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Abstract: Freshwater is essential for irrigation and the supply of nutrients for plant growth, in order to
compensate for the inadequacies of rainfall. Agricultural activities utilize around 70% of the available
freshwater. This underscores the importance of responsible management, using smart agricultural
water technologies. The focus of this paper is to investigate research regarding the integration of
different machine learning models that can provide optimal irrigation decision management. This
article reviews the research trend and applicability of machine learning techniques, as well as the
deployment of developed machine learning models for use by farmers toward sustainable irrigation
management. It further discusses how digital farming solutions, such as mobile and web frameworks,
can enable the management of smart irrigation processes, with the aim of reducing the stress faced by
farmers and researchers due to the opportunity for remote monitoring and control. The challenges,
as well as the future direction of research, are also discussed.

Keywords: precision irrigation; water; machine learning; mobile app; web app; smart
agriculture; digitalization

1. Introduction

Globally, the agricultural sector utilizes about 85% of the available freshwater due to
increasing population growth, creating the need for an increase in food production [1]. The
conventional method of irrigation management is characterized by challenges such as low
water-use efficiency and low productivity. In addition, the dynamics of climate change
and global warming often affect the availability of the amount of rainfall needed to supply
water for plants [2,3]. Similarly, plant water requirements and physiological processes are
seasonal, varying from one plant to another, and are in turn influenced by environmental
factors such as weather. The environment can be controlled in a greenhouse, but these fac-
tors are not easy to control in an open field-cultivation farm [4]. The varying environmental
conditions need to be adaptively managed using precision irrigation systems.

Sustainable precision irrigation is a crucial step toward the attainment of food security,
while also achieving water-saving measures to compensate for the uncertainty of rainfall
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and the effect of water scarcity as a result of drought in many parts of the world. Precision ir-
rigation scheduling is directed toward efficient water usage for each plant, where and when
it is needed, in the right amounts, to compensate for water loss either through evapotranspi-
ration, erosion or deep percolation, while preventing over- and under-irrigation [5–8]. With
proper irrigation management through effective monitoring and optimal control, water can
be saved, as well as providing a reduction in other indirect costs incurred from energy use
in the form of electricity or fossil fuel for pumping, for optimal cost-effectiveness [9,10].

From the rapid successes seen in the integration of the Internet of Things (IoT) to
wireless sensor network (WSN) technologies for smart agricultural application through
remote sensing, the controlled monitoring of agricultural processes has enabled a better
understanding of the changing dynamics of weather, soil, and crop conditions throughout
the growing season. Real-time data can be pooled continuously using IoT-enabled sensors
or devices, such as sensors from a point source or mounted on unmanned aerial vehicles
(UAV)s, satellites, tractors, or movable irrigation platforms like lateral- or center-pivot-
moving machines from the targeted field [11]. There are several available commercial
platforms that are used to collect soil, plant, and weather data in real time but these may not
be effective because there are no machine learning algorithms or data-driven mathematical
models integrated with the system, the output of which will be in numbers, to make sense
of the raw data [12]. Therefore, by leveraging on massive spatial and temporal variable data
that are collected and stored in the various cloud- or edge-based servers, smart decisions
can be made using different machine learning models [4,11].

Machine learning is a rapidly evolving technology for precision irrigation systems,
due to its ability to mimic human decision-making while also addressing the multivari-
able, nonlinear, and time-variant issues affecting irrigation management. According to
Chlingaryan et al. [13], machine learning serves as a powerful and flexible architecture
for data-driven decision making, as well as expert intelligence on the system. Machine
learning has emerged together with big data technologies, leveraging edge cloud comput-
ing, creating a new opportunity to make sense of and draw inferences from a great deal
of data collected from various sensors, due to the system’s ability to learn without being
programmed [14].

To develop a sustainable precision irrigation system, the integration of modern tech-
nologies, such as computational intelligence and agro-hydroinformatics, and information
technology plays an important role through the efficient management of sensed data re-
garding soil, plants, and weather [15,16]. These technologies will aid the translation of
the raw data collected into irrigation decisions and actions on the farm or in greenhouses.
This will further enable the optimization of the use of water for irrigation and electricity
for pumping, as well as a reduction in labor costs and fatigue [17,18]. The main purpose
of machine learning is to provide data from previous experiences and statistical data to
the machine so that it can perform its assigned task of solving a specific problem [19].
Furthermore, the advancement of weather- and environment-based models in estimating
crop water requirements have necessitated that farmers should have access to the easy
monitoring and visualization of the various parameters on smartphones or other computer
devices, to guide their decisions either manually or intelligently. Studies have also shown
via a survey format that 90% of farmers agree that better irrigation management through
the use of mobile and web applications can help to improve the yield and productivity of
their farms [20].

Some previous review works have investigated the current trend in the area of smart
monitoring and control of irrigation [6,8,21–23]. Numerous papers have explored the role of
machine learning in enabling smart irrigation [14,24–30]; these are summarized in Table 1.
The majority of these existing works have focused on the application of supervised and
unsupervised learning for smart irrigation systems. This paper complements these existing
works by reviewing and discussing the emerging areas of the application of machine
learning and digital farming solutions to irrigation systems.
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Table 1. Comparison of the proposed work with previous reviews of machine learning for precision
irrigation management.

References Supervised
Learning

Unsupervised
Learning

Reinforcement
Learning

Federated
Learning

Digital
Farming

Applications

[14] 3 3 × × ×
[24] 3 3 × × ×
[25] 3 3 × × ×
[26] 3 3 × × ×
[27] × 3 × × 3

[28] 3 3 × × ×
[29] 3 3 × × ×
[30] 3 × × × ×

This paper 3 3 3 3 3

Based on the summary in Table 1, this review work has expanded the scope of the
literature in this area of research. The contribution of this paper is to extend further the
compendium of literature on machine learning for sustainable precision irrigation through
the application of federated learning and the integration of digital farming solutions. The
discussion in this paper is organized into various sections, which are as follows: Section 2
reviews the state of the art on the use of machine learning models for precision irrigation,
while Section 3 focuses on the state of the art on the application of digital solutions, such
as a mobile app–web framework for smart irrigation management. Next is Section 4,
which examines the challenges and opportunities of applying machine learning to precision
irrigation systems. Section 5 looks at future trends, while Section 6 concludes this paper.

2. Machine Learning Algorithms for Smart Irrigation

Machine learning is a branch of artificial intelligence that allows computers to learn
without being explicitly programmed [31]. Machine learning models have emerged as an
effective intelligence-based decision support tool for the rational and sustainable use of
freshwater resources in the context of sustainable precision irrigation management. Tradi-
tionally, farmers make the decision to irrigate based on their previous experience; however,
with advancements in machine learning, irrigation decisions can be better informed using
the concept of predicting the water needs of crops based on the forecast of weather and soil
conditions. Prediction is a very important feature for irrigation planning, one that involves
knowing in advance the water needs, yield, and soil moisture content, to be able to react
proactively to ensure better management [32].

Machine learning can learn from experience and perform activities that are similar
to those performed by humans, and it is committed to making machines smarter [33,34].
It has the capacity to solve complicated irrigation system issues including multivariable,
non-linear, and time-varying factors [35,36]. Machine learning methods can be employed
to automatically extract new information in the form of generalized decision rules, in
order to accomplish precision irrigation actions using natural resources such as water. In
the field of precision irrigation management, the application of machine learning models
such as supervised learning, unsupervised learning, reinforcement learning, and federated
learning, has become popular for solving challenging issues such as classification and
prediction [37].

2.1. Application of a Supervised Machine Learning Model toward Smart Irrigation Management

A supervised machine learning method involves the use of a function to map the
input with the output, using samples from a labeled experimental dataset, to approximate
the mapping function so as to be able to predict the output variables when a new input is
received, as illustrated in Figure 1. Supervised learning is a widely used method of devel-
oping machine learning models that are used to perform both regression and classification
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functions. The regression models and classification models are applied to output variables
in the form of real values and categorical values, respectively [29]. Regression models
depict the relationship between two variables, while classifications in supervised learning
algorithms are preset. These classifications are created in a finite set, defined by humans,
which means that a specific segment of data will be labeled with these classifications. The
most commonly used types of supervised learning algorithms (K nearest neighbor (KNN),
support vector machine (SVM), decision trees (DT), random forest (RF), etc.) are employed
to optimize irrigation volume, timing, scheduling, soil moisture prediction, and weather
predictions, to guide irrigation decisions [25]. The different types of supervised learning
algorithms are discussed in the next subsection.

