
����������
�������

Citation: Kruchinin, V.; Shablya, Y.;

Kruchinin, D.; Rulevskiy, V.

Unranking Small Combinations of

a Large Set in Co-Lexicographic

Order. Algorithms 2022, 15, 36.

https://doi.org/10.3390/a15020036

Academic Editor: David F. Manlove

Received: 6 January 2022

Accepted: 23 January 2022

Published: 25 January 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

algorithms

Article

Unranking Small Combinations of a Large Set
in Co-Lexicographic Order
Vladimir Kruchinin 1 , Yuriy Shablya 2,* , Dmitry Kruchinin 3 and Victor Rulevskiy 3

1 Institute of Innovation, Tomsk State University of Control Systems and Radioelectronics,
634050 Tomsk, Russia; kru@2i.tusur.ru

2 Department of Complex Information Security of Computer Systems, Tomsk State University of Control
Systems and Radioelectronics, 634050 Tomsk, Russia

3 Department of Computer Control and Design Systems, Tomsk State University of Control Systems and
Radioelectronics, 634050 Tomsk, Russia; kruchinindm@gmail.com (D.K.); rvm@tusur.ru (V.R.)

* Correspondence: shablya-yv@mail.ru

Abstract: The presented research is devoted to the problem of developing new combinatorial genera-
tion algorithms for combinations. In this paper, we develop a modification of Ruskey’s algorithm for
unranking m-combinations of an n-set in co-lexicographic order. The proposed modification is based
on the use of approximations to make a preliminary search for the values of the internal parameter
k of this algorithm. In contrast to the original algorithm, the obtained algorithm can be effectively
applied when n is large and m is small because the running time of this algorithm depends only on m.
Furthermore, this algorithm can be effectively used when n and m are both large but n−m is small,
since we can consider unranking (n−m)-combinations of an n-set. The conducted computational
experiments confirm the effectiveness of the developed modification.

Keywords: combinatorial generation; combination; unranking; co-lexicographic order; combinatorial
algorithm

1. Introduction

Combinatorial algorithms are algorithms for investigating combinatorial structures.
The development of combinatorial algorithms is one of the basic tasks in computer sci-
ence [1,2]. Such algorithms provide efficient methods for processing information presented
as a discrete structure. For example, it can be combinatorial objects like combinations,
permutations, partitions, graphs, trees, etc. [1].

In designing combinatorial algorithms, special attention is paid to the procedure
for traversing all possible elements of a given combinatorial set. This problem can be
studied as enumerating (counting the total number of elements), listing (making and
recording the complete list of all elements), and generating (constructing all the required
elements and their sequential visiting) combinatorial objects [2]. Computer programs that
use combinatorial algorithms often need to present combinatorial objects one-by-one in
the computer memory in the form of a certain data structure and process them. With this
approach, there is no need to store the entire list of elements of combinatorial sets, which
often have a huge cardinality. Hence, look at the generation of combinatorial objects in
more detail since combinatorial generation algorithms are able to solve this problem [3].

In combinatorial generation, the following four problems are distinguished [4]:

1. Listing is the process of generating all elements of a combinatorial set sequentially.
2. Ranking is the process of getting the rank r of a combinatorial object a (the position of

the object in their ordering).
3. Unranking is the inverse process of ranking, and unranking algorithms allow to

generate the object a that has a rank r.

Algorithms 2022, 15, 36. https://doi.org/10.3390/a15020036 https://www.mdpi.com/journal/algorithms

https://doi.org/10.3390/a15020036
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/algorithms
https://www.mdpi.com
https://orcid.org/0000-0001-5564-2797
https://orcid.org/0000-0002-9695-7493
https://orcid.org/0000-0003-3412-432X
https://orcid.org/0000-0003-3546-3921
https://doi.org/10.3390/a15020036
https://www.mdpi.com/journal/algorithms
https://www.mdpi.com/article/10.3390/a15020036?type=check_update&version=1


