulence phenomena created around a greenhouse due to different wind loads are key
factors in its structural design and significantly affect the ventilation rates through its side and roof
openings. Using the turbulence models of ANSYS FLUENT software to investigate the airflow around
an arched-roof-greenhouse-shaped obstacle placed inside a wind tunnel was the aim of this study.
Velocity and pressure areas around the obstacle were examined by selecting three different turbulence
models (Standard, RNG and Realizable k–ε models) under three different airflow entry velocities
(0.34, 1.00 and 10.00 m s−1) in the wind tunnel. All k–ε models showed that when the air velocity
was intensified, the airflow was identified as turbulent. The horizontal velocity profile predicted
more accurately the presence of vortices in contrast with the vector sum of the perpendicular velocity
components. Vortices were formed upstream, above the roof and downstream of the obstacle, and
the applied models showed that when airflow velocity increases, the size of the upstream vortex
decreases. Finally, there was a strong indication from the modeling results that the vortex on the roof
of the obstacle was an extension of the vortex that was created downstream.

Keywords: computational fluid dynamics (CFD); dynamic approach; scale model; Navier–Stokes
equations

1. Introduction

Studying the airflow around and over an agricultural structure (greenhouse, livestock
unit, etc.) could possibly resolve substantial issues related to the proper functioning of these
structures. Ventilation is an important factor strongly interconnected with the regulation
of the microenvironment and performance of an agricultural structure. In greenhouses,
ventilation affects temperature, humidity and CO2 concentration, and in livestock buildings
it is important for minimizing the concentrations of harmful gases (NH3, CO2, CH4, N2O,
etc.) that have adverse effects on the wellbeing of animal and workers [1–4].

Until recently, most research efforts concentrated on studying the airflow through
modeling using computational fluid mechanics for openings in specific locations, mainly
on the side surfaces of greenhouses. However, these openings can cause damage to the
materials of the building if the wind is stronger than the air speed limit set by the manufac-
turer. As is well known, the equations that govern the dynamic behavior of fluids are the
Navier–Stokes (N–S) equations, which are the basis of modeling through computational
fluid dynamics [4–6]. In contrast to the direct numerical simulation, which solves the
N–S equations without simplifications, the models provided by ANSYS FLUENT [1,7–11],
are “obliged” to make some simplifications for solving these equations. Therefore, the
respective results are decisively influenced by the choice of each model.
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The available literature on computational fluid dynamics focuses mainly on points that
need special attention when the analysis is performed using commercial packages, such as
ANSYS FLUENT. Specifically, the quality of the grid and the management of the boundary
conditions are of paramount importance for a reliable analysis. In terms of grid quality,
Roache [12] introduced a grid convergence index (GCI). The proposed method provides
an asymptotic approach to quantifying the uncertainty in lattice convergence. Important
observations on the most reliable analysis of flow fields using commercial packages are
given in the review conducted by Murakami [13,14]. Guidelines are given when dealing
with marginal conditions at obstacles, and generally at impermeable surfaces. It is pointed
out that the logarithmic area function (wall function) does not give satisfactory results when
the flow area is to be investigated in the presence of a detachment. In this case the partial
function Xn + is suggested with different functions for the linear area region (non-slip)
and for the free flow area. is the authors found that the two main problems when dealing
with turbulence modeling are the high Re numbers that cause the grid to thicken, and the
phenomenon of clashing flow lines at the front of the obstacle. The validity of modeling a
three-dimensional airflow in an air tunnel using RANS packages for all the common roof
designs of greenhouses was investigated by Ntinas et al. [8]. An air tunnel experiment was
also conducted for better validation of the used models, and the results showed that in all
cases the maximum speeds appeared at the top of the construction. Although the results in
terms of velocity profiles and turbulent kinetic energy results are similar, in the study, the
RNG k–ε model predicted the air speed best, and the SST k–ω model was the most suitable
for calculating the turbulent kinetic energy accurately. As was expected, the modeling
failed to simulate the area downstream of the obstacle as the flow field was chaotic.

