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Abstract: UAV may be limited by its flight height and camera resolution when aerial photography of
a tea garden is carried out. The images of the tea garden contain trees and weeds whose vegetation
information is similar to tea tree, which will affect tea tree extraction for further agricultural analysis.
In order to obtain a high-definition large field-of-view tea garden image that contains tea tree targets,
this paper (1) searches for the suture line based on the graph cut method in the image stitching
technology; (2) improves the energy function to realize the image stitching of the tea garden; and
(3) builds a feature vector to accurately extract tea tree vegetation information and remove unnecessary
variables, such as trees and weeds. By comparing this with the manual extraction, the algorithm in
this paper can effectively distinguish and eliminate most of the interference information. The IOU
in a single mosaic image was more than 80% and the omissions account was 10%. The extraction
results in accuracies that range from 84.91% to 93.82% at the different height levels (30 m, 60 m and
100 m height) of single images. Tea tree extraction accuracy rates in the mosaic images are 84.96% at a
height of 30 m, and 79.94% at a height of 60 m.

Keywords: aerial image; image mosaic; graph cut method; sutures; tea tree extract

1. Introduction

UAV has been widely used in agricultural irrigation, farmland vegetation data moni-
toring, soil temperature monitoring, agricultural disaster monitoring or evaluation, and
site exploration due to its advantages of high time-efficiency, low loss, high resolution,
and low cost [1,2]. UAVs can carry different kinds of cameras to obtain aerial images at
different altitudes according to the different requirements. They can also carry out relevant
processing on the captured images [3,4] to obtain required parameters and information [5,6].
However, limited by altitude and camera resolution, it is difficult to obtain a wide range of
high-definition images, especially in agriculture or forestry. A single image only contains
local information if the target area and crop distribution are large, such as a tea garden.

Image mosaic technology has been widely studied in many fields to stitch the images
together. It includes image registration and image fusion. The image registration results
affect the image fusion. With the diversity of the actual scenes, it is difficult to design a
registration algorithm suitable for all scenes. To date, image registration includes frequency-
based image registration and space-based image registration. Frequency-based image
registration uses the Fourier transform to transform the image to the frequency domain
for related processing. The typical frequency-based image registration is the Fourier–
Mellin transform [7], phase correlation method [8] and the extended phase correlation
method [9]. According to the research, it is known that frequency-based image registration
methods can overcome the brightness difference and anti-noise and it is fast and efficient.
However, it requires a large overlap ratio between two images, which is mainly applied
to the horizontal transformation [10,11]. Therefore, the use of this method in a tea garden
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is greatly limited. The space-based image registration method is based on gray level or
images features. The former divides the overlapping areas of one image into multiple sub
areas and calculates their similarity of pixel values using a certain similarity criterion to
obtain the translation. The principle of this algorithm is simple. Meanwhile, the registration
effect of rigid transformation is good. However, it is greatly affected by illumination and
noise, resulting in a large number of calculations [12]. To date, image registration based
on features is the most widely used [12,13]. The features generally include feature points,
straight lines, edges, and contours. This kind of registration algorithm extracts and matches
the corresponding feature points of two images. Then, it calculates the transformation
model between the two images to complete the registration.

Vegetation research has great potential in crop management. To date, most vegetation
research is based on the information collected from multispectral or hyperspectral data
for related processing, and the relevant parameters are reverse-performed based on the
information in the visible and near-infrared bands [14]. Summer et al. used hyperspectral
remote sensing to retrieve the winter wheat leaf area index (LAI) to evaluate its growth and
predict its yield. Spectral indexes are used to extract leaf chlorophyll content for analysis
and evaluation [15,16]. For images in the visible light bands, common indexes include
ultra-green index Exg [17] and the normalized green-red difference index NGRDI [18].
Torres et al. [19] and Rasmussen et al. [20] calculated the visible vegetation index to study
crop coverage. Researchers [21,22] achieved the extraction of tree information through tree
point cloud data generated by airborne LIDAR and contour fitting. However, there are
relatively few studies on the differentiation of the varieties of green vegetation.

If the UAVs cannot obtain a wide range of high-definition images of agriculture and
forestry simultaneously, the information of each single image is limited, particularly when
the planting area is large, or the crop distribution is not regular, such as in large tea gardens
in China. The subsequent analysis of the images becomes complex and results in limitations.
By using image mosaic technology, we can obtain comprehensive information about the
whole tea garden. Meanwhile, it is a more flexible method to capture images. After the
mosaics of the images, it is more conducive for further vegetation analysis. It can also
be combined with remote sensing technology to monitor the crop growth and perform
disaster assessments in precision agriculture [23]. The complexity of tea gardens results
in difficulties of the analysis of tea trees [24]; aerial images of tea gardens usually contain
similar vegetation information of tea trees, such as weeds and other green crops [25]. In
order to solve the target extraction problem caused by the limitation of the flight height in
mosaic images of tea gardens, we (1) captured tea garden images at three different heights;
(2) improved the energy function to search the suture line of mosaic tea garden images; and
(3) built a feature vector to extract the tea trees from mosaiced images. This paper discusses
the effects of the different heights on tea garden image mosaicking and tea tree extraction.
The findings provide a robust method for image mosaicking, especially for tea gardens and
tea tree target extraction.