Algorithms 2022, 15, 36 2 of 10

4. Random selection is the process of generating elements of a combinatorial set in
a random order.

In this paper, we consider the combinatorial generation of m-combinations of an n-set
(0 ≤ m ≤ n). An m-combination of an n-set is a subset of m distinct elements selected
from a set of n elements. The total number of all m-combinations of an n-set can be
calculated using the binomial coefficient (n

m). There are two main ways to represent
such combinations. One possible way of representing an m-combination of an n-set is
the increasing sequence c = (c1, c2, . . . , cm) of the selected elements in this combination,
where 1 ≤ c1 < · · · < cm ≤ n. Another way of representing an m-combination of an n-set
is the binary sequence b = (b1, b2, . . . , bn), where b1 + b2 + . . . + bn = m, bi = 1 encodes
that the i-th element is selected and bi = 0 encodes that the i-th element is not selected in
this combination.

There are many different algorithms for generating all combinations with different
orderings. Akl [5] conducted a computational experiment to compare the speed of such
algorithms that were developed before 1980. During the experiment, the following nine
algorithms for generating all combinations were implemented in Fortran: algorithms of
Bitner et al., Chase, Ehrlich, Kurtzberg, Lehmer, Liu and Tang, Mifsud, Nijenhuis and
Wilf, Payne and Ives. The results of the experiment showed that Mifsud’s algorithm [6]
was the fastest. The next stage in obtaining new algorithms for the fast generation of
combinations is shown in the active use of parallel computing (see [7–16]). Such parallel
algorithms use m processors and allow to produce combinations in constant time per
combination. In addition to algorithms that provide fast generation of combinations, there
are studies aimed at reducing the required memory space for calculations. For example,
Itai [17] presented an algorithm to produce combinations in lexicographic order that
required only O(1) extra storage, but non-constant time.

There are also studies on the development of algorithms for generating all combina-
tions that provide some useful properties due to applying a special ordering of the gen-
erated combinations. For example, there are algorithms that use a special ordering of
the generated combinations in which the strong minimal change property holds (see algo-
rithms of Eades and McKay [18], Xiang [19], Torres-Jimenez and Izquierdo-Marquez [20]).
The main goal of these algorithms is to reduce the number of changes when generating
combinations represented as increasing sequences of the selected elements in the combi-
nation and, as a result, to produce such combinations in constant time per combination
or in constant space. Another interesting way to order the generated combinations was
proposed by Ruskey and Williams [21]. This order called cool-lex order is a Gray code
order that is based on the use of prefix shift operations.

However, there are situations in which it is necessary to generate a certain object
again without generating all the objects that precede it. For this purpose, there are special
combinatorial generation algorithms for ranking and unranking combinatorial objects.
Such algorithms for ranking and unranking m-combinations of an n-set in lexicographic
order were first presented by Knott [22]. Next, Er [23] proposed new ranking and unranking
algorithms with O(n−m) and O(n) time complexity (without taking into account the time
for calculating the binomial coefficients), respectively. These algorithms are shorter and
simpler than Knott’s corresponding algorithms due to representing combinations as binary
sequences. The following algorithms for unranking m-combinations of an n-set were
developed by Kokosinski [24]:

• UNRANKCOMB-A: decreasing lexicographical order, O(n) time complexity and
O(nm) space complexity;

• UNRANKCOMB-B: increasing lexicographical order, O(n) time complexity and
O(nm) space complexity;

• UNRANKCOMB-C: decreasing lexicographical order, O(m log n) time complexity and
O(nm) space complexity;

• UNRANKCOMB-D: decreasing lexicographical order, O(n) time complexity and
O(m) space complexity.



Algorithms 2022, 15, 36 3 of 10

Kokosinski [25] also presented the first parallel algorithm for unranking combinations.
This algorithm called UNRANKCOMB-E requires n processors and has O(m) time com-
plexity. Additionally, this parallel algorithm has the preprocessing step for calculating and
storing the binomial coefficients with O(n) time complexity and O(nm) space complexity.