Figure 1. Block diagram of supervised learning for an irrigation system.

2.1.1. Linear Regression

Linear regression is a supervised learning model that consists of dependent (target)
variables that are predicted from a set of independent (predictor) variables; these provide a
prediction of output according to the input variables. The most used regression algorithms
to guide irrigation decisions are linear regression and logistic regression. Another type
of linear regression is the multilinear regression model, which consists of an equation for
prediction and estimation of the difference between the fitted and the reference value, as
denoted by Equation (1). The advantage of using regression models for predicting irrigation
decisions is that limited data is required, as well as offering low computational complexity
while estimating the parameters of the model. However, irrigation system parameters are
highly nonlinear, with complex changing dynamics; therefore, linear regression is suitable
for parameters with linear relationships between the predictor and target. However, can
suffer underperformance for a problem that is nonlinear in nature [38].

ŷ = β0 + β1xi1 + β2xi2 + . . . + βnxin (1)

where ŷ is the outcome of the prediction, which in this case is irrigation need, β represents
the regression model parameters, x is the set of features, and i = 1, 2, 3 . . . n, which in this
case represent soil moisture content and weather variables [39,40].

A regression model was proposed by Kumar et al. [41] to investigate the forecasting of
the amount of irrigation volume needed by a farm, while reducing human intervention
or energy use through the integration of mobile applications built using Java platforms
for remote monitoring and control. Through a laboratory prototype demonstration, the
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system comprises an embedded microcontroller interfaced with soil moisture, rain, and
temperature sensors, which send further data to the cloud server through an application
programming interface (API) key, to update the regression model. A similar implementation
using a partial least squares regression (PLSR) model that is trained with weather data,
moisture content, and soil characteristics was proposed to predictively generate irrigation
reports for crops [42]. The choice of the PLSR model was made to identify the fundamental
relationship between output and input parameters. The inputs (x) are the weather data and
soil moisture content and are known as the predictors or the measured observed variables,
defined with matrix X = [x1, x2 . . . xn]

T , while the output is the response variable, with
matrix Y = [y1, y2 . . . yn]

T .

2.1.2. Decision Trees (DT)

A DT is a tree-like architecture model, often formulated as classification or regression
models. A decision tree predictive model splits data from observations into conclusions
about the data’s target value that can be used to visually and explicitly represent deci-
sions [34]. To improve the performance of the DT model regarding irrigation management,
a hybrid approach comprising the integration of DT and a genetic algorithm (GA) has been
implemented to ensure an optimal decision tree model in predicting irrigation schedule
that mimics the farmer’s knowledge. The performance of the decision tree predictive model
recorded an accuracy of between 99.16% and 100% [43]. The irrigation schedule event is in
the form of a binary classification problem, which resulted in the decision to irrigate or not
irrigate [43].

Similar work was carried out to compare three different computational intelligence
techniques, such as decision trees, simple fuzzy and multi-criteria fuzzy logic for deci-
sion support regarding the irrigation of tree crops [44]. Furthermore, to investigate the
accuracy versus interpretability of different types of machine learning models, in terms
of the performance measures and features needed to adequately predict E. coli levels in
agricultural water management, using a decision tree has been proposed [45]. A recent
study on smart irrigation systems implemented using the DT model was trained using
Sklearn libraries with an experimental dataset to predict the irrigation water needs of crops,
with a prediction accuracy of 97.86% [46].

2.1.3. Support Vector Machine (SVM)

The SVM is a kind of supervised learning model used for classification, regression, and
outlier identification. Over numerous high-dimensional planes of data, an SVM seeks to
discover the best among all the linear classifiers that may be used between any two classes
and create a decision boundary, indicated as a hyperplane close to the extreme points in the
dataset [47]. SVM is a binary classifier that classifies data instances by constructing a linear
separating hyperplane. The “kernel trick” may significantly improve the classification
capabilities of standard SVMs by transforming the original feature space into a higher-
dimensional feature space. The model detects any departure from the observed data by a
modest amount, using parameter values that minimize the sensitivity to errors in the case
of SVM regression.

A study by Vij et al. [48] analyzed the use of support vector regression (SVR) and RF
regression to automate irrigation forecasts. This is accomplished by creating a hyperplane
per dimension, i.e., a set of hyperplanes in a higher-dimensional space, as in the case of
agricultural irrigation demand forecasts. The class labels are chosen, such that the distance
between the hyperplanes utilized to identify the best linear classifier is as little as is feasible.
Similarly, Goap et al. [17] proposed the utilization of an SVR model to estimate soil moisture
content, based on field sensor data and meteorological data, and then gave irrigation choices
based on the established amount of soil moisture and projected precipitation to conserve
water and energy.
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2.1.4. Random Forest (RF)

RF models, also known as ensemble learning models, attempt to improve the predic-
tion performance of decision trees, based on a particular statistical learning or model-fitting
approach, by building a linear combination of the simpler base learner [49]. Given that
each trained ensemble represents a single hypothesis, these multiple-classifier systems
allow for the hybridization of hypotheses not produced by the same base learner, resulting
in improved outcomes in cases when single models have high variety. RF models, such
as boosting and bagging implementations, have also been suggested for smart irrigation
management [50,51]. Decision trees are often employed as the basic learner for RF models.

In a study by Chen et al. [52], an ensemble learning model was used to predict the
irrigation volume needed daily by crops, based on the agricultural IoT system. About
four models, including linear SVR, support linear regression, Adaboost DT, and RF were
trained to benchmark the performance of the intelligent irrigation system. To enable
the deployment of the model for real-time irrigation scheduling, an IoT framework was
implemented, alongside a website and mobile applications. The relevance of reference
evapotranspiration (ETo) in the management of water-saving agriculture was reported by
Chen et al. [53], its prediction using RF and an artificial neural network (ANN) was reported,
with findings showing that the proposed hybrid model can map the nonlinear relationship
between the input and output data of wind, solar radiation, air temperature, humidity
and ETo. Through the integration of prediction concepts in irrigation system management,
dynamic changes in environmental parameters can be anticipated through training and
adaptation using predictive models. This was investigated in a study where extreme
gradient boosting and autoregressive moving-average models were trained, using data
stored in a dedicated IoT-enabled database, for the prediction of weather and environmental
parameters, in order to guide the farmer’s decision as to when to commence or stop
irrigation [54].

2.1.5. K-Nearest Neighbor (KNN)

KNN is a common supervised learning technique that is based on the principle of
grouping data points that are nearby into each category. KNN is a non-parametric model
that is often used to solve classification problems, and it uses the full dataset to train the
model. When a new data point has to be categorized, the KNN algorithm searches the whole
data set for the K-closest instances that are comparable to it [49]. The Euclidean distance
between the linearly separable data points of x and y is measurable using Equation (2),
while the K-nearest learned data instances vote to identify the class in which the test case
belongs, through finding possible values based on the optimal number of K-values [55].

Euclidean Distance:

d(x, y) =
√
(x1 − y1)

2 + (x2 − y2)
2 + . . . + (xn − yn)

2 (2)

An intelligent irrigation management approach with remote monitoring was imple-
mented with the KNN model, used to classify the crop that would be likely to grow well,
based on the water need and drought sensitivity of each of the regions, while the on-and-off
pump motor was triggered using a float sensor. A laboratory prototype was implemented
experimentally using an adafruit.io rest server and client android application for remote sta-
tus monitoring. The authors reported that the proposed method was feasible for estimating
the required amount of water to compensate for the water loss [56,57].

In addition, the possibility was investigated of using the concept of ontology and
sensing value of various parameters from edge devices and stored on edge servers to decide
irrigation schedules on a 50–50% basis. A KNN machine learning algorithm was deployed
on an IoT server and updated the model with data stored on an edge server [58]. A similar
intelligent irrigation method based on KNN was implemented, using a laboratory prototype
demonstration for smart irrigation with the aid of IoT technology. The research findings in
both cases show that the KNN algorithm deployed on Arduino by Kavyashree [59], and
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Raspberry Pi by Das et al. [60], were able to predict irrigation needs, as well as control the
on/off switch of a relay based on the sensed soil and weather data.