Apart from the studies done for the airflow around and over a greenhouse, a lot of
research has been conducted for modelling the airflow inside a greenhouse. The aim of
these studies was to achieve efficient ventilation by the creation of appropriate air currents
that were not harmful for plants and were effective at cooling greenhouses. The effect of
wind speed on the natural ventilation of a greenhouse using ANSYS/FLOATRAN was
studied by Molina et al. [15]. This study included airflow and temperature distribution,
and the results highlighted the importance of roof openings for proper ventilation. Side
openings of the greenhouse increased the thermal lift. Moreover, Ould Khaoua et al. [16]
investigated the roof openings configuration of a naturally ventilated greenhouse, and
reported that openings in the windward part of the roof create more efficient ventilation.
Kuroyanagi [10] studied the pressure profile developed around a greenhouse due to wind
with the help of CFD and estimated the escape airflow for different orientations and air
speeds. The calculation of the pressure coefficient inside the greenhouse was obtained from
the value of the corresponding coefficient in the outdoor area, which was found by the
CFD analysis.

The distances between multiple greenhouse units have significant effects on the airflow
distribution, and many researchers have studied the development of turbulent flow through
the vortices that occur within greenhouses.

From the above literature it can be concluded that the correct and accurate modeling of
turbulence through commercial computer packages is a process which requires the correct
choice of model and the researcher’s experience about the limits of the selected package.
Casey and Wintergestre [17] provide guidelines for the correct selection of mainly RANS
packages for a variety of cases encountered in applied fluid mechanics. Specifically, they
provide procedures for determining wall functions in relation to the definition of geometry
for various grid elements, for defining boundary conditions, for mesh distinguishing and
for estimating significant errors.

There are thousands of studies on flows with Re > 1000, using those specific mod-
els [18,19]. There also many studies using computational fluid dynamics (CFD) and artificial
neural networks (ANN) to simulate the fluid flow characteristics in engineering applica-
tions [20–22]. The creation of an ANN which can predict with an increase relative accuracy
requires multiple data for different conditions. Multiple parameters should be studied for
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the elaboration of a complete ANN, such as selection of the type of network (i.e., static or
dynamic), model type and data analysis. However, the specific analysis—estimation of the
specific models in agricultural constructions, as presented in this paper—has not been done
to the best of our knowledge. In addition, such an analysis could be used in comparative
studies with LES models or with direct numerical simulation studies, and the k-ε models
for different values of selected parameters could be used to create a big database for the
training, validation and testing of the ANN model.

In the wider context of modeling, the present work deals with the study of velocity and
pressure areas over an arched roof greenhouse-like obstacle placed in a wind tunnel under
different flow conditions by selecting the appropriate turbulent models. The approach was
to analyze the results to find the areas that require more in-depth analysis. Once these
areas were identified, the analysis proceeded with smaller sections of these areas. ANSYS
FLUENT software enabled the extraction of fluid mechanical quantities (pressure and
speed) on these sections. Finally, in addition to the fluid mechanics of pressure and velocity,
which were the primary observation parameters of this study, techniques for investigating
the presence or not of turbulence along the flow were also used. Based on the results of
the velocity and pressure profiles from the experimental studies, an attempt was made to
correlate these profiles with the development of reverse flow and the existence of a large
extent of turbulence.

2. Materials and Methods
2.1. Wind Tunnel Characteristics

A metal constructed wind tunnel was used in this study (Figure 1). The wind tunnel’s
total length was 6.91 m; the cross-section was square with a side length of 0.50 m; and it
was previously described in detail in the study of Ntinas et al. [23]. The greenhouse-like
obstacle used in this study has an arched roof and has a total height of 0.063 m.
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Figure 1. Wind tunnel scheme and basic dimensions.

2.2. Mathematical Model

The mathematical simulation was done with the help of modeling using three tur-
bulent models: Standard, RNG and Realizable based on the turbulent k–ε model, which
belongs to the commercial package ANSYS FLUENT (ANSYS FLUENT 2021R2, License
from the AUTH) [24,25].

Due to the flexibility provided by CFD packages in relation to the “sensitivity analysis”
of the problem, it was considered that the best method of analysis would be to configure
the model based on the Reynolds number (Re). The value of the Re number determines
the type of flow, if it is laminar or turbulent and if it depends on the flow velocity and
the geometry of the structure. The Re number was calculated with the formula shown in
Equation (1).

Re =
ρ · u · L

µ
=

u · L
v

(1)

where:

ρ: the density of the fluid (kg m−3);
u: flow velocity (m s−1);
L: the characteristic flow length (m);
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µ: dynamic viscosity (Pa s);
ν: kinematic viscosity (m2 s−1).