There are also studies on the development of algorithms for ranking and unranking
combinations by applying some general approach. For example, Ryabko [26] described
methods for encoding and decoding combinatorial objects represented as sequences by
calculating the number of all sequences prefixes. Applying this approach, new algorithms
for ranking and unranking m-combinations of an n-set in lexicographical order were
obtained. These algorithms use binary sequences to represent combinations and have
O(n log3 n log log n) time complexity and O(n log2 n) space complexity. Shablya et al. [27]
presented another general approach for developing new combinatorial generation algo-
rithms. This method, which is based on the use of AND/OR trees for representing combi-
natorial sets, allows the development of new algorithms for listing, ranking and unranking
combinations in co-lexicographic order. Such ranking and unranking algorithms also use
binary sequences to represent m-combinations of an n-set and have O(n + m2) and O(nm)
time complexity, respectively. Genitrini and Pepin [28] proposed a way to improve ranking
and unranking algorithms that are based on calculating binomial coefficients. The main
idea is to calculate new binomial coefficients using the binomial coefficients obtained in
the previous steps. The effectiveness of this approach was tested on several well-known
algorithms for unranking combinations and a new algorithm for unranking combinations
in lexicographic order, which is based on the factoradic numeral system.

In addition, there are studies dedicated to the special case of developing new efficient
algorithms for ranking and unranking m-combinations of an n-set where the obtained
algorithms are independent of n. Hence, such algorithms are effective when n is large
and m is small. For example, Shimizu et al. [29] presented O(m3m+3)-time ranking and
unranking algorithms. These algorithms use several bijections from the set of combinations
to other finite sets. Moreover, the order of the generated combinations is not one of
the well-known variants for ordering the elements of combinatorial sets.

Parque and Miyashita [30,31] introduced another approach for unranking small com-
binations of large sets by using a gradient-based optimization algorithm. The order
of the generated m-combinations of an n-set is the revolving door order starting with
(1, 2, . . . , m− 1, m) and ending with (1, 2, . . . , m− 1, n). To search for each element ci of
the combination c = (c1, c2, . . . , cm), it is necessary to solve a constrained minimization
problem by a gradient-based optimization. This unranking algorithm has O(m2) time com-
plexity when using a single processor, and O(m log m) when using at most O(m/ log m)
processors. However, there is no information about any algorithm for ranking combinations
in this order.

This paper focuses on unranking small m-combinations of a large n-set with using
co-lexicographic order. The organization of this paper is as follows. Section 2 presents
a brief description of a way for ranking and unranking combinations in co-lexicographic
order and a detailed description of the proposed modification of the original unranking
algorithm. In Section 3 we confirm the effectiveness of the proposed modification by per-
forming several computational experiments and obtaining the computational complexity
for the presented algorithm.

2. Materials and Methods
2.1. Algorithms for Ranking and Unranking Combinations in Co-Lexicographic Order

There are several variants for ordering any list of strings or sequences, for exam-
ple, the well-known lexicographic and co-lexicographic orders [2]. Lexicographic (lex)
order is a such order in which a1, a2, . . . , an < b1, b2, . . . , bm if n = m and there exists
k ∈ {1, . . . , n} satisfying ak < bk and ai = bi for every i < k or if n < m and ai = bi for
i ≤ n. Co-lexicographic (colex) order is a such order in which a1, a2, . . . , an < b1, b2, . . . , bm
if an, . . . , a2, a1 < bm, . . . , b2, b1 in lex order.



Algorithms 2022, 15, 36 4 of 10

Lex order is a natural and clear way of ordering. At the same time, colex order
can make combinatorial algorithms shorter, faster, more elegant and natural [4]. For
ranking a combination c = (c1, c2, . . . , cm) in colex order, we can use the next formula
(Equation (4.10) in [4]):

RankColex(c) =
m

∑
i=1

(
ci − 1

i

)
. (1)

Applying (1), it is possible to calculate the rank of a given m-combination of an n-set
fast, even for large n since it is independent of n. Let us consider the following algorithm
for unranking combinations in colex order (Algorithm 4.10 in [4]):