2. Materials and Methods
2.1. Data Collection

The tea garden images in this paper were all obtained from a tea garden experimental
field (Figure 1) located in Yanshan, Yinbin, Sichuan, China (104◦667′ W, 28◦915′ N). The test
area is about 9 mu, with an average altitude of about 530 m. The drone (Phantom 3SE, DJI,
Shenzhen, China) was controlled by a trained drone operator from the Yibin Agricultural
Machinery Institute. First, the operator used a remote controller to control the drone to
fly to the desired area. Then, he adjusted the drone at the certain heights (30, 60, 100 m
in the study). Finally, he stopped moving the drone and took the pictures in a relatively
stationary state in the air. All the images were manually taken using a camera (1 inch
CMOS, FOV: 77◦, equivalent focal length: 28 mm, f/2.8–f/11, autofocus, electronic shutter:
8 to 1/8000 s) on the drone. The day we conducted the experiment was cloudy and the
light was relatively stable.
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2.2.1. Image Denoising 

Figure 1. Photograph of the tea garden and the drone operator.

Raw image datasets of the tea garden are shown in Figure 2. The tea garden images
contain three groups of RGB images of different heights. “Group 1”(Figure 2b) contains
34 images from 30 m high with a GSD (ground sample distance) of 0.53 cm; “Group 2”
(Figure 2c) contains 6 images from 60 m high with a GSD of 1.07 cm; and “Group 3”
(Figure 2d) contains 1 image from 100 m high with a GSD of 1.78 cm. The images of Group
1 and Group 2 were used for image mosaicking, of which the results will be compared with
Group 3.
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Figure 2. Raw image datasets of the tea garden. (a) Images of the tea garden dataset; (b) one image
from 30 m high (“Group 1”); (c) one image from 60 m high (“Group 2”); (d) the image from 100 m
high (“Group 3”).

2.2. Image Preprocessing
2.2.1. Image Denoising

In the process of image collection, it is inevitably affected by the equipment, environ-
ment, and other factors that create image noises. These noises reduce the stitching quality.
In this study, we used a Gauss filter to decrease the noises.
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2.2.2. Distortion Correction

In general imaging, the deviation of lens manufacturing precision and assembly
process leads to distortion, resulting in the final image registration. Geometric distortion
also has a certain impact on image registration, causing the matched points to not match
successfully in the end, so it is necessary to build a distortion model to transform the image
to eliminate this impact.

2.3. Image Registration Based on Feature Point Extraction
2.3.1. Feature Point Extraction

The SIFT (scale invariant feature transform) algorithm [26] is a classical scale invariant
algorithm with an invariability of scale and rotation and good robustness for illumination
and angle transformation. In this space, the extreme values are found, feature points are
located, direction is determined and descriptors are constructed concerning the selected
neighborhood. The SIFT algorithm process is described below.

(1) Construct a Gaussian difference pyramid.

Firstly, the original image was Gaussian filtered. The variance of continuous variation(
σ, kσ, k2σ, . . .

)
was used to obtain a group of images that were the same size as the original

image. The whole process can be expressed in the following Formula (1):

L(x, y, σ) = G(x, y, σ)× I(x, y) (1)

where I(x, y) represents the raw image, x and y represent the coordinates of the image

pixels, the Gaussian kernel is generally abbreviated as G(x, y, σ), G(x, y, σ) = 1
2πσ2 e−

x2+y2

2σ2 ,
and σ represents the variance, also known as the scale.

After the above operations, a scale space was obtained for the image with the same
resolution, and the blur degree of the image in the scale space increased gradually. In order
to ensure the continuity of the scale space, the penultimate image of the previous layer
is usually sampled twice and the image obtained is used as the initial image of the next
step. Then, the steps above were repeated many times to obtain multiple scale spaces. The
multilayer image from top to bottom, from small to large, were arranged in a shape similar
to a pyramid, the so-called the Gauss pyramid. In this study, we used σ = 1. k = 2

1
S , s

indicates the number of layers required to obtain the Gaussian pyramid.
Then, N pairs of images in each layer were subtracted from the adjacent two pairs of

images to obtain n − 1 pairs of difference images shown Formula (2):

D(x, y, σ) = (G(x, y, kσ)− G(x, y, σ))× I(x, y) (2)

(2) Locating and screening key points.

In each layer of the pyramid, two boundary images were removed. Each one of them
has two adjacent images. In the 3D space, each point has 26 neighborhood points. By
comparing them, the maximum or minimum value was retained in order to find the most
stable points, which are the discrete points in the space. In order to improve the stability of
the key points, curve interpolation is needed for the scale space, and the Taylor expansion
of the differential scale space is represented by Formula (3):

D(x) = D +
∂DT

∂x
x +

1
2

xT ∂2D
∂x2 x (3)

Taking the derivative of x and setting the equation to zero produces the offset of the
extreme point. Assume that x̂ is the offset shown in Formula (4):

x̂ = −∂2D−1

∂x2
∂D
∂x

(4)
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If the value is greater than 0.5, the interpolation center has shifted to the adjacent
point. Therefore, the location of the current key point must be changed and iterations
must be repeated to convergence. In this paper, we set a threshold value of 0.03. When
|D(x̂)| < 0.03, directly eliminate the contrast at a low point. In this process, the exact
position and scale ∂ of the extreme point are obtained in Formula (5):

D(x̂) = D +
1
2

∂DT

∂x
x̂ (5)

(3) Build feature descriptors.

The scale space is used to allow the feature points obtain a certain scale invariance. In
order to ensure the rotation invariance and facilitate the registration of subsequent feature
points, a unique descriptor is usually calculated for each feature point according to its
neighborhood.

First, the main direction of the feature points should be determined. According to
the second step, the gradient and direction distribution of all pixels in the 3σ neighbor-
hood window on the Gaussian image closest to the feature point are determined, and
the gradient histogram is constructed. In order to prevent interference in one direction,
Gaussian smoothing is also needed. The gradient m(x, y) and the direction θ(x, y) in the
neighborhood of the feature point are calculated by the Formulas (6) and (7):

m(x, y) =
√
(L(x + 1, y)− L(x− 1, y))2 + (L(x, y + 1)− L(x, y− 1))2 (6)

θ(x, y) = tan−1
(

L(x, y + 1)− L(x, y− 1)
L(x + 1, y)− L(x− 1, y)

)
(7)

After the main directions of the key points are calculated, descriptors of the feature
points are constructed according to the main directions. For it to obtain rotation invariance,
its coordinates first need to be rotated in the main direction. Then, the direction in the
neighborhood is calculated with the feature point as the center and the main direction as
the reference coordinate. In the original text, the 16 × 16 pixels of the neighborhood were
calculated, and a seed point was formed for every 4 × 4 pixels, and the size in 8 directions
in each seed region was calculated.

Finally, feature descriptors with a total size of 128 dimensions of 4 × 4 × 8 were
calculated for each feature point. In order to create a certain robustness to illumination for
the feature points =, the descriptors are usually normalized. In this paper, 360 degrees will
be divided into 36 shares, the original 10 degrees per column in the histogram; its size is
the accumulation and within the scope of the 10 degrees is one of the highest accumulation
peak directions, which represents the feature points of the gradient direction. In order to
increase its robustness, the direction of the other peak also needs to be kept at greater than
eighty percent of the principal direction, as the auxiliary direction of the feature points.

2.3.2. Feature Point Matching

After the feature points are extracted using the SIFT algorithm, it is necessary to pair
the feature points extracted from the two images and calculate the corresponding geometric
transformation model to transform the two images to the same coordinate. However, the
feature point algorithm usually contains n-dimensional feature descriptors, and we usually
describe the matching results by the difference between the descriptors, which is calculated
by the Euclidean distance shown in Formula (8):

D(p, q) =
∣∣∣∣Dp − Dq

∣∣∣∣ = √ n

∑
i=1

(
Dp[i]− Dq[i]

)2 (8)

where p and q represent the feature points in the reference image and the target image,
respectively, Dp,Dq represent their n-dimensional descriptors, respectively.
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In theory, the closer the distance of the two feature points, the more similar and the
higher the matching rate, but actually, this is not entirely correct; the overlapping area to
detect the characteristic points can also match the most similar matching points, but in fact
it is not a successful match, so not all of the feature points that match are found. Moreover,
in the matching process, a feature point may be close to two or even more points at the
same time. If the closest point is simply chosen as the matching point, it is not necessarily
correct, which may lead to mismatching.

Usually, we calculate the Euclidean distance between each feature point and the other
points to be specified, and obtain the nearest neighbor point and the next nearest neighbor
point.

r =
d1

d2
< T (9)

where q1 is the nearest neighbor point of one current feature point; q2 is the next nearest
neighbor point of one current feature point; d1 and d2 are the Euclidean distance, respec-
tively; r is the ratio of d1 and d2; and T is a set threshold value. If the relationship between
these values satisfies Formula (2), then the feature points p and q1 are preliminarily identi-
fied as a set of correct matching point pairs. The threshold value is generally between 0.4
and 0.6.

Generally, in order to reduce the number of mismatches, we need rough matching to
initially determine the feature point pairs, and then remove the mismatched point pairs
through exact matching

The initial matching may contain many false matches. In order to remove these false
matches, the filtering algorithm, random sample consensus (RANSAC), is used. RANSAC
estimates the parameters of the mathematical model through the iteration from a group of
data containing “outfield points”. Therefore, it is an uncertain algorithm, that is, it produces
a reasonable result with a certain probability, which means that the results will be more
accurate.

The steps for estimating the model and filtering outpoints through the RANSAC
algorithm are as follows:

(1) Four pairs of point pairs are randomly selected from the coarse matching feature point
pairs. Any three pairs are not collinear. The parameters, namely the matrix of the
transformation model, are calculated by the least square method.

(2) Put all the matching point pairs into the model. Calculate the point after the transforma-
tion of the Euclidean distance in each group. Set a threshold value of the delta. If the
current point to calculate the Euclidean distance is less than the threshold, the current
point for the model is within a set of points. Then, their point number is recorded. If
it is greater than the threshold, it is eliminated.

(3) Repeat steps (1) and (2) to calculate the number of interior points of the model for
comparison each time. Retain the model with the most interior points.

(4) In the repeated iterative calculation, when the number of the interior points reaches
a certain number, the model with the largest interior points is taken as the result, or
when the number of iterations reaches a certain number, the current model with the
largest interior points is also output as the result.

2.3.3. Model Estimation

The traditional Mosaic algorithm estimates the model through all the matching points
and obtains a global transformation matrix to transform the whole target image. However,
the alignment ability of a global transformation matrix in the face of a more demanding
image is not enough. In this study, we used the AANAP algorithm for the model estimation.

The AANAP algorithm is processed using the following steps:
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(1) Local matrix calculation.

x, y are the pixel coordinate points on the reference image, which are mapped onto the
reference image by transformation matrix H. The mapped coordinates are x′, y′. Write the
matched point pair coordinates as homogeneous coordinates: p̂ = [x y 1]T , p̂′ = [x′ y′ 1]T ,

03×1 = p̂′ × Hp̂ (10)

Set h1 = [m0 m3 m6]
T , h2 = [m1 m4 m7]

T , h3 = [m2 m5 1]T , and (10) is transferred
into (11):

03×1 =

 03×1 − p̂T y′ p̂T

p̂T 03×1 −xp̂T

−yp̂T x′ p̂T 03×1

 h1
h2
h3

 (11)

According to the above formula, only the first two lines are linearly independent.
Assume there are N couple feature points, { p̂i}N

i=1,
{

p̂′i
}N

i=1, and matrix h is estimated by
Formula (12)

h = argmin
h

N

∑
i=1
‖
[

ai,1
ai,2

]
h‖

2

= argmin
h
‖Ah‖2 (12)

where ai,1, ai,2 represent the first two lines of Formula (11). A ∈ R2N×9 consists of N
vertically stacked on ai. In order to ensure 8 degrees of freedom of the matrix, we set
‖h‖2 = 1. Then, by adding the weight coefficient, the local homography matrix is obtained
by the mDLT framework, and the form is as follows (13):

hj = argmin
hj

N
∑

i=1
ωi,j‖

[
ai,1
ai,2

]
h‖

2

= argmin
h
‖Wj Ah‖2,

wi,j = max
(

exp
(
−‖pi − pj‖2/σ2

)
, γ
)

, WJ = diag
([

ω1,jω1,j · · ·ωN,jωN,j
]) (13)

where ωi,j is generated by the offset Gaussian, and Wj is the weight matrix’s size, 2N × 2N.
The closer the pixels are to pj, the higher the weight coefficient, ωi,j, while the pixels

that are further apart have the same value. σ is a scalar, diag(·) represents a diagonal matrix,
and γ ∈ [0 1] is an offset to prevent numerical problems.

(2) Linearization of the homograph matrix.

When extrapolating non-overlapping regions, homomorphic transformations caused
extreme unnatural and scaling effects, which can be minimized by linearization. The
linearization of holography at any point, q, in the neighborhood of anchor point p can be
understood by considering the Taylor series of the homomorphic transformation, h(q), of
the following form:

h(q) = h(p) + Jh(p)(q− p) + (‖q− p‖) (14)

where Jh(p) is the Jacobian iteration of an isomorphic transformation of point p, in which
the first two terms of this formula provide the best linearization.

(3) Global similarity transformation.

Using the RANSAC algorithm, we set different thresholds to calculate the transforma-
tion matrices of different planes. Assume that the initial threshold for εg directly eliminates
the abnormal points (outliers), and then use the new threshold ε l < εg; the search should
contain the single-sex matrix and reserves; to remove this interior point, repeat the above
steps to find multiple single-sex matrices, until the point number is less than η. Then, the
calculation according to the multiple single matrices should retain its rotation angle. The
smallest rotation angle is taken as the final global similarity transformation matrix S.

(4) Integration of global similarity transformation.
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The perspective distortion problem can be solved by global similarity transformation.
In order to ensure the natural result of the whole mosaic, the following equation is used to
integrate the local holography matrix and the global similarity transformation:

Ĥ(t)
i = µh H(t)

i + µsS (15)

where H(t)
i represents the ith local holography matrix, and Ĥ(t)

i is the local homograph
matrix after integration. t represents the target image, and r represents the reference image.
µh and µs are the weight coefficients of the local homograph matrix and global similarity
transformation matrix, respectively.{

µh(i) + µs(i) = 1

µh(i) = 〈
−−−→
κm p(i),−−−→κmκM 〉/

−−−→
κmκM

(16)

µh and µs are between 0 to 1. Assume that or and ot are the centers of the reference
image and the transformed target image, respectively. κ is the projection point of the

transformed target image in the direction of −−→orot . κm and κM are the maximum and

minimum values in 〈
−−−→
or p(i),−−→orot 〉, respectively. p(i) represents the ith point on the final

image.
The flowchart of the image registration is shown in Figure 3.
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2.4. Image Fusion Based on Improved Suture

The image suture line refers to the line of pixels that are most similar to each other
in the overlapping area of the mosaic images. The two sides of the line are obtained from
the content of two images, respectively. Then, the fusion strategy is carried out locally on
both sides of the suture line. The suture strategy greatly reduces the overlap area, which in
turn alleviates the problems of blurring and ghosting. The higher the quality of the suture
found, the more natural the transition of the two images on both sides of the line will be.

In this paper, we adopted the optimal suture strategy based on the graph cutting
method. Moreover, we improved the energy function to adapt to the tea garden image.
This method ensures that the suture line is searched along the road as far as possible, which
reduces the truncation and dislocation of the tea tree. By referring to the energy function
based on the edge [27], the function is improved, as is shown in Formula (17):

w =
EColor + ETexture + τ

EGrad
(17)
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where w represents the final weight, EColor represents the chromatic aberration term, EGrad
represents the gradient difference, ETexture represents the texture difference term, and τ
represents the penalty term.

For low-altitude tea garden images, due to the impact of different shooting angles
and registration accuracy, tea trees on both sides of the suture line may not be aligned
when stitching, resulting in truncation. In order to solve this problem, the improved suture
method can position the dividing line as close to the strong edge of the image as possible,
while searching the road in color, so that the dividing line is more difficult to detect and the
stitching effect is more natural.

2.5. Tea Tree Extraction
2.5.1. Vegetation Index

By using vegetation indices, green plants in the images can be extracted. Not all the
green plants need to be extracted; this is only necessary for tea trees.

In order to search for sutures along the road between the tea rows as far as possible,
the image of the tea garden was observed, and it was found that there was a significant
color difference between the road and the tea trees. The tea trees mainly presented a dark
green color, while the road was mainly light yellow and red. Several vegetation indexes are
compared in the Supplementary Materials (Supplementary Figures S1 and S2). Based on
these results, the red–green ratio index (RGRI) was used in this paper to calculate the mask
of tea trees.

RGRI =
r
g

(18)

where r, g represent the red and green components in the RGB space, respectively. By using
the ratio of pixels instead of each pixel, the image can represent the content of the green
vegetation and other aspects; by setting a threshold range, we can obtain a good effect, as it
can inhibit the images of hay, roads, and houses.

If we want to calculate and classify the neighborhood range of every pixel in the
image, the workload for this exercise is undoubtedly great and unrealistic. In order to
solve this problem, this paper obtains the points on the image at an average interval of a
certain distance in both the horizontal and vertical directions, and then calculates the above
features only for the neighborhood of these extracted points.

In the general images, there are many non-green features, such as roads, which can
be directly eliminated by other vegetation indices after image preprocessing. The RGRI
index, which has a better performance, was adopted to eliminate the content of non-green
vegetation. Through the RGRI index of image processing, we set a threshold to retain most
of the vegetation, with the likelihood of open operation, eliminating the legacy of the path
points, and then expanding operations to tea trees in the middle of the hole to be filled, to
obtain the final saturation mask image binarization. When extracting points in the image,
the mask should be retained. Because the interference information extracted through the
RGRI index mainly includes the target tea leaves and other trees and weeds with similar
color characteristics, other contents that are directly removed are unnecessary and have
no value of calculation, and the number of points can be further removed to reduce the
calculation amount.

2.5.2. Image Features

In this paper, we extracted the color and texture features of tree images. By comparing
several color models (HIS, LAB, and RGB), we observed that HSV had an intuitive expres-
sion of color tone, bright-colored degree, and degree of lights, which was convenient for
color contrast. In its space, it is easier to track objects of a certain color, often used to divide
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objects of a specified color. The relationship between the RGB color model and HSV color
model can be determined by the following Formula (19):

H = arccos
{

(R−G)+(R−B)

2
√

(R−G)2+(R−B)(G−B)

}
, B ≤ G

H = 2π − arccos
{

(R−G)+(R−B)

2
√

(R−G)2+(R−B)(G−B)

}
, B ≥ G

S = max(R,G,B)−min(R,G,B)
max(R,G,B)

V = max(R,G,B)
255

(19)

Figure 4 shows examples of the RGB model transferred to the HSV model and its
H/S/V components.
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2.5.3. Mean Shift Clustering

After the point set was extracted, as described in the previous section, the color and
texture features were used for extraction. All the point sets obtained their own 18 char-
acteristic values, and a range was set. When the difference between them was less than
this range, the point was considered as belonging to the tea tree. However, concerning the
method by which the threshold value is selected, the complexity and variability of each
picture may lead to the fluctuation of the threshold value, resulting in the uncertainty of
the final classification result. Moreover, if every point is calculated with the characteristic
value of standard tea leaves, the number of calculations will be very large.

The image content mainly contains tea trees, trees, and other similar green vegetation.
Therefore, each category has certain similarities between its point sets. According to this
characteristic, we can first cluster the unclassified point sets, and then calculate an average
value for each category of the clustering and compare it with the standard value. The
comparison between the points is converted into the analysis between the classes, which
greatly reduces the number of calculations. Because each image is different, the content of
the information contained in the category is not consistent, so the clustering number set
directly affects the subsequent clustering results; therefore, this paper adopted the adaptive
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mean shift clustering algorithm. This algorithm does not need to be artificially to set, but
the algorithm itself is used to search the algorithm to determine the point gather class
number.

Mean shift clustering is a mountain climbing algorithm, which seeks the region with
the highest density in the data using the sliding the window technique and iterating a
step-by-step method. The specific steps are as follows:

(1) Randomly select a clustering point as the center, a sliding window with radius r, and
calculate the highest point of data density in the current window as the new center.

(2) Sliding the window to the new center and recalculating the cycle iteratively moves
toward the direction of a higher density.

(3) Convergence when there is no higher density in any direction.
(4) The generated multiple clustering points are moved and converged in accordance with

the above steps. When multiple centers converge and overlap, the points through
which they pass are grouped into a class.

After clustering all the point sets by the means shift clustering algorithm, we need
to analyze them to determine the target of the tea tree. The clustering situation and the
standard eigenvalue of the tea tree are known, so we only need to use the standard value
and the extracted point sets for comparative analysis. In order to avoid the influence
of uneven characteristic values, we normalized the point sets and standard values and
obtained their average values. Then, we calculated their Euclidean distance. The classes
with minimum Euclidean distances were the markers for the tea tree.

2.5.4. Tea Tree Identification

In this paper, the k-nearest neighbor (KNN) algorithm was adopted, which is a simple
and practical classical machine learning algorithm. The main idea was to compare a sample
with a data set. The K data in the data set that are the most similar to the sample belong to
that category, then, in that case, the sample belongs to that category.

Through the KNN algorithm, the standard sample of tea leaves and the clustering
point set are classified, and the standard sample is the most similar to the data of a certain
class; this kind of point set is the target point set of the tea leaves for which we are
searching. After the points are extracted separately, the scattered point sets are separated
by a minimum outer polygon and a certain degree of morphological operation to remove
miscellaneous points and expand the boundary. Finally, the tea tree targets distributed
in multiple places are fitted. In the fitting stage, if the number of each independently
connected point set is less than a certain number, it is immediately removed. For most of
the cases, there are isolated clusters of very similar green vegetation. Figure 5 present the
flowchart of the tea tree extraction.
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2.6. Results Evaluation

There are two aspects to evaluate the results of the study: visual comparison and
4 evaluation rates.

First, we used AutoStitch, a commercial software to evaluate the image mosaic re-
sults. We used the software and our method to stitch the same images. In traditional
methods [28,29], if the edge between the images is not visible to human eyes, the mosaic
image is regarded as “applicable”. Some of the literature states that if the result image is
complete, clear, or there is no obvious distortion, the stitching algorithm is appropriate
and practical [30]. Therefore, our method resulted in “no visible edges” in the manner of
commercial software, or if the visual results are better, the mosaic image is regarded as
“good”.

Then, we calculated the rates to evaluate the tea tree extraction results. The tea trees
are shown in the images as pixels; therefore, we counted the pixels. The ground truth pixels
were apprehended by the human eye by using Photoshop software, including tea tree
pixels from both the raw images and mosaic images. The four rates used were the accuracy
rate, error rate, omission rate and the union of the intersection ratio (IOU) calculated as
Formulas (20)–(23):

accuracy rate =
the right tea tree pixels extracted in this study

ground truth
(20)

error rate = 1− accuracy rate (21)

omission rate =
the tea tree pixels unextractedin this study

ground truth
(22)

IOU =
ground truth pixels∩ tea tree pixels extracted in this study

ground truth pixels∪ the tea tree pixels extracted in this study
(23)

3. Results and Discussion
3.1. Tea Garden Image Registration

The feature points extraction effect of the SIFT algorithm is shown in Figure 6; the
green points represent the extracted ones.
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Figure 6. SIFT feature points in the tea garden images.

In theory, the closer the distance of the two feature points, the higher the matching
rate, which shows that they are more similar [27]. However, according to Figure 6, the
actual situation is not entirely the same as the theory. The most similar matching points
should appear in the overlapping areas, but they, in fact, do not match. Moreover, a feature
point is close to two or even more points simultaneously. If the closest point is simply
chosen as the matching point, it is not necessarily correct, which may lead to mismatching.

In order to reduce the number of false matchings, we need rough matching to de-
termine the feature point pairs initially, and then remove the false matching point pairs
through fine matching. The matching effect of feature points is presented in Figure 7.
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Figure 7. Matching effects of the (a) rough match and (b) exact match.

The process of grid partitioning and alignment are shown in Figure 8. SIFT was used
to extract the feature point pairs retained after the fine matching of the feature points,
and then different thresholds were set through RANSAC to obtain the global similarity
transformation matrix with the minimum included angle. The MDLT efficient algorithm
provided by the author was used to obtain the homograph matrix in the grid. Then, after
integrating each grid, the final local single sex matrix and transformation are calculated, as
shown in Figure 8e. In 2013, Zargoza and Chin et al. proposed an APAP algorithm based
on grid partitioning [31]. By evenly dividing the image into multiple grid regions, each
grid would calculate its own transformation matrix, which greatly improved the degree of
image alignment. For the deformation problem in the non-overlapping area, the adaptive
AANAP algorithm [28] proposed by Lin C et al. was improved, based on the APAP
algorithm, by adding a linearized projection transformation, automatically estimating
the global similarity transformation in the overlapping area, and making corresponding
adjustments to the target image. At the same time, a variety of improved algorithms used
to add constraints [32] were proposed successively, such as adding line-keeping constraints
based on the APAP algorithm to reduce distortion [33]. In our study, the reference image
and target image were overlayed. Through the mesh deformation (Figure 8e), for most of
the area, the fuzzy linear and ghosting were slowed down. By using the linear fusion, the
original border splicing trace can be observed clearly.
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3.2. Tea Garden Image Fusion

In this paper, the results of the “color” feature energy function, “gradient” feature,
“color + gradient” and energy function proposed are shown in Figure 9. The red lines are
the searched suture lines by different features.
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Figure 9. Results of the suture lines with different energy functions (a) based on the “color” feature,
(b) “gradient” feature, and (c) “color + gradient” feature (d) in this study.

As shown in the above figures, the bold, red, solid lines are used to display the sutures
searched. The image suture line refers to the line of pixels that are most similar to each
other in the overlapping area of mosaic images. The two sides of the line are taken from the
content of two images, respectively. The suture strategy greatly reduces the overlap area,
which in turn alleviates the problems of blurring and ghosting. The higher the quality of the
obtained suture, the more natural the transition of the two images on both sides of the line.
Most sutures searched based on the color, texture, or traditional energy function [34,35]
combine color and texture and cross the walking spaces of the tea tree area. They increased
the probability of misplaced truncation. The algorithm used in this study first searches
along the road between the tea trees, reducing the number of tea trees passing through,
ensuring the continuity and integrity of the tea trees as much as possible, which conforms
to human visual perception and facilitates subsequent agricultural analysis.

In this paper, we also represented other algorithms for analysis, as shown in Figure 10.
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Figure 10. Results of AutoStitch, AANAP and the algorithms used in this study. (a) Reference images;
(b) target image; (c) suture line results of (a,b) in this study; (d) results in AutoStitch; (e) magnified
images in red frames of (d); (f) results in AANAP; (g) magnified images in red frames of (f); (h) results
in this study; and (i) magnified images in red frames of (h).

It can be observed in Figure 10 that if the overlapping area is small, there are errors in
stitching traces at the boundary. The errors are not obvious in images of an original size
(Figure 10d,f), which do not affect the application of the image. In this way, the stitching
results of the AutoStitch software and AANAP algorithm have good effects. When the
images were magnified, the results are different. When AutoStitch searches for the suture
lines, there is a dislocation in the road, shown in Figure 10e, while the AANAP algorithm
performs linear fusion on the whole overlapping area, so the image becomes fuzzy and
some tea tree details are lost (Figure 10g). The algorithm in this paper solved the boundary
stitching traces (Figure 10i), and achieved good stitching results by the best suture line
along the boundary and by crossing the tea tree as little as possible, which verified the
effectiveness of the algorithm in this paper.
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3.3. Tea Tree Extraction
3.3.1. Vegetation Index

By replacing the pixel value of each pixel with the ratio, the image obtained can better
distinguish green vegetation from other contents. By setting a threshold range, a good
effect can be achieved, and most of the other withered grass, roads and houses can be better
suppressed. The overall effect is shown in Figure 11.
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Figure 11. Original image (a) and the image with RGRI features (b).

In Figure 11b, the road and the walking spaces between the tea trees are inhibited,
while the green features of the tea garden, including the green trees, pools, and other green
crops, are retained. Most non-green features, such as the roads, can be directly eliminated
by the RGRI index calculation with a set threshold. Then, an open operation was used to
eliminate the legacy of the path points, and expanding operations were used to fill the hole
of tea tree (r = 5). Finally, we obtained the binary mask image (Figure 12c). If the extracted
point is in the image, it is retained; otherwise, is deleted. By using this method, we can
reduce the calculation. The steps are shown in Figure 12.
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As shown in the figures above, the size of the image is 5472 × 3648, with a total
of 19,961,856 pixels. If every pixel of the image is calculated, the workload is large and
impractical for application. Therefore, we applied points to the image at a certain distance
between the horizontal and vertical directions. Assuming that the spacing is 20 pixels,
273 and 182 points can be selected in the horizontal direction and the vertical direction,
respectively, with a total of 49,686 points, about two thousandths of the original picture,
and then filtered by the binary template of RGRI. There are only 29,274 points remaining,
and as the spacing is increased, the computation shrinks even further.

3.3.2. Tea Tree Identification

By mean shift clustering, the tea trees and other green plants were categorized as
different point sets. According to their features, we can cluster the unclassified point sets.
We calculated the mean value of each point set. Then, we compared them with the standard
value. By using this method, we do not need to compare points by points, which greatly
reduces the number of calculations. The results are shown in Figure 13.
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Figure 13. Mean shift clustering results of different image examples.

Because each image obtains different clustering results and numbers of clusters, the
colors are randomly generated, leading to the tea trees in different images being displayed
in different colors. For example, in Figure 13, the clustering results of the left and right
images are 16 and 22 categories, respectively. Most tea trees are grouped into one category,
while the other green plants are displayed and distinguished by different color point sets.
However, this method is not suitable for images with a complex content and large amounts
of information.

The tea group and clustering point sets are classified by the KNN algorithm (n = 20).
KNN classification and tea tree extraction is shown in Figure 14. If one clustering point set is
close to the standard sample, it is the target one. the point set is marked green (Figure 14b).
Then, smallest peripheral polygons are carried out for the scattered point of morphological
operations (r = 5). By using this method, the miscellaneous points are removed and the
boundaries are expanded (Figure 14c). Finally, the tea tree targets distributed in multiple
places are fitted. If the number of one point set is less than 20, it is removed from the
extraction results.
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Figure 14. KNN classification and tea tree extraction. (a) Mean shift clustering results; (b) KNN
classification results; (c) contour fitting result; and (d) extraction results.

After extracting the tea trees from the images, we utilized Photoshop software to
artificially extract the tea tree pixels from the tea garden image as the ground truth. The
comparison between the ground truth and method performed in this study are shown in
Figure 15. The green pixels represent the correctly extracted part when the extracted pixels
matched the ground truth; the red pixels represent the incorrectly extracted part when the
extracted pixels did not match the ground truth; and the blue pixels represent the missed
extracted part of the tea tree.

AgriEngineering 2022, 4, FOR PEER REVIEW  20 
 

 

  
(c) (d) 

Figure 14. KNN classification and tea tree extraction. (a) Mean shift clustering results; (b) KNN 

classification results; (c) contour fitting result; and (d) extraction results. 

After extracting the tea trees from the images, we utilized Photoshop software to ar-

tificially extract the tea tree pixels from the tea garden image as the ground truth. The 

comparison between the ground truth and method performed in this study are shown in 

Figure 15. The green pixels represent the correctly extracted part when the extracted pixels 

matched the ground truth; the red pixels represent the incorrectly extracted part when the 

extracted pixels did not match the ground truth; and the blue pixels represent the missed 

extracted part of the tea tree. 

1 

    

2 

    

3 

    

 (a)  (b)  (c)  (d)  

Figure 15. Comparison images of the ground truth and method in this study. (a) Raw image; (b) 

tea tree extracted by humans; (c) tea tree extracted in this study; and (d) result of the contrast be-

tween (b,c). 

It can be observed in Figure 15c,d that the algorithm in this study eliminated the in-

terference information of the roads, trees, weeds, and tea tree boundary well, and effec-

tively extracted the tea tree target. However, the result was sensitive to light, which espe-

cially caused occlusion. Some clustering of the tea tree points was classified into another 

kind of point set. Additionally, as the complexity of the scene increased, some trees re-

mained as tea trees. 

Figure 15 presents the comparison images of single images. Figure 16 presents the 

results of the application of the algorithm to the tea garden mosaic images. 

Figure 15. Comparison images of the ground truth and method in this study. (a) Raw image;
(b) tea tree extracted by humans; (c) tea tree extracted in this study; and (d) result of the contrast
between (b,c).

It can be observed in Figure 15c,d that the algorithm in this study eliminated the inter-
ference information of the roads, trees, weeds, and tea tree boundary well, and effectively
extracted the tea tree target. However, the result was sensitive to light, which especially
caused occlusion. Some clustering of the tea tree points was classified into another kind of
point set. Additionally, as the complexity of the scene increased, some trees remained as
tea trees.

Figure 15 presents the comparison images of single images. Figure 16 presents the
results of the application of the algorithm to the tea garden mosaic images.
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Figure 16. Contrastive example of the tea tree extraction from the tea garden mosaic images. (a) mo-
saic image 1; (b) tea tree extracted as the ground truth of (a); (c) tea tree extracted in this study;
(d) result of the contrast between (b) and (c); (e) mosaic image 2; (f) tea tree extracted as the ground
truth of (e); (g) tea tree extracted in this study of (e); and (h) the result of the contrast between (f,g).

It can be observed in Figure 16 that the error or omission occurs on the tea tree border
(the blue blocks in Figure 16d), if the scenario is simple, similar to Figure 16a. However, in
more complex scenarios, including other plants (Figure 16e), most of the trees and weeds
were removed, but some were still reserved (the red blocks in Figure 16h), especially in the
sparse areas and the shadows (Figure 16g). As the mosaic image contains more interference
information, the result decreases.

We analyzed the pixels in all the images, including the tea tree pixels extracted in this
study, the ground truth pixels, and the missed extracted tea tree pixels to calculate the
4 rates. These are the accuracy rate, error rate, omission rate and IOU. In this paper, the
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accuracy and error rates are based on the proportion of the pixel area of the extracted tea
trees. The omission rate is based on the proportion of the area of the tea trees extracted
manually, and the IOU of manual extraction and extraction in this paper. The results of the
three image groups and their mosaic images are shown in Table 1. During the calculation,
the following data were used: the size of the raw image was 5472 × 3648, with a total of
19,961,856 pixels; the spacing of the clustering was set to 20 pixels; 273 and 182 points of
each raw image were selected in the horizontal and vertical directions, respectively, with a
total of 49,686 points, about two thousandths of the original picture, and then filtered by the
binary template of RGRI. In this way, there are only 29,274 points of each image remaining;
the threshold value of RGRI is 0 to 0.9; the r of the scattered point for morphological
operations is set to 5; and the KNN algorithm, n of neighbors is set to 20.

Table 1. Results of this method in the image mosaic and tea tree extraction.

Accuracy Rate Error Rate Omission Rate IOU

Group 1 (30 m high) 84.91% 15.09% 8.63% 78.61%

Group 2 (60 m high) 91.24% 8.76% 11.87% 81.26%

Group 3 (100 m high) 93.28% 6.72%% 9.26% 85.17%

Mosaic 1 (images for Group 1) 84.96% 15.04% 10.62% 77.17%

Mosaic 2 (images for Group 2) 79.94% 20.06% 18.17% 67.19%

According to the content presented in the table above, the algorithm in this paper
can accurately extract more than 84% of the tea trees. With the decrease in the height of
the image, the details of the tea trees increased alongside the interference information, the
accuracy rate decreased from 93.28% to 84.91%, and the error rate increased from 6.72% to
15.09%. The omission rate and IOU also decreased, especially in the mosaic image (Mosaic 1
and Mosaic 2). The tea tree extraction accuracy rates in the mosaic images are 84.96% at
30 m high, and 79.94% t 60 m high. With the increase in the image content from 100 m high
to 30 m high, the IOU of the mosaic images decreased in the single images. While the IOU
in the mosaic images increased from 67.19% to 77.17%, the flight height decreased from
60 m to 30 m. This represents the advantage of our method.

The images collected in this paper are all visible light waves, which have limitations in
the extraction of tea trees. The algorithm may be sensitive to light and sparsely situated tea
trees. If the selection of the feature vectors is not reliable, which is not robust to illumination,
it causes a situation in which the extracted standard tea tree features cannot meet the overly
complex environment. The feature vectors constructed by color and texture are still deficient
in distinguishing the complex content. This boundary problem is not considered in the
calculation of the feature vectors, and the instability of the tea tree boundary can be clearly
observed in the results. In the actual test, the color features were found to have a greater
impact.

4. Conclusions

In the present study, we used a drone to take RGB images of a tea garden from three
different heights. Then, we improved the energy function to realize the image mosaicking
of the tea garden. The suture line searched using this method ensured the continuity and
integrity of the tea trees as much as possible. After image mosaicking, we built a feature
vector to extract the tea trees from the tea garden images. By comparing our method
with the ground truth, the algorithm in this paper effectively distinguishes and eliminates
most of the interference information from the images. The IOU in a single mosaic image
was more than 80%, and the omission rate was 10%. The extraction results in accuracy
ranging from 84.91% to 93.82% for the different height levels (30 m, 60 m and 100 m) of the
single images. The tea tree extraction accuracy rates in the mosaic images are 84.96% at
a height of 30 m and 79.94% at a height of 60 m. Facing the complicated and changeable
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environment, similar to the tea gardens, this paper proposes a strategy to distinguish the tea
trees from the information concerning similar green vegetation. How to reduce the degree
of deformation or dislocation truncation in tea garden image mosaicking is an important
and difficult research area. Our future work aims to collect more information and facilitate
the subsequent agricultural analysis, multispectral and hyperspectral.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/agriengineering4010017/s1, Figure S1. extraction examples by
vegetation indexes; Figure S2 RGRI index extraction effect of different thresholds. References [36,37]
are cited in the Supplementary Materials.
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