2.1.6. Naïve Bayes

Naïve Bayes is a machine learning model that is built very rapidly for fast prediction
and is often used for classification. The naïve Bayes classifier is a set from a model that
uses Bayes’ theorem, as described in Equation (3), where each element is independent
and equal [61]. The equation is used to calculate the posterior probability, using the prior
probability that is to be calculated:

P
(

x
y

)
=

P
(

x
y

)
P(x)

P(y)
(3)

where P
(

x
y

)
is the probability of occurrence of the event x and P(x) is the known

prior probability.
The findings from our review of supervised learning techniques for irrigation man-

agement show that they have been widely explored for predictively managing irrigation,
fertigation toward improving yield, and water-saving. Figure 1 shows how supervised
machine learning models can be used for the prediction of irrigation volume, timing, yield,
and nutrient or fertilizer management, as well as for the classification function of plant
images for detecting plant diseases, farm area delineation, and the detection of plant stress
due to inadequate irrigation. Table 2 summarizes other studies that have investigated smart
irrigation management using a supervised learning approach. It further reveals research
efforts on the use of machine learning to guide irrigation decisions.

Table 2. Summary of previous work on supervised machine learning models for smart irrigation management.

References Supervised
Model Used

Features Simulation
Experimental

Cloud Edge

[62]
PCA, K-means

Clustering,
GMM

The model uses online weather data and human-induced
irrigation instinct to decide irrigation rate. The model notifies

the operator of the required irrigation volume through
short message sending (SMS)

3 3 3

[63]
KNN, GND,
SVM, ANN,

DT

The machine learning model is used to predict irrigation
volume aimed at reducing the usage of water in crop

irrigation systems. The top two models are ANN and KNN,
which have an accuracy of 90% and 98%, respectively.

3 × ×

[64] SVM
An SVM-based smart irrigation system that adjusts

the irrigation quantity automatically, based on home garden
environmental data

3 3 ×

[41] Linear
Regression

The model is used to predict the amount of daily irrigation
water required, based on the data provided by various

sensor devices. The prediction information is made available
on the mobile application (app) for remote monitoring

3 3 3

[65]

Principal
Component
Regression

(PCR)

The model integrated with data envelopment analysis (DEA)
helps to optimize water usage, management,

personnel and water costs, incorporating increasing
the irrigated area and the irrigation service coverage

3 × ×
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Table 2. Cont.

References Supervised
Model Used

Features Simulation
Experimental

Cloud Edge

[66]
KNN, DT,

SVM, Logistic
Regression

IoT-enabled machine learning irrigation systems
with real-time monitoring of temperature, moisture, nutrients,

and rainfall, to forecast the amount of water and fertilizer
required by the plants for irrigation

× 3 3

[67] SVR and
Bagging

The ensemble machine learning model is trained with
collected real-time weather data to make an optimized
decision, with an accuracy of 90%. The predicted soil

moisture content is used to control the ON/OFF of the
water pump

3 × 3

[30]
DT, Random
Forest, ANN,

and SVM

Adaptive irrigation management using machine learning
to predict the time of the day for irrigation using the air-soil
humidity and temperature, the current time of the day, wind

speed, and direction data. The data collected is visualized
remotely on a mobile app. The app is interfaced with an API
through message-queuing telemetry transport (MQTT) for the

remote control of actuators.

3 × 3

[68]
DNN,

XGBoost, and
Random Forest

An intelligent framework for smart irrigation planning, data
analysis, feature extraction and irrigation prediction. The

hybrid irrigation management approach is based on reference
evapotranspiration and volumetric soil moisture content

3 × ×

[69]
Random Forest,
ANN, XGBoost,

DT, SVM

Machine learning to improve irrigation timing using
real-time data. The models classify an ideal hour for

irrigation to take place, based on sensor and weather data.
The two best-optimized models with high accuracy are

XGBoost, with an accuracy of 87%, and RF, which is at 84%

3 × ×

[70] SVM, KNN
Naïve Bayes

Real-time monitoring using sensors and data storage on the
“ThingSpeak” cloud. The machine learning models

perform classification based on a threshold value. The
classification accuracy for the models is, namely, SVM 87.5%,

Naïve Bayes 76.4%, and KNN 70.8%

3 × 3

[71]

Gradient
Boosting

Regression
Tree (GBRT)

Sensing and actuation test bed on an edge device, irrigation
decision on a cloud. The model was able to learn

irrigation decisions for different plants while adapting to the
changing dynamics of the environment.

3 3 3

[72]

PCA, LDA,
Linear SVM,

RBF SVM, DT,
RF, ANN,
AdaBoost,

Naïve Bayes

Both PCA and LDA were used for image processing
to reduce the dimensionality to improve classification

accuracy, while seven other scikit-learn machine learning
algorithms were used for onion irrigation

treatment inference

3 × 3

[73] KNN, SVM
Real-time monitoring of temperature, humidity, and soil

moisture content with infection detection on 2000 samples of
plants, with a classification accuracy of 96%

3 × 3

[74] Least-square
SVM

Uses soil moisture content and environmental parameters,
with feature extraction of irrigation water requirement based
on kernel canonical correlation. SVM was further used for the

prediction of irrigation requirements with high prediction
resulting in improved irrigation efficiency

3 × ×

[75] MLR, KNN,
DT, and RF

Prediction of rainfall using online data from the
weather station to guide irrigation decisions. The model

performance, in terms of RMSE obtained for MLR, KNN, DT,
and RF, is 0.165, 0.103, 0.094, and 0.083, respectively

3 × 3
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Table 2. Cont.

References Supervised
Model Used

Features Simulation
Experimental

Cloud Edge

[39] MLR, KNN-
Regression

The accuracy of MLR is better than KNN-R; hence, it
is integrated with an android application. The android app
accurately enables real-time scheduling of the fertigation at

the correct time it needed to be applied

3 × 3

[76] KNN Agricultural monitoring system and analytics using drone
data processed with a KNN algorithm 3 × 3

[77] ANN

Estimation of ETo using daily data on solar radiation,
humidity, temperature and wind speed. The estimation and
scheduling algorithm was implemented on a Raspberry Pi

interface with a local weather station, using Zigbee

3 × 3

[78] ANN Prediction of ETo using weather variable to
decide irrigation scheduling 3 × 3

[79] ANN
Using time series analysis and the predictive model,

prediction of rainfall aid determination of which crops
is favorable to grow in a particular area

3 × 3

Note: PCA—Principal Component Analysis, GMM—Gaussian mixture model, KNN—K Nearest Neighbor, GND,
SVM—Support Vector Machine, ANN—Artificial Neural Network, DT—Decision Tree, Random Forest, LDA—
Linear discriminant analysis, RBF—Radial basis function, MLR—Multiple Linear Regression. GND—Generalized
N-Dimensional.

2.2. Application of Unsupervised Smart Irrigation Management

The fundamental goal of unsupervised learning is to build categorization labels auto-
matically. These algorithms look for similarities between units of data to see whether they
can be classed and put together into a group [80,81]. Unsupervised learning techniques are
characterized by drawing an inference or underlying pattern from an unlabeled dataset, as
described in Figure 2. This method can be implemented to deduce the patterns contained in
the collected dataset of soil, plant, and weather parameters for optimal irrigation decisions
in different irrigation field zones [82]. Examples of unsupervised learning models are
clustering, ANN, dimensionality reduction, hierarchical clustering, etc.
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Figure 2. Block diagram of unsupervised machine learning for an irrigation system.
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2.2.1. K-Means Clustering

Clustering is aimed at the identification of a distinct group, based on the similarity
of a given dataset, while the arrangement of data into clusters results in low intercluster
similarity and high intercluster similarity [83]. Another review explores the feasibility of
how clustering with fuzzy time series techniques can be used to manage a network of
wireless sensor nodes scattered on an agricultural field. The review concluded that farmers
can experience improved energy efficiency of the sensors with real-time monitoring of the
farm by using the proposed method [84].

Furthermore, it has been widely reported that farmers experience low yields due to
inadequate irrigation and attack from pests. This led to an investigation of the integration
of the K-means clustering algorithm for image processing, with smart irrigation enabled
by WSN. The captured images were partitioned and segmented into overlapping groups
having similar features. The work demonstrated an improvement over other WSN-based
irrigation systems, with the clustering model able to detect the presence of pests and
affected areas on the plant leaves [85]. Ohana-Levi et al. [86] proposed the integration of
a multivariate spatial clustering with fuzzy K-means, using the hierarchical method to
determine different fertigation management zones in a citrus orchard field, to determine
in-field variability and guide site-specific irrigation management. Six different variables
were considered, namely, crop water stress, normalized difference vegetation index (NDVI),
digital surface model, aspect, slope, and elevation. The models were able to ascertain that
infield spatial variabilities were not constant among the variables and within the orchard.

2.2.2. Artificial Neural Network (ANN)

ANNs were inspired by the physiology of the human brain neuron and can be imple-
mented as both an unsupervised and supervised model. The ANN is characterized by its
pattern of connections between the neurons, its method of assigning the weights on the
connections, and lastly, its activation function [34]. Some nodes have many layers, such as
an input layer where data is supplied into the network, one or more hidden layers where
learning occurs, and an output layer where the decision with a prediction is made. The
weights and biases in each layer are learned throughout the training procedure, in order
to minimize the loss function. Backpropagation (BP) with gradient descent is a key ANN
approach that aims to speed up the network’s convergence to a local and global minimum
by updating the many associated weights [87].

ANN has been widely applied explored for optimizing water applications in trickle
irrigation [88] and drip irrigation [80]. A study by Murthy [89] used meteorological data
acquired from the local weather station to develop a neural network-based model that
forecasts the irrigation demand for any set of antecedent circumstances. When the model’s
forecast was compared to a state-of-the-art irrigation controller, the volume of water wasted
by weather-aware runoff prevention irrigation control (WaRPIC) was only 2.6% that of
the state-of-the-art. Also, working toward a water-saving irrigation system, a multilayer
perceptron neural network was used to train sensor data collected using IoT to predictively
control the duration of pumping of water, and was demonstrated using a laboratory
prototype [90].

To further improve the performance of ANN for irrigation water management, the
integration of fuzzy logic was used to compensate for the performance of the neural
network, through the fusing of different parameters from various sensors used for sensing
the irrigation environment [91]. A similar method was investigated using ANN and a
fuzzy controller for water and fertilizer saving [92]. The monitoring of the volumetric
water content of the soil is required for irrigation scheduling and water resource allocation,
management and planning. The prediction of the volumetric water content of the soil in
a paddy rice field was implemented using limited weather data. The weather data and
rainfall data were used to predict the volumetric water content of the soil through the use
of a dynamic ANN model [93].
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In addition, considering the importance of accurate estimation of evapotranspiration
in guiding precision irrigation management, the use of ANN for estimation and modeling
the non-linear features of reference evapotranspiration has been proposed [94–99]. This
approach was able to effectively estimate the crop water requirement that could be used to
guide irrigation decisions using temperature, solar radiation, humidity, and wind speed.
Although several studies have proved the applicability of ANN for the prediction of
irrigation or weather approaches using a BP algorithm, through minimizing the error
squared, or by adjusting the different weights of a network. Improved performance has
also been reported by Gu et al. [100], where a GA for the better prediction of yield or
corn for different irrigation was used with a subsurface drip irrigation system. GA is an
optimization model that mimics the natural biological evolution process by using a global
optimization search method [101]. The use of BP neural networks with GA enhances BP
learning training, optimizes the network power threshold, promotes speedy convergence,
boosts the model’s efficiency, and accuracy.

Although the training of neural networks requires a great deal of data for proper
learning, Perea [102] proposed a new method that makes use of limited data conditions
for the short-term forecasting of daily crop water needs. This was made possible through
the integration of GA, ANN, and Bayesian networks, with model performance assessed in
terms of the coefficient of determination (R2) and standard prediction error of 96% and 8.7%,
respectively. Further investigation of the applicability of ANN for smart irrigation with IoT
integration was implemented by Risheh et al. [103], using a transfer learning approach to
address the limitations of ANN, such as the high number of dataset requirements and the
need for high training of the network, resulting in high processing complexity.

An intelligent hydroponics control system was deployed on an edge device named
Raspberry Pi and Arduino, where a deep neural network implemented with a TensorFlow
library was used to adaptively control the opening and closing of valves, based on multiple
input sensed parameters. The sensed data were collected for several weeks, while the
neural network was trained several times to achieve a better accuracy of 88% [104]. In
another study, an ANN-based irrigation management strategy was used, where input
parameters, such as temperature, air humidity, soil moisture content, wind speed and solar
radiation, were fed into an evapotranspiration model to estimate the actual soil moisture.
The ANN controller then compared the desired soil moisture content with the actual soil
moisture content to determine the error, upon which determination the opening and closing
of valves was triggered [105,106].

Dursun and Özden [107] proposed a solar-powered intelligent site-specific irrigation
system, where an ANN was used to simulate the moisture distribution in the soil, as
determined by training the values obtained from soil moisture sensors placed in the farm
area, to reduce pumping energy and water saving. The major limitation of the practical
implementation of the ANN model included the issue of over- and under-fitting, the
selection of the learning rate and weight, as well as the large size of dataset needed for
training requirements. In addition, the performance accuracy of a trained ANN model-
based irrigation schedule depends on how carefully the representative data of the physical
system and data collection using IoT/WSN devices were taken.

2.2.3. Adaptive Neuro-Fuzzy Inference System (ANFIS)

The ANFIS is a hybrid model consisting of an artificial neural network and a fuzzy
inference system (FIS). In terms of enhancing the prediction of the irrigation needs of a farm,
the ANFIS model has demonstrated better performance, as shown by Atsalakis et al. [108],
where a daily forecast of irrigation demand was proposed to optimize pumping effort and
reduce cost. In addition, a study by Navarro-Hellín et al. [109] proposed a closed-loop
irrigation control scheme, using ANFIS and PLSR as the reasoning and decision engine
of the decision support system. A similar approach using ANFIS has been implemented
to improve the performance of an irrigation sprinkler, leading to the realization of better
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infiltration equilibrium, soil moisture uniformity, and high water redistribution efficiency
when tested experimentally [110].

In terms of sustainable water management, an intelligent neuro-fuzzy controller that
was based on the ANFIS model was implemented on a Raspberry Pi edge device for the
smart control of drip irrigation, with solar-powered pumping facilities. The input of the
ANFIS controller was the temperature of the solar panel, rate of water flow, and irradiance,
while the output was the irrigation frequency, in terms of a pulse width modulated signal.
The model performance showed a fast and stable response, with optimized irrigation effi-
ciency of 95%. Readers are referred to [111–113] for more information about the architecture
and prediction ability of ANFIS. Another widely utilized rule-based model for irrigation
management, with similar features to that of ANFIS, is a fuzzy logic system. Much success
has been recorded in its practical implementation for the intelligent control of irrigation
when integrated with WSN and IoT devices [114–128].

Unsupervised learning has been widely utilized for irrigation management, as shown
in the summary given in Table 3. The findings show that a large experimental dataset is
required in order to train the different models to make accurate predictions using these
techniques. Determining the hidden pattern in an unlabeled dataset is the most common
feature of this machine learning method. However, most of the review works were realized
using a simulation only, as seen in Table 3. Future work in this area should focus more
on the realization of the simulation on both edge and fog platforms, as well as on the
translation to digital farm solutions such as mobile and web apps for local farmers who,
in most cases, could not afford the high cost of sensors and hardware installation on
their farms. Readers are referred to the literature [31,83,129–133] for more details about
unsupervised learning.

Table 3. Summary of previous work on unsupervised machine learning models for smart irrigation management.

References
Unsupervised

Learning Model
Summary Simulation

Experimental
Implementation
Cloud Edge

[134]

K means
clustering,

Gaussian Mixture,
and ISODATA

Investigation of delineation of multiple irrigation zoning
scenarios on a large field with a center pivot irrigation
system, using data on soil moisture content, electrical

conductivity (EC), and
hyperspectral images with yield data. A kappa coefficient of
0.79 was recorded for EC, demonstrating a high potential for

zoning irrigation

3 × ×

[135] Fuzzy Clustering

Delineation of irrigation management zones in a farm using
NDVI measured at different growth stages of a grapevine
cultivation field. The measure is transformed to a 48-cell

grid (10 × 9 × 20 m) and maps of two management zones
using the MZA software

3 × ×

[136] K-means clustering

A K-means clustering algorithm was applied to the spatial
clustering of irrigation networks, based on soil and

environmental data. The clustering model provided a
context for better and

easier irrigation decision-making

3 × ×

[137] PCA, Fuzzy
clustering

Delineation of soil management zones (MZs) for effective
irrigation management and evaluation of spatial variability

of soil properties
3 × ×

[138] Hidden Markov

The system made use of data from soil moisture content,
air temperature, and leaf wetness and compares it with

predetermined threshold values of various soil and specific
crops to guide irrigation decisions. The Markov model

detected possible
plant disease conditions

3 3 3
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Table 3. Cont.

References
Unsupervised

Learning Model
Summary Simulation

Experimental
Implementation
Cloud Edge

[139] CNN

The system made use of an analytical approach for
IoT-based

irrigation, to enhance smart farming with
integration with plant recognition and wilt detection

3 3 3

[140] Mask R-CNN, NN

The algorithm automatically detected water from aerial
footage of irrigation systems, using UAV-captured images.

The smart
recognition software helped in the irrigation system

inspection, therefore reducing time and costs in system
maintenance.

This helped to identify malfunctioning irrigation systems,
to reduce under- or overwatering

3 3 3

[141] CNN

Using an unlabeled dataset, an identification was made of
center pivot irrigation using a variance-based approach

through image
processing to allocate irrigation water on the field. A

precision and recall of 95.85% and 93.3% was achieved.

3 × ×

[142] ANFIS
An intelligent neuron-fuzzy controller was implemented on

Raspberry Pi for drip irrigation management; 95% water
pumping efficiency was achieved

3 × 3

[143] RNN An autonomous irrigation system was used to optimize
yield and reduce water usage for irrigation 3 × 3

[144]
ARIMA model,

LSTM and BLSTM
models

A time series forecasting evapotranspiration was used to
create a metric of water loss from the crop to the

environment, to guide irrigation decision management
3 × ×

[145] Google Net,
PVANET

Lightweight and fast, Google Net reduced the false
detections associated with PVANET, to accurately detect the

shape of center pivot irrigation systems. In addition, the
area of irrigation in the region was estimated

3 × ×

[146]
Artificial

Neuro-Genetic
Networks

Short-term forecasting of daily irrigation water demand.
The prediction model had a standard prediction error of

daily water demand of 12.63% and 93% total variance
3 × ×

[147] ANN

ANN was used to simulate nitrate distribution for a drip
irrigation system. The model was able to simulate the

nitrate distribution with a 0,83 coefficient of
distribution (R2)

3 × ×

[148] ANN, FIS, ANFIS

The models of FIS, ANN, and ANFIS were used to develop
a smart model to simulate the adequacy of water delivery in
an irrigation canal. The accuracy of the models, in terms of

MAPE index, was 57.07% and 56.6% for ANN and
ANFIS, respectively

3 × ×

[149] LSTM

An estimation of irrigation, based on soil matric potential
data, was measured from two different soil types. For both

soil types, the LSTM model had an excellent prediction
performance, with R2 ranging from 0.82 to 0.98 for one hour
ahead of prescription, decreasing as the forecast time rose

3 × ×



AgriEngineering 2022, 4 83

Table 3. Cont.

References
Unsupervised

Learning Model
Summary Simulation

Experimental
Implementation
Cloud Edge

[150] GRU, LSTM,
BLSTM, CNN

At a location in Portugal, the model utilized climatic data
and soil water content to schedule irrigation and

estimate the
end-of-season point of tomato and potato harvests. With an

MSE of 0.017 to 0.039, the LSTM model captured
the nonlinear

dynamics between irrigation volume, climatic data, and soil
water content to forecast production. With a regression

coefficient (R2) score of 0.97 to 0.99, the bidirectional LSTM
outperformed the other models

3 × ×

2.3. Deep Learning (DL)

DL is an area of machine learning that allows computer models with several processing
layers to learn complicated data representations at various levels of abstraction. One of
the main advantages of DL is that in certain circumstances, the model performs the feature
extraction process. DL models have significantly enhanced the state-of-the-art in a variety
of sectors and industries, including agriculture [149–154], where they are often used for
image and sound processing. DL models are essentially ANNs with many hidden layers
between the input and output layers, with recurrent neural network (RNN), long short-term
memory (LSTM), and convolutional neural network (CNN) being examples of supervised
and unsupervised learning techniques for irrigation decision optimization.

2.3.1. Recurrent Neural Network (RNN)

The RNN is a DL technique that is often used for the dynamic modeling of data, using
the loop in the network in the forward and backward direction. It has a memory retention
capability, due to feedback and the fact that the output is a reflection of the current input
and previous input. RNNs are also designed to incorporate sequence information inside
the hidden layer vector as a context that is often used for time-series prediction, sequence
classification, and labeling [151]. The downsides to this model are the fact that it suffers
a vanishing gradient during model training, computational feasibility, and the limited
availability of hardware (GPUs) powerful enough to train a big model in less time, which
is why it was difficult to implement this model experimentally on hardware.

An investigation of irrigation rate and timing prediction was carried out with NARX
and RNN models, using weather and soil matric potential data. The simulation result
showed a good prediction performance of R2 of 0.94 and RMSE of less than 1.2 mm, with
the possibility of being used as a decision support system for irrigation scheduling [151].
Similar work was implemented using RNN with LSTM, a feedforward neural network,
wavelet neural network, and ARIMA for forecasting rainfall, with an RNN-based LSTM
having a better forecasting performance when compared with other models [152]. Another
work on the use of the RNN model for optimal water allocation of irrigation during
droughts, through forecasting annual irrigation inflow based on climate and hydrological
data and optimization, scheduled water among the irrigation units by considering the crop
coefficient and water stress at different growth stages [153].

2.3.2. Convolutional Neural Network (CNN)

Another DL model often used for processing agricultural image datasets is the CNN,
where feature maps are extracted by performing convolutions in the image domain. The
idea of using the CNN algorithm to enable irrigation water management through the
processing of images captured using IoT sensors and cameras deployed on the field has been
proposed. After training the CNN model using the images, an estimation of recognition
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was set to determine the precision and yellowing of plant leaves while also being able to
detect when soil dampness reached a certain threshold, at which point a signal was sent to
the cloud to recalculate the needed irrigation volume [154].

Henry [155] developed a new method for mapping irrigation using an ensemble of
convolutional neural networks that only rely on raw Landsat surface reflectance data. As DL
models work with supervised, unsupervised machine learning, and reinforcement learning
techniques, Tables 2 and 3 detail some studies that have investigated smart irrigation
management using DL techniques. Another interesting machine learning implementation
technique that requires more research effort is federated learning. Not many studies have
been reported using this technique, regarding smart irrigation management, easy scalability
and its deployment for farmers’ use. Readers are referred to [156–158] for more information
about this machine learning method.

2.4. Application of Reinforcement Learning (RL) toward Smart Irrigation Management

Every action has an effect on the environment, and the environment then gives the
learning algorithm feedback. RL is based on the concept that the farmer/agent can learn
from their environment through actions and feedback, based on reward signals. Each
time he observes a situation, he selects an action and gets feedback in the form of re-
ward/punishment, as described in Figure 3. An investigation on the applicability of
model-free RL for the control and management of agricultural irrigation through simula-
tion was outlined in [159]. Chouaib [160] proposed an approach based on reinforcement
learning, a type of machine learning that uses the trial-and-error principle to learn how best
to fit a situation to an action in a highly dynamic, stochastic environment. In this proposed
approach, a farmer or agent learns to choose the optimal cropping pattern, defined by
the type of crop, area to cultivate, sowing data, and irrigation plan, depending on the
water availability at the beginning of the agricultural season. Each agent interacts with the
environment, which is composed of environmental and socio-economic modules containing
different processes, to provide the farmer or agent with the information he needs to learn.

Figure 3. Block diagram of reinforcement learning (RL) for irrigation systems.

The use of reinforcement learning in this complex system has changed the traditional
irrigation water management method and brought more intelligence into the system. A
reinforcement Q-learning decision-making strategy, based on past irrigation experience
and short-term weather forecasting for the irrigation of a rice paddy was proposed, and
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benchmarked with conventional irrigation scheduling. The predictive irrigation perfor-
mance for daily rainfall over 7 days was evaluated [161]. In another study, the optimization
of irrigation without negative effects on cultivated maize yield was proposed. The imple-
mentation was carried out using a maize crop simulation model on a decision support
system for agrotechnology transfer (DSSAT). The system was able to adapt to the changing
dynamics of soil, plant, and weather conditions through adaptive Q-learning from past and
present experience, leading to a reduction in the water used for irrigation by 40% when
validated with a constant irrigation simulation model on DSSAT [162].

A case study on maize irrigation management investigated the comparison of rein-
forcement learning and dynamic programming using a moderator simulator, in terms
of optimal irrigation strategy. The results obtained showed that RL outperformed the
DP over a short sampling time [163]. Conventional RL does not accurately capture the
dynamics of a practical real-world irrigation environment, due to its small state space;
hence, the use of deep RL makes use of a multidimensional dataset to train an ANN model
that adaptively learns the environment and approximates the Q function. A deep RL that
extracted measured sensor data to construct Q learning features for irrigation scheduling
and decision-making in a greenhouse cultivation experiment was implemented [164].

A similar deep RL approach was proposed for irrigation scheduling, with an increased
net return achieved under different weather conditions and crop types [165]. Recently,
CropGym, an open smart environment, was implemented to learn the fertigation process
using a crop growth state-space model and weather data to generate action and reward,
optimizing fertilizer usage as well as enhancing the yield [166]. Other areas of applicability
of RL are in watershed management [167] and biological environments [168]. Readers are
referred to [169,170] for more details about RL principles.

3. Digital Farming Solutions for Smart Irrigation Management

Aiming for the achievement of food security with increased water use efficiency
requires an improvement in irrigation systems that is driven by digital farming solutions,
such as mobile and web applications. In this section, the adoption of digital solutions such
as mobile apps and web-based apps is discussed. The application of this digital solution in
terms of remote irrigation scheduling, the control of valves and actuators, data analytics
visualization, and advisory services for farmers and users is presented.

3.1. Mobile Applications for Smart Irrigation Management

The efficiency of an irrigation system plays a major role in providing significant contri-
butions to food production. Surplus and, therefore, wasted freshwater can only be visually
monitored in extreme cases of mismanagement but any overdose results in high water
demand and often also in nutrients being washed out from the soil. Irrigation management
systems for farmers need to be precisely designed so as to be able to deliver the appropriate
amount of water to the crops, where and when it is needed, based on the requested amount
calculated for each crop. Consequently, by leveraging on the implementation of IoT and
machine learning scenarios, an efficient monitoring and control system through mobile
and web applications for agricultural irrigation can be implemented with high accuracy,
to achieve great savings in water, energy and manpower. In addition, the role of machine
learning for irrigation prediction is needed to complement irrigation decisions based on the
farmer’s knowledge. Mobile phones have become a widely used device that has become
an inseparable electronic gadget from nearly every human’s pocket; this has ensured that
farmers, too, use software programs in the form of apps, either for information-sharing or
for agro-advisory services [171,172].

Sensors used for irrigation management capture a variety of environmental and
meteorological data, such as ETo, rainfall, air temperature and humidity, from the farm.
These data are transferred over the gateway and then loaded into a cloud server database.
Farmers may utilize mobile apps to regulate water valves, fans, and other controls remotely,
depending on the trends of soil, plant, and weather data visualized [52]. The concept of
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using mobile technology to provide agricultural help has taken numerous shapes. Top-
down services offer a method of delivering material that is governed by the aims of a
designer. SMS push-alerts, for example, are a kind of service that sends out agricultural
suggestions and seasonal reminders to users. These programs offer the advantage of
giving farmers access to the most up-to-date agricultural research and introducing new
themes, but they lack the flexibility to address challenges that are specific to each farmer’s
circumstances [173].

To analyze the collected data from an experimental setup for sustainable irrigation by
Glória et al. [30], a mobile application named “smart farm” has enhanced the possibility
of farmers performing a task without being present on the farm. The application has the
functionality of displaying the collected data in real-time, connected with the developed
API using MQTT to remotely switch on/off actuators such as pumps on the farm. An-
other interactive system of irrigation management named SMART was implemented by
Matukhina et al. [174]. The SMART android application has a window for both landscape
and portrait display, with the ability to display the latest weather information, as well as
irrigation status and schedules. Furthermore, Zhang et al. [175] proposed a distributed
IoT-based environmental monitoring system for air, water temperatures, and dissolved
oxygen, using the information perception layer, the information transmission layer, system
architecture for hydroponics, and aquaculture management. A long-range communication
protocol was utilized to send sensor data, while 4G was employed to collect data and send
it to the cloud platform.

3.2. Web Framework for Smart Irrigation Management

The adoption of web and mobile applications is becoming increasingly important in
the management of irrigation systems. A web framework can be integrated with databases
for users to perform data manipulation, visualization, analytics and remote control [176].
These web-based applications may also help farmers to make irrigation-related decisions,
such as calculating the total irrigation water used and the cost of the irrigation practice,
estimating soil water status (water consumed), and managing remotely controlled irrigation
equipment, among other things. Furthermore, the integration of IoT and big data analytics
on cloud databases (DB) such as the Amazon web service, Microsoft Azure, the Oracle DB
Google cloud platform MangoDB Atlas, etc., has offered an opportunity for the mining
of stored experimental data to generate a prediction for farmers, through their mobile
and web framework on fertilizers with irrigation requirements, as well as the marketing
projection of harvested produce [177].

3.3. The Application of the Digital Solutions
3.3.1. Data Analytics and Visualization

Before the advancement of information technology, farmers have had to be on their
farms for physical examination of the plants, while also examining the moisture content of
the soil [178]. However, with the recent progress in the area of wireless sensor networks, the
IoT has made it possible for data to be collected from various sensors, such as soil moisture
content, soil and air temperature, humidity, and plant parameters like the vegetation index,
and then viewed remotely. This data can be aggregated through a gateway and stored
on cloud databases [179]. With the opportunity offered by these cloud platforms and
databases, an integrated machine learning model can learn and relearn to reveal the hidden
patterns and relationships between the measured data. In terms of sustainable precision
irrigation management, the analysis and visualization of sensor data are crucial. This has
been demonstrated using ThingSpeak, which is another open-source data visualization
tool offered by MATLAB that has been used for prototyping applications in irrigation
management. It has been used for managing irrigation for date palm [180] and cucumber
cultivation [181].
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3.3.2. Remote Irrigation Scheduling, Control of Valves and Actuators

Farmers can remotely and conveniently monitor various sensor measurements and
control actuators such as relays and variable frequency drives on irrigation fields or green-
houses from anywhere. This will reduce the need to manually monitor the operations on
the farm while improving farm management and crop yield. Regarding the improvement
of irrigation scheduling using a remote automatic control system, along with WSN, a graph-
ical user interface for data logging, visualization, and remote control of infield parameters
was implemented [182,183]. Seven different irrigation scheduling models, based on the soil
water budget model, feed-forward and feedback models, were proposed for drip-irrigated
apple trees. In another study, a smart irrigation scheduling application named “cotton app”
is proposed to estimate root-zone soil water deficit (RZSWD) and rainfall in inches and
percentages, using a soil–water balance model that is calibrated and validated using an
experimental dataset and is run once a day when the user launches the app. The appli-
cation notifies the user when the RZSWD drops below a particular threshold, while also
estimating the crop water used [184].

To reduce the stress experienced by farmers who are regularly required to manually
switch irrigation pumps on or off, Ogidan et al. [185] proposed an Android-based remote
control app that has a data-logging capability. The system prototype uses WiFi for internet
connectivity between the cloud server to the remote devices, providing flexibility for the
user to start irrigation with his mobile device. A similar method, known as a multiplatform
application, was used for ET-based irrigation scheduling and was tested on commercial
farms where strawberries are grown [186], as well as the cFertigUAL app for managing the
supply of fertilizer and water for greenhouse-cultivated vegetables [187].

In the area of liquid pesticide spraying using a wireless control mobile robot, as well
as the remote control of an irrigation sprinkler pump, a mobile application was developed
to enhance the automation of both processes [188]. The irrigation of large fields requires
the use of large machinery-based irrigation systems, such as a center-pivot, variable rate,
lateral move system, integrated with a sensor-based decision support system (DSS). A DSS
named ARSPivot, ARSmartPivot v.1 containing an embedded supervisory control and
data acquisition were used for site-specific variable-rate center-pivot irrigation scheduling
based on soil water content and plant stress [189,190]. A similar method was proposed as a
web-based application for remote feedback control and data analytics of soil, plants, and
weather for center-pivot-based irrigation management [191] with GIS-based DSS [192].

3.3.3. Advisory Services for Farmers and Users

Extension and advisory services have long been recognized as valuable instruments
for improving agricultural production activities. The service aims to improve the dissemi-
nation of information, regarding the best practices in agricultural production, marketing,
irrigation strategies, income and well-being, to farmers in poor and remote communi-
ties [193]. Agricultural extension services have become more efficient, with advances in
the usage of smartphones with mobile applications and web services for the dissemina-
tion of agricultural information, to address farmers’ problems in a timely and effective
manner [194–196].

One study proposed a flexible and user-friendly smart agricultural kiosk, based on
an Android application that can facilitate real-time communication between farmers and
experts. Other interesting features of the app included weather forecasting and crop disease
management information [197]. Likewise, Vuolo et al. [198] proposed the integration of
earth observation data to estimate crop water requirements, while also delivering a satellite-
based irrigation advisory service and map to farmers, using a mobile application named
WebGis to optimize irrigation management.

A mobile app has been developed for farmers and young people, aimed at information
dissemination about the buying and selling of farm produce and fertilizer and pesticide
application, as well as crop management, was tested in Mali, Africa. A user-centered and
friendly design method was used for the app development, with 89.66% of users agreeing
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with the effectiveness of the design prototype [199]. An online-based irrigation advisory
service, with a user interface that enables the farmer to adopt irrigation strategies that
reduce crop water use, has been proposed [200]. Likewise, an integrative hydrological
application that uses real-time data from satellite services, such as weather reports, vege-
tation index imagery, and GIS capability for cost-effective online irrigation scheduling to
maximize the yield of the crop and reduce water usage and plant stress [201]. The use of
virtual conversational assistants, such as the machine learning-based Chabot, has helped to
automate agro-advisory interaction between farmers, as reported in [202].

Table 4 summarizes other previous work on the application of mobile and web apps
for smart irrigation management. A layer of machine learning-based irrigation architecture,
with digital farming solutions, is illustrated in Figure 4. The architecture comprises UAV
and satellite-captured data (such as plant images and vegetation index), soil information
(soil moisture, soil type), and weather information from an onsite weather station, online
weather database (reference evapotranspiration, air temperature, solar radiation, air humid-
ity, etc.). The data thus collected can be stored on a cloud server integrated with a machine
learning model that can predictively recommend irrigation decisions and scheduling for
the irrigation field.

Table 4. Summary of previous work on the application of mobile and web apps for smart irrigation management.

References App Name Features Android IoS Webpage Country
of Origin

[203] Agrowetter Estimation of weather and evaporation to guide
irrigation decisions 3 3 3 Germany

[184] Cotton
app

Interactive, easy-to-use app for variable-rate irrigation
scheduling. The app notifies the user when the RZSWD

exceeds 40% and displays precipitation and other weather
variables for users

3 3 ×

Georgia
and

Florida,
USA

[185]
Smart

irrigation
app

Laboratory prototype, user-friendly, real-time on/off
remote control of irrigation pumps, as

well as data-logging capability
3 × ×

Ondo
State

Nigeria

[204]
Sprinkler
irrigation

app

Online weather data source, soil information, irrigation
scheduling. An app used for weather forecasting to

schedule timer for automatic sprinkler irrigation of turf
3 × 3

Florida
USA

[205]

Citrus
Smart

Irrigation
apps

Optimized irrigation scheduling for avocado, citrus,
strawberry, urban turf, and vegetables 3 3 × Florida

USA

[206] iChilli app Remote monitoring and control app for fertigation
management 3 × × Malaysia

[207]
Apex

mobile ap-
plication

Water stress detection app. The app can be used at the
field or

the within-field scale for temporal or spatiotemporal
monitoring of vine water status

3 3 × France

[198]
WebGIS
applica-

tion
Weather forecasting, fertigation, irrigation maps 3 3 3 Austria

[186]
Multiplatform
(Irrifresa)

app

ETo-based irrigation scheduling for
strawberry growing 3 × 3 Spain

[187] CFertigUAL
app Easy to use, fertigation management app 3 × × Spain

[208] REUTIVAR
app

Weather forecasting, irrigation scheduling,
soil and water quality analysis 3 × 3 Spain
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Table 4. Cont.

References App Name Features Android IoS Webpage Country
of Origin

[209] Hygrometry
app Fast and accurate estimation of water consumption 3 3 × Uzbekistan

[210] eRAMS
App Sprinkler irrigation scheduler, daily weather updates 3 3 3

Colorado,
USA

[211,212]

Hydro-
Tech

decision
support
system

Uses the field water balance and dynamic optimizer
for fertigation management 3 × 3 Italy

[213,214]

IrrgaSys
decision
support
system

Weather forecasting, soil water balance irrigation
scheduling, remote sensing 3 × 3 Portugal

[215]

Web
irrigation

frame-
work

Estimation of irrigation requirement using the Rawls and
Turq model × × 3 Algeria

[216]

Mobile
app

integrated
smart

irrigator

Remote control of irrigation, plant monitoring 3 × 3 India

[199] Agro Mali
app Agro-advisory service 3 × × Mali,

Africa

[217,218]

Smart
decision
support
system

Support illiterate farmers to make irrigation decisions 3 × 3 Pakistan

[219]
Smart

Avocado
app

Irrigation scheduling uses a one-dimensional
soil–water balance model 3 × × USA

[220]

Smart-
phone

irrigation
sensor

Uses a smartphone camera to capture the image of the soil,
analyze the image to estimate the wetness or dryness of

the soil, used for irrigation of a
pumpkin crop

3 × × Mexico

[221]

WISE
online

Irrigation
manager

Uses soil, plant and weather to estimate daily soil water
deficit × 3 3

Kansas,
USA

[222]
SWAMP
Farmer

app

Uses cloud-based water need model, estimate
irrigation requirement, soil moisture monitoring and the

remote map
3 3 × Brazil

[223] Smart &
Green app

Uses weather and water balance with crop register
function for smart irrigation management. The framework

comprises physical communication
services and an application layer

3 3 × Brazil

[224] WebGIS
app

Displays server-side information, visualization of
real-time irrigation performance, GPS to

track location
3 × 3 Indonesia
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Table 4. Cont.

References App Name Features Android IoS Webpage Country
of Origin

[225]
Irrigation

meter
calculator

The provides an interface that estimates soil moisture
content based on installed watermark sensors at

different soil depths
× 3 ×

Kansas
State Uni-

versity

[175]

Distributed
monitor-

ing
system

Real-time monitoring and control to support
the actual hydroponics and aquaculture production

management
3 × 3

Tongzhou,
Beijing

[201,226]
Wise

mobile
app

The user can access and upload information, view soil
moisture deficits and weather reports 3 × 3

Colorado,
USA

[227] AWD app

A Node.js server was used to store the data and
produce alerts, and a web client was utilized as a

dashboard to show all the AWD parameters, such as water
level and pump operating times, using either the

smartphone app or the online interface

3 3 3
Bangladesh/

Canada

[228] Blynk app Smartphone-based mobile application for remote
monitoring and control of irrigation 3 3 × India

[229] Bluleaf
app

App for real-time scheduling of timing and irrigation
needs for wheat using soil, plant, and weather data 3 × × Lebanon/

Italy

[172] Masa app Machine learning-driven advisory and marketing app for
farmers 3 3 3 Canada
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Figure 4. Layers of machine learning-based irrigation architecture with a digital farming solution.
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4. Challenges and Opportunities

In this section, the challenges and opportunities of the application of machine learning
are discussed. The development of machine learning, as well as digital software solutions
for smart irrigation systems for the management of different crops, is faced with several
challenges. Issues are the common availability of experimental datasets and the overfitting
and under-fitting of machine learning models, as well as accessibility to a cloud and online
web infrastructure for the deployment of trained models and software solutions. Further-
more, the development of a robust machine learning model to ensure good prediction or
classification performance requires a huge experimental dataset for training. In most cases,
the accessibility of a good dataset to train these models may not be feasible due to the huge
costs of a data collection infrastructure and subscription to online databases.

Another common challenge encountered when training for machine learning (par-
ticularly in classical machine learning techniques) is the underfitting and overfitting of
trained models. Underfitting scenarios denote high bias and low variance, inferring that a
trained model has not learned the data, while in cases where the model has memorized
and performs well with training data but performs poorly with unseen (test) data that
was not used to train it, this can be inferred as overfitting. Both issues can be managed
through cross-validation, pruning for DT and RF, the use of more training data, an in-
creased number of model parameters, etc. Another challenge is that of how to translate the
optimized decisions from machine learning models into the control actions for irrigation
system actuation devices [230].

A major concern about the various deployment issues of machine learning algorithms,
either on the edge or the cloud, is the accessibility of web infrastructure. Edge-based and
cloud-based machine learning represent two up-and-coming ways for the implementation
of machine learning models regarding the control of irrigation. These offer a fast response
time at the edge and quick-action data privacy [231]. In addition, to deploy machine
learning models for real-time irrigation management so that farmers can use them, there
is a need to have dedicated servers containing REST APIs that can be used to call various
functionalities from the model. The model deployment will require the use of Python Flask,
Docker, or other similar web technology. In addition, the user can also deploy applications
using Amazon, Azure Web Services, or similar cloud-based platforms that charge the user
fees for use [81].

One of the major challenges of the adoption of machine learning and digital software
applications in terms of improving sustainable precision irrigation is the initial cost of
deployment, particularly for small-scale farmers. This requires the digitization of the farm
process, using sensors, actuators and networking of the hardware used for precision agricul-
ture. Although there is an increase in available cloud infrastructures, such as the platform
as a service (PaaS), infrastructure as a service (IaaS), and software as a service (SaaS) for
irrigation management. The cost of adopting machine learning and digital software appli-
cations is reducing, but issues regarding privacy and data security remain a concern for
most farmers [232]. Without an affordable cloud-based infrastructure and hardware setup,
it will be difficult to implement machine learning for smart and sustainable irrigation.

There are several opportunities for farmers and users that integrate a combination
of machine learning prediction with mobile software solutions. The efficiency of water
use can be improved in the prediction of irrigation need, timing and volume can be better
matched with the water needs of plants, as well as adaptively compensating for water loss
due to evapotranspiration. This will result in improved yield, using minimal irrigation,
and with the reduced wastage of irrigation water. As a result of the training of the models
and eventual deployment, the system becomes intelligent and can have some autonomous
features for irrigation decision-making. Therefore, much of the stress and burden of
irrigation can be reduced for farmers and users. In some cases, farmers can also remotely
visualize and monitor their cultivation environment, to see the performance and state of
their plant and soil conditions, as well as control the status of actuators using mobile phones
and computers. Most farmers are interested in knowing their return on investment (RoI) in
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terms of the adoption of machine learning and software applications for their irrigation
process. The use of machine learning techniques can help evaluate and predict the number
of resources needed for the irrigation of farms. This makes it possible to determine the RoI
and know the value of adopting such technologies. Lack of adequate data makes it difficult
to calculate the RoI; hence, it is difficult to convince farmers of the importance of adopting
machine learning and smart irrigation techniques.

5. Future Trends
5.1. Application of Reinforcement Learning

Due to its self-learning and model-free ability to adapt its policy directly to irrigation
system dynamics, reinforcement learning offers good potential for the adaptive control of
irrigation systems [170]. More work can explore ways to influence the changing dynamics
of plants and control weather parameters, as well as the fertigation process [168].

5.2. Application of Federated Learning

The deployment of machine learning techniques uses centralized systems where the
data and computational analysis are carried out in the cloud. However, due to privacy
concerns regarding user-generated data, there is a shift and a growing interest in the
adoption of federated learning [156,157]. Federated learning is a procedure that allows
devices such as nodes, sensors, and local clients to train and share prediction models
collaboratively, but the individual devices retain their data [158]. A global statistical model
is developed from data that are stored on local or remote devices. However, there are some
challenges associated with the applications of federated learning that have been identified
in the literature [233]. This includes communication challenges faced by sending model
updates from heterogeneous devices and the use of privacy protection methods that reduce
system efficiency and model performance [233]. Nevertheless, the potential benefits of the
application of federated learning is expected to attract research interest from both academia
and industry.

5.3. Deployment in Less-Developed Countries

The adoption of digitization and smart agricultural practices is less common in de-
veloping countries, especially in Africa and parts of Asia. Adoption is slow due to the
infrastructural challenges faced by most African countries. For instance, a large number
of farmers are located in rural areas with less internet coverage and low broadband pen-
etration [234]. Hence, more research in innovative technologies that can be adapted in
developing countries for the deployment of machine learning in improving sustainable
precision irrigation is needed. These include the deployment of low-power wide-area
communication technologies, such as long-range (LoRa) communication technology [235],
which combines edge computing and federated learning for rural agricultural practices.

5.4. Digital Twin

The adoption of the digital twin concept for smart irrigation is opening up new re-
search opportunities. “Digital twin” simply means a digital or virtual representation of
physical assets or products or services. Digital twin technologies are a combination of
several technologies, such as IoT, simulation, data analysis and modeling. Some of the
applications of the digital twin model in agriculture have been presented in [236–240].
However, there are still limited studies on the deployment of smart irrigation systems
that employ digital twins and machine learning. The development of digital twins us-
ing machine learning and digital software applications is expected to open up further
research opportunities.

5.5. Fertigation

The application of machine learning and digital solutions is not just limited to precision
farming. Recent developments have shown applications regarding fertigation farming,
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where the water is mixed with the nutrients to enable the optimal use of resources [241,242].
This creates several issues, like an increase in the input data to be analyzed and trained
via different machine learning techniques. More studies are expected to adopt machine
learning techniques for precision fertigation systems.

6. Conclusions

A major driver regarding the attainment of sustainable precision irrigation has been
the integration of smart technology, such as machine learning, IoT, the web, and the mobile
framework. Some of the findings from this study suggest that sustainable precision irriga-
tion management plays an important role in enhancing the attainment of food security and
the prevention of water scarcity. Therefore, this paper has expanded further the reviewing
of machine learning techniques used for irrigation management, namely, supervised, unsu-
pervised, and reinforcement learning. The findings also show that the choice of a machine
learning model to be used for irrigation management depends on the availability of an
experimental data set, computational complexity, the nature of implementation, and the
type of deployment. Challenges and opportunities in the application of machine learning
techniques and digital solutions have been discussed. Furthermore, future trends in the
adoption of machine learning and digital farming solutions aimed at improving sustainable
precision irrigation were presented. These include the application of reinforcement learning,
federated learning, digital-twin models and fertigation in precision irrigation. The findings
from this review show that supervised and unsupervised learning have largely been used
for precision irrigation with positive outcomes. However, due to the many advantages of
federated learning, such as data privacy and security, more research works are expected in
this area. In addition, the drive for Industry 4.0 in agriculture is expected to prompt more
research work into the adoption of digital-twin technology in smart irrigation systems. The
integration of machine learning techniques and the integration of mobile and web solutions
are expected to bring many benefits to both farmers and users. This paper will be of benefit
to farmers, researchers and generalists who are interested in the digitization of the farming
process. Future work will address the environmental concerns associated with the use of
digital solutions for irrigation management when applied to mechanized farms.
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