For a given m-combination of an n-set, Algorithm 1 takes the number m of the selected
elements and the rank r < (n

m) of the combination in colex order as input. As a result,
the values of the selected elements ci in the combination will be obtained in the form of
a sequence (c1, c2, . . . , cm). The main idea of this algorithm for unranking combinations in
colex order is as follows. First, for the case k = m, we search for the interval that contains
the rank r among the following binomial coefficients:(

m
m

)
+

(
m + 1

m

)
+

(
m + 2

m

)
+ . . . +

(
n
m

)
=

(
n + 1
m + 1

)
. (2)

Algorithm 1: Algorithm for unranking combinations in colex order
algorithm: UnrankColex(r,m)
input: A nonnegative integer m and a rank r
output: A sequence c = (c1, c2, . . . , cm)

1 begin
2 for i := m to 1 do
3 k := i
4 while r ≥ (k

i) do k := k + 1
5 ci := k
6 r := r− (k−1

i )
7 end
8 return c
9 end

It is easy to see that the number of terms on the left in (2) is n−m + 1. If we know
the rank r of an m-combination of an n-set and the solution for(

k− 1
m

)
≤ r <

(
k
m

)
, (3)

then the m-th selected element in the combination is equal to k. Next, we need to get
the (m − 1)-th selected element in the combination by searching for the interval that
contains the rank

r := r−
(

k− 1
m

)
. (4)

Thus, solving (3) and applying (4), we can sequentially find the values of the selected
elements of the m-combination with the rank r. For m < n−m, the computational com-
plexity of Algorithm 1 is O

(
m2 · (n−m)

)
which was obtained on the basis of the following

information:

• the number of iterations in the for-loop (Line 2 in Algorithm 1) is m;
• the minimum number of comparisons in the while-loop (Line 4 in Algorithm 1) is

n−m + 1 (when i = m) and the maximum number of comparisons is n (when i = 1);
• the computational complexity of calculating the value of a binomial coefficient (n

m) is
O(m) when m < n−m and O(n−m) when m > n−m.



Algorithms 2022, 15, 36 5 of 10

For large n and small m, the number of intervals in (3) that can contain the required
rank r is large due to the dependence on n. The goal of our improvements of Algorithm 1
is to reduce the number of comparisons in the while-loop (Line 4 in Algorithm 1). For this
purpose we need to find the solution of (3) fast.

2.2. Modification of Unranking Algorithm

Let us change Algorithm 1 by adding a function FindK(r, m) for preliminary search
for the value of k. This function should calculate the approximate value of k for solving
the inequality (3); however, the obtained value of k must not be greater than the true value
of the solution of this inequality. Thus, we get an algorithm for unranking combinations in
colex order (Algorithm 2).

Algorithm 2: Modification of algorithm for unranking combinations in colex order
algorithm: UnrankColexNew(r,m)
input: A nonnegative integer m and a rank r
output: A sequence c = (c1, c2, . . . , cm)

1 begin
2 for i := m to 1 do
3 k := FindK(r,i)
4 while r ≥ (k

i) do k := k + 1
5 ci := k
6 r := r− (k−1

i )
7 end
8 return c
9 end

Next, we consider the development of the function FindK(r, m) for Algorithm 2 in
more detail.

A binomial coefficient can be presented as(
n
m

)
=

n(n− 1)(n− 2) · · · (n−m + 1)
m!

. (5)

Using (3) and (5), we get

r <
k(k− 1)(k− 2) · · · (k−m + 1)

m!
.

After some transformations, we obtain the following inequality:

m
√

k(k− 1)(k− 2) · · · (k−m + 1) > m√r m!. (6)

If we consider the inequality of arithmetic and geometric means [32] for the list of
numbers k, (k− 1), (k− 2), . . . , (k−m + 1), then we get

k + (k− 1) + (k− 2) + . . . + (k−m + 1)
m

≥ m
√

k(k− 1)(k− 2) · · · (k−m + 1).

After some simplifications on the left, we obtain

k− m− 1
2
≥ m
√

k(k− 1)(k− 2) · · · (k−m + 1). (7)

Combining (6) and (7), we get

k− m− 1
2

>
m√r m!



Algorithms 2022, 15, 36 6 of 10

or
k >

m√r m! +
m− 1

2
.

Hence,

k ≈
⌈

m√r m! +
m− 1

2

⌉
. (8)

Thus, applying (8), we can find an approximate value of k for which the next inequality
is true:

r <
(

k
m

)
. (9)

We also use the following Stirling’s approximation [33] for calculating the factorial
in (8):

n! ≈
√

2πn
(n

e

)n
e

1
12n−

1
360n3 . (10)

Using the approximate Formula (10) in (8) and making some transformations, we
obtain the following approximate formula for k:

k ≈
⌈

m e
log r

m +
log 2πm

2m + 1
12m2−

1
360m4−1

+
m− 1

2

⌉
. (11)

This approximate formula can be used in the preliminary search for the value of k.
That is, the Formula (11) can be applied as the basis of the function FindK(r, m) (Line 3 in
Algorithm 2).

3. Results

We have performed a computational experiment for checking the obtained Formula (11).
For this purpose we set the number of selected elements m in the range of 10 to 200 and
the rank r in the range of 10100 to 10200. For these values of m and r, we have the distribution
of values of n in the range of 332 (when m = 170 and r = 10100) to 4.5 ∗ 1020 (when m = 10
and r = 10200). Then we calculate the difference between the value of k obtained by using
the approximate Formula (11) and the value of k obtained by using the while-loop (Line 4
in Algorithm 1). The results of the computational experiment are presented in Table 1.

Table 1. Errors in determining the value of k depending on the values of m and r.

m
r 10100 10110 10120 10130 10140 10150 10160 10170 10180 10190 10200

10 0 0 0 0 0 0 0 0 0 1 1
20 0 0 0 0 0 0 0 0 0 1 1
30 0 0 0 0 0 0 0 0 0 0 0
40 0 0 0 0 0 0 0 0 0 0 0
50 0 0 0 0 0 0 0 0 0 0 0
60 1 0 0 0 0 0 0 0 0 0 0
70 0 0 0 0 0 0 0 0 0 0 0
80 1 0 0 0 0 1 0 0 0 0 0
90 1 1 0 1 0 0 0 1 0 0 0

100 1 1 1 1 1 1 0 0 0 0 0
110 2 1 1 0 1 1 1 0 0 0 0
120 2 1 1 1 1 1 0 0 1 0 1
130 3 2 2 1 1 1 1 0 0 1 0
140 3 3 2 1 1 1 1 1 1 1 0
150 4 3 3 3 2 1 2 2 1 1 1
160 4 4 3 2 2 2 2 1 1 1 1
170 5 4 4 4 3 2 3 2 2 1 2
180 5 5 5 4 3 3 2 2 2 2 2
190 7 6 5 5 3 3 3 3 2 2 2
200 7 6 6 5 5 4 3 3 3 2 2

From Table 1 we can see that the errors are small. Note that increasing r reduces
the errors, but increasing m raises the errors. It is explained by the use of the approxi-
mate Formulas (8) and (10) for calculations. Moreover, we can not use the approximate
Formula (11) for small m because the application of (10) to such values of m leads to an in-
crease in errors. Therefore, for small m we can find the values of k by solving an equation
obtained from (9):



Algorithms 2022, 15, 36 7 of 10

If m = 1, then we get

r <
(

k
1

)
.

In this case, we can use the following initial condition for the value of k:

k = r.

If m = 2, then we get

r <
(

k
2

)
or

k2 − k− 2r > 0.

In this case, we can use the following initial condition for the value of k:

k =

⌈
1 +
√

1 + 8r
2

⌉
.

For other small values of m we can use other approximate formulas for solving (9),
for example, it can be the approximate Formula (8). Hence, we obtain an algorithm for
preliminary search for the values of k (Algorithm 3). In this algorithm, the parameter s
shows the boundary value of m for applying the approximate Formula (11).

Algorithm 3: Preliminary search for the values of k for Algorithm 2
algorithm: FindK(r,m)
input: A nonnegative integer m and a rank r
output: A nonnegative integer k

1 begin
2 if r = 0 then k := m
3 else if m = 1 then k := r

4 else if m = 2 then k :=
⌈

1+
√

1+8r
2

⌉
5 else if m < s then k := k ≈

⌈
m
√

r m! + m−1
2

⌉
6 else k :=

⌈
m e

log r
m +

log 2πm
2m + 1

12m2−
1

360m4−1
+ m−1

2

⌉
7 return k
8 end

Algorithm 2 with the use of Algorithm 3 has O(m · (m + εm)) ≈ O(m2) time com-
plexity (assuming algebraic operations with numbers in O(1)). This is determined by
the number m of iterations in the for-loop (Line 2 in Algorithm 2) where each loop requires:

• preliminary search for the value of k (Line 3 in Algorithm 2) by using Algorithm 3 that
has O(m) time complexity;

• search for the true value of k by making ε iterations in the while-loop (Line 4 in
Algorithm 2);

• calculation of the value of a binomial coefficient (n
m) that has O(m) time complexity

when m < n−m.

The parameter ε is the error in determining the value of k that is substantially smaller
than n (see Table 1). Hence, the modified Algorithm 2 has the polynomial complexity that
depends only on m. In the case when n is large and m is small, this algorithm will be better
than the original Algorithm 1 due to the independence of n in its complexity.

We have also performed a computational experiment aimed at comparing the obtained
algorithm for unranking small combinations of a large set in colex order with Parque and
Miyashita’s unranking algorithm [30,31]. For this purpose we set the number of selected



Algorithms 2022, 15, 36 8 of 10

elements m in the range of 10 to 100 and generate 20 different m-combinations of an n-set
with uniformly distributed ranks r in the range of 0 to (n

m)− 1. We implemented these
algorithms in the computer algebra systems Maxima on a laptop (Intel i7-9750H, 2.6 GHz,
Windows 10, 64 bit). Figures 1 and 2 present average time to generate each combination
for n = 500 and n = 1000. Note that both algorithms show similar results. However, there
is a difference in the way the combinations are ordered and in the availability of the ranking
algorithm.

 

0

0.05

0.1

0.15

0.2

0.25

0.3

0 20 40 60 80 100

T
im

e,
 s

ec
.

m

Figure 1. Average time to generate combinations for n = 500: (red line) Parque and Miyashita’s
unranking algorithm. (blue line) The obtained algorithm for unranking combinations.

 

0

0.05

0.1

0.15

0.2

0.25

0.3

0 20 40 60 80 100

T
im

e,
 s

ec
.

m

Figure 2. Average time to generate combinations for n = 1000: (red line) Parque and Miyashita’s
unranking algorithm. (blue line) The obtained algorithm for unranking combinations.

4. Conclusions

In this paper, we have presented a modification of the algorithm for unranking m-
combinations of an n-set in colex order described in [4]. The computational complexity
of the modified Algorithm 2 for unranking combinations in colex order with the use
of Algorithm 3 for preliminary search for the values of k is O(m · (m + εm)) ≈ O(m2)
(assuming algebraic operations with numbers in O(1)).

In contrast to the original Algorithm 1, the obtained Algorithm 2 can be effectively
applied when n is large and m is small because the running time of this algorithm depends



Algorithms 2022, 15, 36 9 of 10

only on m. When n and m are both large but n−m is small, then we can consider unrank-
ing (n− m)-combinations of an n-set. If we mark the selected elements in the (n− m)-
combination of an n-set as the unselected elements in the m-combination of an n-set, then
we obtain the original m-combination.

Author Contributions: Investigation, V.K., Y.S., D.K. and V.R.; methodology, D.K.; writing—original
draft preparation, D.K. and Y.S.; and writing—review and editing, Y.S. and V.K. All authors have
read and agreed to the published version of the manuscript.

Funding: The development of the combinatorial generation algorithm was funded by the Russian
Science Foundation grant number 18-71-00059. The computational experiments were performed
within the project FEWM-2020-0046.

Data Availability Statement: Data is contained within the article.

Acknowledgments: The authors would like to thank the referees for their helpful comments and
suggestions.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Kreher, D.L.; Stinson, D.R. Combinatorial Algorithms: Generation, Enumeration, and Search; ACM: New York, NY, USA, 1999.
2. Knuth, D.E. The Art of Computer Programming, Volume 4A: Combinatorial Algorithms, Part 1; Addison-Wesley Professional: Boston,

MA, USA, 2011.
3. Stojmenovic, I. Handbook of Applied Algorithms: Solving Scientific, Engineering and Practical Problems; Chapter Generating all and

Random Instances of a Combinatorial Object; John Wiley and Sons, Inc.: Hoboken, NJ, USA, 2007; pp. 1–38. [CrossRef]
4. Ruskey, F. Combinatorial Generation. Working Version (1j-CSC 425/520). Available online: http://page.math.tu-berlin.de/

~felsner/SemWS17-18/Ruskey-Comb-Gen.pdf (accessed on 1 December 2021).
5. Akl, S.G. A comparison of combination generation methods. ACM Trans. Math. Softw. 1981, 7, 42–45. [CrossRef]
6. Mifsud, C.J. Algorithm 154: Combination in lexicographical order. Comm. ACM 1963, 6, 103. [CrossRef]
7. Chan, B.; Akl, S.G. Generating combinations in parallel. BIT Numer. Math. 1986, 26, 1–6. [CrossRef]
8. Chen, G.H.; Chern, M.S. Parallel generation of permutations and combinations. BIT Numer. Math. 1986, 26, 277–283. [CrossRef]
9. Akl, S.G.; Gries, D.; Stojmenovic, I. An optimal parallel algorithm for generating combinations. Inform. Process. Lett. 1989,

33, 135–139. [CrossRef]
10. Lin, C.-J. A parallel algorithm for generating combinations. Comput. Math. Appl. 1989, 17, 1523–1533. [CrossRef]
11. Tsay, J.C.; Lin, C.J. A systolic design for generating combinations in lexicographic order. Parallel Comput. 1990, 13, 119–125.

[CrossRef]
12. Stojmenovic, I. A simple systolic algorithm for generating combinations in lexicographic order. Comput. Math. Appl. 1992,

24, 61–64. [CrossRef]
13. Elhage, H.; Stojmenovic, I. Systolic generation of combinations from arbitrary elements. Parallel Process. Lett. 1992, 2, 241–248.

[CrossRef]
14. Kapralski, A. New methods for the generation of permutations, combinations, and other combinatorial objects in parallel.

J. Parallel Distrib. Comput. 1993, 17, 315–326. [CrossRef]
15. Xu, C.W.; Ma, X.; Shiue, W.K. A new parallel combination generator. In Proceedings of the International Conference on Parallel

and Distributed Processing Techniques and Applications, Sunnyvale, CA, USA, 9–11 August 1996; pp. 25–28.
16. Kokosinski, Z. On parallel generation of combinations in associative processor architectures. In Proceedings of the IASTED

International Conference on Parallel and Distributed Systems, Barcelona, Spain, 9–11 June 1997; pp. 283–289.
17. Itai, A. Generating permutations and combinations in lexicographical order. J. Braz. Comput. Soc. 2001, 7, 65–68. [CrossRef]
18. Eades, P.; McKay, B. An algorithm for generating subsets of fixed size with a strong minimal change property. Inform. Process.

Lett. 1984, 19, 131–133. [CrossRef]
19. Xiang, L.; Ushijima, K. On O(1) time algorithms for combinatorial generation. Comput. J. 2001, 44, 292–302. [CrossRef]
20. Torres-Jimenez, J.; Izquierdo-Marquez, I. A low spatial complexity algorithm to generate combinations with the strong minimal

change property. Discret. Math. Algorithms Appl. 2019, 11, 1950060. [CrossRef]
21. Ruskey, F.; Williams, A. The coolest way to generate combinations. Discret. Math. 2009, 309, 5305–5320. [CrossRef]
22. Knott, G.D. A numbering system for combinations. Comm. ACM 1974, 17, 45–46. [CrossRef]
23. Er, M.C. Lexicographic ordering, ranking and unranking of combinations. Int. J. