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Abstract: Among its many functions, soil represents the active natural medium for plant growth.
Different soils have various structural characteristics, that correspond to their qualitative parameters
in terms of physical, chemical, and biological fertility. Because of their extremely slow formation
processes, soils are also a non-renewable resource, easily subject to degradative processes. Among
their mineral constituents many agrarian soils present, in addition to the fine earth, variable per-
centages of coarse fractions in their arable layer, which interfere with the crop growth, requiring
more energy to manage cultivation operations, and damaging the machinery up to making its use
impractical. In these conditions, it becomes necessary to proceed with the soil destoning, particularly
for the management of Precision Farming techniques. Depending on the percentages, sizes and
types of coarse fractions, the soil destoning systems concern: (i) the collection and removal of stones
from the field, (ii) the on-site stones crushing, and (iii) the stone burial. In this article, we report the
first evaluation of a deep burial destoning system carried out in the CREA Experimental Center of
Treviglio (Italy). With the described reclamation system, a significant long-term improvement of soil
quality in a 600 mm thick arable layer was achieved; avoiding the shortcomings of the destoning
systems as commonly applied in agricultural lands.

Keywords: soil quality; stoniness; soil destoning systems; precision farming

1. Introduction

In the common meaning, the word “soil” defines the top layer of the earth’s crust,
composed of mineral particles, organic matter, water, and air, that hosts most of the
biosphere and constitute the natural medium for the growth of plants [1,2].

In the agricultural context, the concept of “soil quality” [3] is associated with those
of productivity and sustainability of use and is evaluated in terms of physical, chemical,
and biological fertility, variously defined as the soil capability to “receive, store and recycle
water, minerals and energy to support plant production at optimal levels and preserve the
health of the environment” [4]; or to “act as a natural means for the growth of plants that
sustain human and animal life” [5]; or the “capacity to function, within natural or managed
ecosystem boundaries, to sustain plant and animal productivity, maintain or enhance water
and air quality, and support human health and habitation” [6].

Because of their extremely slow rate of forming processes, soil must be considered as a
non-renewable resource and highly susceptible to degradative processes and threats, such
as erosion, mineralization of organic matter, destructuration, lack of biodiversity, floods,
and landslides.

Various combinations or intensities of these threats lead to the fertility reduction
of soil and enhance the desertification phenomena [7]. To these must be added the soil
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consumption due to the artificial covers: in the years 2012–2018, land consumption in
Europe amounted to 539,000 hectares/year, 78% of which by agricultural areas [8]; while in
Italy the artificial coverage reaches 7.11% of the national territory, corresponding to about
2,140,000 hectares, mainly represented by herbaceous areas, with an estimated increase
of 5670 hectares in the land consumption in 2020 compared to 2019, corresponding to an
average of 15 hectares per day [9–12].

In absence of realistic possibilities to reverse this trend in the short term, it becomes
fundamental to maximize the efficiency of agricultural practices, adopting all cultural
techniques compatible with the concepts of sustainable intensification to enhance crop
productivity, contextually limiting the soil exploitation and degradative phenomena. This
leads firstly to maximize the efficiency of the use of resources, according to the concepts of
marginal productivity pursuit in the use of production factors since, in the absence of real
economic profitability, no environmental practice can be effectively adopted [13–15].

In agricultural management, the most important factor in the implementation of the
different cultivation methods and in the consequent cultivation results, is the soil texture,
as the distribution of the mineral particles class size that constitutes the fine earth of their
solid fraction; these last are sand (0.05 to 2 mm), silt (0.002 to 0.05 mm), and clay (less than
0.002 mm), that define the different types of soil according to their respective texture class
percentages [16].

In the determination of texture, soil fractions over 2 mm of diameter, such as pebbles,
cobbles, gravel, stones, and boulders, are not included in the textural classes and are
considered as a relatively inert fraction in soil and crops dynamics.

However, the soil skeleton can have some significant physio-chemical properties that
affect soil structural characteristics, such as water flow and retention, compaction and
erosion, thermal exchange, and bulk density [17,18], showing in some cases properties
similar or higher than the fine earth in the formation of secondary minerals, thus playing
a significant role in the soil physio-chemical dynamics as a reservoir of nutrients, cation
exchange capacity (ECEC) and adsorption of organic pollutants [19–21]. On the other hand,
an excessive presence of skeleton in the soil’s arable layers hinders or is incompatible with
the operational requirements of modern cultivation techniques and machinery (i.e., minimal
tillage, precision sowing), which require fields without obstructions and arable layers of
fine heart, being easily impeded or damaged by coarser fragments [22–24].

With the aim to contribute to solving the stoniness problems of agrarian lands, avoid-
ing the shortcoming of destoning systems commonly adopted, an experimental trial of stone
deep burying has been performed, to enhance in long-term the soil workability, increase
the thickness of the arable layer, and maximize the operativity of cultivation machines.

2. State of the Art
2.1. The Soil Skeleton and Stony Soils Workability Classes Concept

The presence of stony soils in agrarian lands is estimated in about 30% in Western
Europe (Figure 1) [25]; more than 60% in the Mediterranean basin; and about 16% in the
USA [21].

The coarse fraction in the soil’s arable layer is commonly described in terms of skeleton
percentage by weight, surface coverage, and size of the fragments, as per Table 1 [26].

Table 1. FAO Classification of coarse surface fragments.

Surface Cover (%) Size Classes mm

N: None 0 F: Fine gravel 2–6
V: Very few 0–2 M: Medium gravel 6–20
F: Few 2–5 C: Coarse gravel 20–60
C: Common 5–15 S: Stones 60–200
M: Many 15–40 B: Boulders 200–600
A: Abundant 40–80 L: Large boulders 600–2000
D: Dominant >80
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Other classifications are based on stoniness percentages by volume [27], or through
dimensionless indexes, such as the Stoniness Degree, defined as the ratio between the
Stones Mass (StM) and Soil Mass (SoM) [22]:

SD = StM/SoM (1)

The stoniness impact on the efficiency and operational capabilities of soil tilling and
cultivation machines can be evaluated through the calculation of the Disturbance Degree
(DD) that is directly proportional to the amount of skeleton, the size of the stones and the
distribution of their size classes, as defined by the formula [28]:

DD = 0 × X + 10 × Y5 + 10 × Z2 + 10 × U0.9 + 10 ×W0.5 (2)

where X, Y, Z, U, W, indicate the proportions, expressed in unit terms, of the different
particle size classes, (Figure 2), the sum of which must always be equal to 1 (100%) [28].

Of these, the X class, corresponding to the fine earth, always has zero value; Y class
(gravel, fine & medium gravel: 2–20 mm) is considered to be of no impediment to soil
tillage’s; Z class (gravel, coarse gravel; medium stone: 20–50 mm), at about 40–50% affects
the operational capabilities of the machines, in particular, if moved by the PTO (power take-
off); U class (cobble, large stone: 50–150 mm), becomes significant limiting for machining
already from 15–30%; W class (stone, very large stone: >150 mm), involves serious prob-
lems of soil tillage’s management already at 10% of presence. The concept is graphically
reported in Figure 3, where the 10% of the “W” class line (0.1) corresponds to 3.3 value of
Disturbance Degree, which is over the limit of “A” workability class of soil, as represented
in Figure 4 [28].
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Based on the different levels of Disturbance Degree, the operative limits of some
cultivation machines are reported in Figure 4. In the graph, the green zone indicates soils
that can be tilled without limitations; the yellow zone, the soils workable with appropriate
precautions, to avoid early wear or breakage of the working tools; the red zone, repre-
sent soils having stoniness incompatible with an acceptable quality of work and/or the
functional integrity of the machinery [28].

Even though the removal of stones from agricultural land can be an expensive process,
the excessive stoniness of arable layer entails interference with cultivation needs, damage
to machinery, increase energy consumption in cultural operations, making it difficult or
impracticable to use machinery [29].

Depending on the type of soil tillage’s required by the crops, the identification of the
soil workability class based on the stone’s disturbance degree (DD), can be a good index for
the choice of the machines to be used; as well as induce to the soil destoning, to optimize
the soil quality, according to the operational needs of modern cultural techniques, and
soil management machines, with the aim of saving non-renewable resources, reducing
operating and maintenance costs and maximizing crop yields.

2.2. Soil Destoning Systems

The most used destoning systems in agricultural land are basically three: the stones
collection and removal from the field, the on-site stones crushing, and the stones burial.

2.2.1. Stone Collection and Removal

The clearing of stones from fields usually consists of a three-step process: removal;
transportation; disposal [30,31].

These steps concern gathering the stones from the surface of the field and placing
them in a pile or windrow for stone bund building or later removal [32–34], using various
kinds of machinery, usually pulled and PTO moved (Figure 5a–c).

The main negative aspects of soil stone removal are:

• the reduction of the topsoil volume, in proportion to the volumes of stones removed;
• the possible resurfacing of other skeletons with subsequent soil tillage, especially if

effected at a depth greater than the destoned layer, which makes it necessary to repeat
the destoning operations.

• additional costs for the preventive soil preparation (ripping, stones windrowing), the
handling and the disposal of the removed stones.
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2.2.2. On-Site Stone Crushing

The on-site crushing [35,36] is carried out using various kind of stone crushing ma-
chines, moved by PTO or self-powered, with different operating capacity, depending on
working depth, size, and strength of the stones to be crushed, and equipped with teeth for
calcareous rocks (Figure 6a) or hammers for granite stones (Figure 6b).
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Figure 6. Stone crusher with teeth for calcareous rocks (a) and hammer for granite rocks (b).

The shortcoming of this technique concerns its high costs and poor effectiveness in the
case of granite stones, and changes in soil composition, with possible negative effects on its
physical, chemical, and biological characteristics [21]; moreover, if not adequately planned
and carried out, it can be also responsible for environmental disaster [37].

2.2.3. Stones Burial

The burial of the skeleton below the tillage depth avoids the reduction of topsoil
volume, does not change the physio-chemical characteristics of the soil, and allows to
obtain an arable layer composed of fine earth only. The typical approach used for burying
very large boulders is to dig a hole of adequate depth close to the boulder and then tip
it into the hole and cover it with soil [30]. For the other, more common, skeleton classes,
some machines that carry out the separation and burying the skeleton by continuous soil
sieving are currently available: these machines are usually derived by horizontal rotary
soil milling machines, equipped with a grid that retain the skeleton which is covered by
the fine earth ejected through the grid with the advancement of the machine [38]; or soil
sieving machines designed for windrowed soils [39].

The limit of both these kinds of machines is their working depth, not over 300–400 mm,
which makes them inefficient in case of high percentages of skeletons, for the small arable
layer of fine earth obtainable, or in presence of large stones (Figure 7).
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In this study, a concept of high deep burying was adopted, with the purpose to obtain
a long-term stable arable layer of higher workability class, and thickness for the cultivated
crops; avoiding the described shortcomings of destoning methods as currently adopted.
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3. Materials and Methods

The trial has been carried out at the experimental farm in Treviglio, Northern Italy
(45◦31′14′′ N; 9◦35′27′′ E; +128 m asl), in a soil classified as Calcic Skeletic Mollic Umbrisol,
with neutral-sub alkaline pH, according to the IUSS classification [40]. In these experimental
fields, many surveys have been carried out over the past years to evaluate both some
destoning systems [29,41,42] and the geoelectric variability of the soils [43], with the aim to
enhance the qualities of soils and the performances of cultivation machines; and obtain the
prescription maps to maximize the production of the crops.

3.1. Planning of Experimental Parcels

For the planned experimental activities, in the farm plots a parcel with the presence of
skeleton consisting of pebbles, gravels (classes Y–U), and coarse stones (class W) was iden-
tified, in percentages ranging from 25–35% in the 0–200 mm layer; 50–60% to 200–600 mm
deep, and >70% over 600 mm deep (Figure 8).
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Figure 8. Soil profile in experimental plots.

For the destoning of the test plots with the method described below, a HYUNDAI
Robex 140LCD-7A crawled arm excavator was used, equipped with a dozer blade, a toothed
bucket, a CM-CBR18 sieving bucket, with 40 mm diameter grid holes, chosen accordingly
to the trial needs to reach the soil workability class enhancement, among those available on
the market, and a smooth-blade bucket.

Two test plots of 10 × 20 m area were chosen (P1 and P3, Figure 9), as the thesis to
carry out the planned stones reclamation, while two other contiguous plots of the same
area of undisturbed soil have been delimited as control tests (P2 and P4, Figure 9), for the
following agro-mechanical soils and machinery comparisons.
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In the P1 and P3 plots, the soil was dug up to about 1 m deep (Figure 10a). The dug
soil was then sieved (Figure 10b), from time to time discharging in the trenches the stones
retained by the grid (Figure 10c).

AgriEngineering 2021, 3 FOR PEER REVIEW  8 
 

 

toothed bucket, a CM-CBR18 sieving bucket, with 40 mm diameter grid holes, chosen ac-
cordingly to the trial needs to reach the soil workability class enhancement, among those 
available on the market, and a smooth-blade bucket. 

Two test plots of 10 × 20 m area were chosen (P1 and P3, Figure 9), as the thesis to 
carry out the planned stones reclamation, while two other contiguous plots of the same 
area of undisturbed soil have been delimited as control tests (P2 and P4, Figure 9), for the 
following agro-mechanical soils and machinery comparisons. 

 
Figure 9. Experimental plots: P1, P3 destoned; P2, P4, undisturbed control. 

In the P1 and P3 plots, the soil was dug up to about 1 m deep (Figure 10a). The dug 
soil was then sieved (Figure 10b), from time to time discharging in the trenches the stones 
retained by the grid (Figure 10c). 

 
Figure 10. Scheme of the processing phase: (a) Trenches digging; (b) Soil sieving; (c) Discharging of 
retained stones in the trenches; (d) Refilling of trenches with sieved fine earth; (e) Compaction of 
sieved fine earth layer. 

The stone layer formed at the bottom of the trenches (Figure 11) was leveled and 
compacted with repeated passages of the crawled excavator; then the filling of the 
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retained stones in the trenches; (d) Refilling of trenches with sieved fine earth; (e) Compaction of
sieved fine earth layer.

The stone layer formed at the bottom of the trenches (Figure 11) was leveled and
compacted with repeated passages of the crawled excavator; then the filling of the trenches
with the sieved fine earth, including skeletal fractions up to 40 mm (classes Y and Z) was
completed (Figure 10d). To obtain an acceptable consolidation of the fine earth layer, and to
limit the possible variations of the field plan due to topsoil settling, the filling was carried
out in two phases providing, as for the stone layer, to leveling and compacting both layers
of fine earth, with repeated passages of the crawled excavator (Figure 10e).
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3.2. Electromagnetic Survey

Soil apparent electrical resistivity is an important indicator that relates directly and
indirectly to soil properties [44–48]. As it is expected that the burying technique does not
change the physio-chemical characteristics of the soil, an electromagnetic investigation was
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performed through the analysis of electrical conductivity in the test area at four depth layers,
using a SoilXplorer (GeoProspector GmbH, Wienersdorfer Str. 20-24, 2514 Traiskirchen,
Austria) soil conductivity sensor.

This survey system is based on electromagnetic induction, for which a primary field is
created by an emitting coil that induces a secondary field in the soil. Soil inhomogeneity can
be measured using receiving coils and converted to different soil parameters by studying
appropriate correlations.

In particular, the SoilXplorer sensor consists of a coil that generates an electromagnetic
signal, which induces a secondary field in the soil that is measured by four receiving coils
placed at different distances from the emitter (Figure 12).
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Under the same conditions of compaction, tillage and plant residues on the surface,
this physical quantity is influenced more by the granulometry than the texture of fine earth
in the soil.

Soil conductivity (ECa) at four different depths expressed in milliSiemens per me-
ter (mS/m) is thus measured. When the sensor is 400 mm above the ground, these
layers are indicatively: ECa1 = 0–250 mm, ECa2 = 0–600 mm, ECa3 = 0–950 mm, and
ECa4 = 0–1150 mm.

To record and map the soil heterogeneities for each of the four soil layers, the system
is equipped with a GNSS receiver to associate the geographic coordinates with recorded
electrical conductivity values. All data are managed and recorded by an onboard monitor.

For acquisitions of the data, the sensor was mounted directly on a tractor (Figure 13)
and equipped with a shielding system such that the electromagnetic field generated is not
affected by the metal mass of the tractor. Data acquisition was carried out following a path,
shown in Figure 14, with a transect of about three meters. The acquired data were exported
directly from the onboard monitor and processed with QGis open-source software.
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4. Results and Discussion

Fewer specific data on effects of soil stoniness reclamation are available in the litera-
ture [22,28–32,35–37], none of them compare with this trial, which was precisely carried out
with the aim of solving in long-term the highlighted shortcomings of destoning systems as
usually applied in agricultural lands.

4.1. Arable Layer Soil Quality

Regarding the soil disturbance degree (DD) and workability class, with this deep burial
stone reclaiming system, an evident modification of the original soil profile composition
was obtained: starting from a class “B” and DD = 4.15 soil (estimated X = 0.6, Y = 0.1,
Z = 0.1, U = 0.15, W = 0.05), it has been obtained an arable layer of about 600 mm (Figure 11)
of “A” workability class and DD = 0.1 soil (estimated X = 0.8, Y = 0.1, Z = 0.1, U = 0, W = 0),
with the U and W stone classes constituting a draining layer of about 400 mm ( Figure 8;
Figure 11) below the tillage depth needed for cultivated crops. In addition, this result was
obtained without lowering the field plan, as occurred in the case of stones removal, that, in
our trial condition, would amount to 400 mm; nor the chemical characteristics of fine earth
in the constituted arable layer, as in case of stones crushing.

The very low value of the calculated Disturbance Degree in the reclaimed soil, do not
give obstacles to the cultivation machines (harrow, seeder), notwithstanding the presence of
Y and Z gravel classes, which can instead be considered useful in the preservation of some
soil structural characteristics, contributing to the reduction of physical degradation of fine-
textured soils; while the few studies on the effects of soil stoniness on plant productivity
confirm that the crop response is conditioned by the texture and nutritional properties of
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the fine earth available for the root systems, which amount, in this sense, depends on the
stoniness level of the topsoil [15,17,19,21].

4.2. Electromagnetic Survey

The results of the electrical conductivity survey, related to the ECa2 layer average val-
ues for individual plots, do not show significant differences in the data collected (Figure 15,
Table 2).
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Table 2. Electrical conductivity average in the trial plots (mS).

Plot T/C ECa1
(0–250 mm)

ECa2
(0–600 mm)

ECa3
(0–950 mm)

ECa4
(0–1150 mm)

P1 Thesis 216.5 199.9 192.1 170.7
P2 Control 214.2 197.5 189.7 168.3
P3 Thesis 214.4 197.8 189.8 168.3
P4 Control 213.7 197.0 189.2 167.9

The soil sieving carried out with a 40 mm mesh implies that in the fine earth layer
of treated plots a significant percentage of the skeleton is present; moreover, the skeleton
fraction larger than 40 mm (U and W stone classes) was not removed from the field but
moved on to 600–1000 mm depth layer. Therefore, differences in the electrical characteristics
of soils in treated and untreated plots are not detected by the SoilXplorer sensor.

This type and percentage of skeleton present in the 0–600 mm fine earth layer (Y and
Z stone classes, estimated to about 20%), do not show appreciable differences in the values
of electrical conductivity between destoned (P1, P3) and control (P2, P4) plots, indicating
that the change of the layer’s stone distribution does not change the soil conductivity.

Even though the results confirmed that on the one hand, the electrical conductivity
of the soil remained unaltered, they also showed that to evaluate any differences due to
the burial intervention it will be necessary to use different investigation methods, already
planned in the next steps of the trial assessment.

4.3. Seeding Visual Assessment

After the soil reclamation, at the seeding time, a 24 row pneumatic seeder and a
geolocalized drive-assisted tractor were used for the planned winter crop (triticale). As a
result, there were observed enhancements in precision and uniformity of seeds planting
in the reclaimed plots in comparison to untreated soil (i.e., Figure 16a,b: CREA facility
geolocalized sowing trials; unpublished data).
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4.4. Economic Evaluation of the Experimental Trial

With the used machinery, the deep burial operations of U and W stone classes, such as
excavation, sieving, refilling, and compaction, of the approximately 400 cubic meters of soil
(2 × 10 × 20 × 1 m), required a total of about 24 h of machine work, and consumption of
about 400 L of diesel fuel, and a total amount of cost of used yard corresponding to about
150.000 €/ha. This cost is not feasible for field reclamation, but the noticeable long-term
amelioration of arable layer obtained with this technique will lead to evaluations on the
perspective of engineering a machine able to carry out automatically and continuously the
described deep burial destoning system, so as to make it economically sustainable for most
of the stony lands.

5. Conclusions

In the current conditions of diffusion of soil degradation and desertification processes,
as well as soil consumption due to the expansion of artificial covers, and in absence of
realistic possibilities to reverse this trend in the short term, it is of primary importance
to maximize the efficiency of agricultural practices, contextually limiting the exploitation
and degradative phenomena of a non-renewable resource, considering the concept of “soil
quality” as “soil functionality”, in terms of aptitude to express their chemical, physical and
biological potentialities, based onto their different pedogenetic structure [3–7].

Being the results of cultural techniques strictly connected to the soil quality, managing
a substrate optimized for the machinery and crops is the first parameter to maximize the
cultural results, in the economic concept of marginal productivity pursuits in the use of
production factors, respecting the environmental sustainability of income-intensive crops.

In this perspective, the destoning system presented was very effective in the long-
term reclamation of soil stoniness, having easily obtained from a “B” workability class
and 4.15 DD soil, an arable layer of 600 mm depth of “A” workability class and 0.1 DD.
This result was achieved without changing the level of the field plan and the structural
characteristics of the fine earth, in a perspective of long-term soil stability, which are the
main disadvantages of other destoning systems commonly adopted in agricultural land,
in addition to the low processing depth (not over than 300–400 mm), and destoned arable
layer obtainable, of the destoning machines currently available.

The validation of the described agro-mechanical advantages in the evolution of the
structural characteristics of the destoned soil and yields of the cultivated crops will lead to
evaluating the perspective of engineering a machine able to carry out automatically and
continuously the described deep burial destoning system. Even though a little percentage
of small classes coarse fragments can be useful in the preservation of soil structure, this
kind of machine could also be designed to screen and stratify even the Z class fractions,
in the same or different draining layers, proportionally increasing the fine earth topsoil
and soil texture quality, depending on the tolerances of the cultivation machines and needs
of crops.
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The achievement of this objective will make this system cost-effective and contribute to
enhancing in long-term the quality of stony soils, recovering non-renewable resources, and
promoting the implementation of precision farming techniques, such as minimal tillage,
variable rate precision sowing, localized fertilization, and weeding, to improving crop
yields, machinery efficiency–reducing at the same time their wear-and profitability of the
agricultural job in a wider number of potential users.
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