For this reason, the transition from laminar to turbulent for each flow type has different
critical values of Re number. According to the formula, the Re number depends not only
on the velocity, but also on the specific flow length. The specific flow length value is
determined by the flow geometry, as mentioned earlier. In many cases, such as in the case
of flow in a closed construction, the appropriate characteristic flow length is the diameter
of the pipe. It is necessary to point out that, in the present work, the specific flow length, in
the calculation of the Re number, is the height of the obstacle: 0.063 m.

Due to the size of the obstacle compared to the size of the wind tunnel, there was
no interaction of the boundary layer of the upper wall of the channel with the obstacle.
Thus, the main variable parameter of the problem was the velocity of the flow into the
tunnel. The logic of this approach has to do with the fact that speed is a factor that directly
affects the value of the Re number, which characterizes the type of flow. Each k–ε model
was chosen to run at three different inlet airflow velocities (entrance of the wind tunnel)
which correspond to three different Re numbers to study meticulously the airflow around
a greenhouse (Table 1). The three air velocities that were chosen were 0.34, 1.00 and
10.00 m s−1. Consequently, the model ran at all the above speeds, used a constant obstacle
height and changed each time the model of k–ε in which it was analyzed. Thus, in the first
phase, the respective speeds were analyzed with 3 different approaches represented by the
k–ε models (Standard, RNG and Realizable).

Table 1. Different inlet airflow velocities for the k–ε models and the corresponding Re numbers.

Velocity (m s−1)
Fluent Model

Re Standard k–ε RNG k–ε Realizable k–ε

0.34 1364.33
√ √ √

1.00 4012.73
√ √ √

10.00 40127.38
√ √ √

During analysis and after the generation of the visualized results of the phenomena
that took place around the obstacle, it was found that the area of interest in which notewor-
thy phenomena occur could be significantly reduced in relation to the total length of the
tunnel. Therefore, by running the model each time at a different speed, it was found that
the phenomena related to the geometry of the obstacle (mainly turbulence) after a certain
distance downstream of the obstacle for the respective air velocity, were so attenuated that
were of no interest. Therefore, the control area was limited to only a small section of the
long wind tunnel, which was 0.60 m (Figure 2), which resulted in a significant reduction in
computing resources and analysis time.
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Figure 2. Position of the located main control area in the wind tunnel.

Regarding the type of analysis, it was chosen to be two-dimensional (2D), a choice
which is fully justified by the fact that the length of the barrier completely covers the length
of the channel (it is supported on the vertical walls of the tunnel). With this assumption,
the analysis was simpler and the computational time significantly shorter. Thus, the air
passed only over the obstacle, causing in that area any expected detachment phenomena,
without the analysis being extended to flows around the obstacle.
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The computational setup (inlet, wall treatment, solver, differential schemes) for the
present study was as follows:

Inlet: velocity 0.34, 1, 10 m/s
Wall treatment: ground, greenhouse line and top of the channel: non-slip condition
Solver: SIMPLE algorithm was applied
Outlet: gauge pressure 0
Differential schemes: Finite Volume Method (FEM)
In all the models Standard Wall Function was implemented.
The solution’s convergence criteria were set as follows:
Continuity: 10-5
X = velocity: 10-5
k: 10-5
ε: 10-5
No of iterations: 1000

2.3. Computational Mesh

The analysis of the air fluid dynamics behavior over the obstacle involved a series
of distinct steps, starting with partitioning the area of the tunnel model under study. It
should be emphasized at this point that, as shown in Figure 3, special attention was
given to the separation of the area near the obstacle to eliminate problems with the grid
development in this area. The turbulent phenomena under investigation were expected to
occur mainly in this area. The creation of a well-developed partition of the grid ensured
the greatest possible reliability regarding the convergence of solutions in the transmission
functions for neighboring data nodes. Otherwise, there was a risk of generating results
describing phenomena which do not exist. The nodes numbered 9763, and the elements
9440. Additional thickening of the computer grid showed that it does not affect the solution
of the problem.
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Figure 3. Partitioning of the wind tunnel.

The next step was the creation of the mesh, and to increase the reliability of the results,
suggestions mainly from the user manual of ANSYS FLUENT were considered. Therefore,
a grid was constructed with low uniformity, as there were areas of high interest in terms
of detachment and turbulent phenomena, while at the same time there were areas where
the intensity of the phenomena was negligible. Consequently, in areas of high interest the
mesh was significant thickened, and in the rest, there were areas of great distance, and the
mesh was more open there (Figure 4).
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Figure 4. Computational mesh of the wind tunnel.

The blackened area in Figure 4 represents the area of the model in which the density of
the mesh was greatly increased. Great importance was given to the area near the obstacle,
because it would reveal several phenomena in the flow which were the objects of the
present study. For this reason, the area near the greenhouse-like obstacle received the
highest density. Accordingly, the mesh around the obstacle area was constructed as shown
in Figure 5, and it was done this way to achieve as much speed and pressure data as
possible from the areas where intense turbulent phenomena are usually expected (swirls,
abrupt changes in the direction of fluid movement due to geometry, etc.). Validation of the
models used has been conducted by other researchers using the same experimental air flow
conditions as us around modified arched, even rectangular or multi span greenhouses in
wind tunnels [8,9], and therefore, it was not the subject of the present work.
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3. Results and Discussion
3.1. Pressure Distributions

Pressure distributions were based on the inlet airflow velocities for all available k–ε
models (Standard, RNG, Realizable). These velocities were: 0.34, 1.00 and 10.00 m s−1.
Figure 6 presents the distributions of pressures developed at the various points of the
airflow along the wind tunnel for all the wind velocities under consideration. Negative
pressures were observed from the upstream corner of the greenhouse and extended down-
stream for the cases of inlet airflow velocity of 0.34 and 1.00 m s−1. The same conclusion
emerged from the work of Fragos et al. [26] and Kateris et al. [27] for low airflow velocities.
In the case of the examined velocity of 10.00 m s−1, a similar distribution was observed, but
high negative pressures in absolute values were limited to the roof area of the greenhouse
and were more extreme than in those other studies. Upstream of the construction, positive
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pressure values were observed for all instances of velocities, and they increased as the inlet
airflow velocity increased.
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Figure 6. Pressure distributions for the wind tunnel flow velocities of 0.34, 1.00 and 10.00 m s−1 from
Standard k–ε (a,d,g), RNG k–ε (b,e,h) and Realizable k–ε (c,f,i) models.

The maximum differences in the pressure values which resulted from the modeling of
the problem and between the k–ε models appeared in the case of the minimum values of the
displayed manometric pressure. This difference narrowed impressively as the mainstream
speed increased. The maximum difference in pressure values between the k–ε models
reached 17% when the air velocity was set to 0.34 m s−1. The corresponding difference
was 4% in the case of 10.00 m s−1 air velocity (Figure 7). The same trend appeared in
the convergence of the maximum displayed pressure values, although admittedly the
deviations between the k–ε models for the respective flow rate were significantly smaller.
The differences in pressure values between the models decreased as the value in the fluid
flow rate increased, as presented in Figure 7.

The positions of the maximum and the minimum pressure in all the models and for
the three velocities set, are almost in the same places of the wind tunnel. The maximum
pressure was in front of the obstacle, something that was expected, as at this point the
speed must be zero (Figure 6). Furthermore, the minimum pressure value appeared on
the curvature of the obstacle’s roof just before its highest point. Although the positions
of the maximum and minimum pressure values in all models were similar, the pressure
distributions for the same flow velocity throughout the wind tunnel appeared to be more
similar among cases with higher flow velocities (10.00 m s−1) than cases with lower ones.
This observation combined with the fact that the percentage differences in pressure values
decreased as the flow rate increased, led to the first conclusion that the results from the
three k–ε models (Standard, RNG, Realizable) start and converge as the flow rate increases.
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3.2. Air Velocity Distributions

Following the pattern adopted for the pressure distributions of the previous section,
the air velocity distributions are studied here. The results that are analyzed are presented
in Figures 8–10.

The maximum values of the velocities along the airflow in the wind tunnel and the
speed differences (%) between the models for the different air speed velocities are presented
in Figure 10. When the flow velocity increases, so does the convergence of the results of the
three k–ε models, in terms of pressure and velocity within the wind tunnel, as can be seen
in Figure 9. The percentage of surface area at which high speeds are predicted also signifies
the qualitative differences in the speed distributions. When the velocity was 0.34 m s−1,
the Realizable model predicted that the speed will be up to 20% higher at almost 75% of
the wind tunnel. As expected, all models predicted that the maximum speed would be on
the roof of the model (Figures 8 and 9).

However, it should be noted that the area in which the upper speed limit appears
decreases for all three models (Standard, RNG, Realizable) as the flow velocity increases.
In fact, when the flow velocity was set to 10 m s−1, the area where the upper speed limit
appears could be found only above the obstacle (Figure 9).

By analyzing the values of the maximum displayed velocities for each model, consid-
ering the flow velocity as a parameter, Figure 10 was obtained, which shows the maximum
differences in the velocity values between the models for the same flow velocities and the
maximum air velocities obtained inside the wind tunnel by all k–ε models.
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3.3. Horizontal Speed Distributions (u)

The velocities shown in Figures 8 and 9 and analyzed in the previous section had a
minimum value of zero. This could lead to the erroneous conclusion that there was no
negative velocity on the obstacle, resulting in the absence of inverted flow. This was the
main reason why the analysis proceeded further to investigate the speed distributions on
the horizontal plane (u).

At this point, it should be clarified that the velocity analyzed in the previous section
was the vector sum of the two perpendicular velocity components (u and v). The measure
of this velocity (which is always positive) is given by the well-known Pythagorean theorem:

U =
√

u2 + v2 (2)
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Figure 11 shows the horizontal velocity distributions for all velocity cases and for all
k–ε models. Inverted flow accounted for 20–26% of the inlet airflow velocity in the wind
tunnel in all models. The area of maximum values using all models was above the obstacle,
as found in other studies [4,23], but was limited as the air entry velocity into the wind
tunnel increased. The recirculation length of the flow downstream of the obstacle, as shown
by the horizontal velocity distribution, decreased as the flow increased. The numerical
approximation of the recirculation length does not appear to be affected by the model used
in cases of high velocity. The horizontal velocity distribution confirms that the convergence
between the various k–ε models in terms of velocities increased when the inlet airflow
velocity of the wind tunnel increased.
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from Standard k–ε (a,d,g), RNG k–ε (b,e,h) and Realizable k–ε (c,f,i) models.

Figure 12 presents the maximum percentage differences in umax among the k–ε models
for the inlet airflow velocities of 0.34, 1.00 and 10.00 m s−1 respectively; and the maximum
and minimum of horizontal velocities (m s−1) in the wind tunnel for all models. As can
be seen in Figure 12, the smallest d between the Standard, RNG, and Realizable models
(0.4%) occurred for the highest flow rate (10 m s−1). The maximum and minimum values
of wind velocity had significant effects on the structural characteristics of the flow, and
the minimum values influenced the efficiency and the design of the natural ventilation of
the greenhouses. Natural ventilation is one of the basic environmental control techniques
for the proper growth of the plants in greenhouses. The design of a greenhouse requires
meticulously study of natural ventilation (dimensions of roof and side openings, ventilation
rate, etc.) and the climate of the area where it is going to be established.

Figure 13 shows the vector illustrations of the presence or absence of vortices in the
area before the obstacle. The results refer to velocity and pressure profiles only of the
Standard model k–ε for the three airflow entry velocities in the wind tunnel where each
model was studied. This approach was chosen because the respective profiles from the
RNG and Realizable models did not differ in terms of the quality of their results from the
Standard k–ε model.
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Figure 13. The vector illustrations of the upstream flow of the obstacle from the solution of the
Standard k–ε model for 0.32, 1.00 and 10.00 m s−1 airflow entry into the wind tunnel velocities.

The existence of clockwise vortices for the airflow entry velocities of 0.34 and 1.00 m s−1

into the wind tunnel is shown in Figure 14. Obvious vortices in the case of 10 m s−1 are
missing (Figure 14). In this case, it could be explained that as the flow velocity of the model
increased, the vortex was pressed against the wall, thereby decreasing in size.
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Figure 14. The inversion of the flow at the end of the structure from the solutions of the Standard k–ε
model for 0.32, 1.00 and 10.00 m s−1 airflow entry velocities into the wind tunnel.

Figure 14 shows the inverted flow over the right end of the obstacle for the three
airflow entry velocities studied. The results concern the vector analysis that resulted from
the solution of the k–ε Standard model, for the same reason mentioned previously. The
analysis of the figure indicates that there was reverse flow between the main flow and
the right half of the obstacle roof for all flow velocities. To complete the downstream
analysis of the obstacle area, the vector representations of the downstream flows around
the greenhouse from the solutions of the Standard k–ε model for the three airflow entry
velocities studied are presented in Figure 15. The development of an almost elliptical swirl
is evident in the area directly after the obstacle, regardless of the air entry velocity into the
wind tunnel.

AgriEngineering 2022, 4, FOR PEER REVIEW  13 
 

 

Figure 13. The vector illustrations of the upstream flow of the obstacle from the solution of the 
Standard k–ε model for 0.32, 1.00 and 10.00 m s−1 airflow entry into the wind tunnel velocities. 

The existence of clockwise vortices for the airflow entry velocities of 0.34 and 1.00 m 
s−1 into the wind tunnel is shown in Figure 14. Obvious vortices in the case of 10 m s−1 are 
missing (Figure 14). In this case, it could be explained that as the flow velocity of the model 
increased, the vortex was pressed against the wall, thereby decreasing in size. 

 
Figure 14. The inversion of the flow at the end of the structure from the solutions of the Standard 
k–ε model for 0.32, 1.00 and 10.00 m s−1 airflow entry velocities into the wind tunnel. 

Figure 14 shows the inverted flow over the right end of the obstacle for the three 
airflow entry velocities studied. The results concern the vector analysis that resulted from 
the solution of the k–ε Standard model, for the same reason mentioned previously. The 
analysis of the figure indicates that there was reverse flow between the main flow and the 
right half of the obstacle roof for all flow velocities. To complete the downstream analysis 
of the obstacle area, the vector representations of the downstream flows around the green-
house from the solutions of the Standard k–ε model for the three airflow entry velocities 
studied are presented in Figure 15. The development of an almost elliptical swirl is evident 
in the area directly after the obstacle, regardless of the air entry velocity into the wind 
tunnel. 

 
Figure 15. The vector illustrations of the downstream flow of the obstacle from the solutions of the 
Standard k–ε model for 0.32, 1.00 and 10.00 m s−1 airflow entry into the wind tunnel velocities. 

4. Conclusions 
In this study, an attempt was made to model the airflow over an obstacle of a green-

house-like shape located inside an air tunnel, by using the commercial package ANSYS 
FLUENT. The extant possibilities of modeling through FLUENT allowed us to conduct an 
in-depth investigation of the airflow through analysis of velocity and pressure profiles. 
Several conclusions were drawn from the analysis of the results, and the most important 
can be mentioned as follows: 
• The results of k–ε models for pressure and velocity converged when the velocity of 

the air was high enough to ensure that the flow was turbulent. The results showed 

Figure 15. The vector illustrations of the downstream flow of the obstacle from the solutions of the
Standard k–ε model for 0.32, 1.00 and 10.00 m s−1 airflow entry into the wind tunnel velocities.

4. Conclusions

In this study, an attempt was made to model the airflow over an obstacle of a
greenhouse-like shape located inside an air tunnel, by using the commercial package
ANSYS FLUENT. The extant possibilities of modeling through FLUENT allowed us to
conduct an in-depth investigation of the airflow through analysis of velocity and pressure
profiles. Several conclusions were drawn from the analysis of the results, and the most
important can be mentioned as follows:

• The results of k–ε models for pressure and velocity converged when the velocity of
the air was high enough to ensure that the flow was turbulent. The results showed
that the three models converge significantly when the inlet air velocity reaches 10 m/s,
and thus all three models are suitable for this air velocity value.

• The presence of turbulence in the flow can be diagnosed by analyzing the airflow
velocity profiles. The horizontal velocity profile has a key role in this investigation.

• For a greenhouse with an arched roof, there are three areas in which vortices develop.
These are upstream, above the roof and downstream.

• As the flow velocity increases, the magnitude of the vortex upstream of the obstacle
decreases, resulting in its elimination at very high velocities.
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• The vortex that appears on the roof of the obstacle is an extension of the vortex created
downstream of the obstacle.

The evolution of computational technology allows the study of complex flows using
remarkable commercial computing packages that solve turbulent models and offer the
possibility for a more realistic approach to such flows by directly solving the Navier–Stokes
equations with direct numerical simulations.
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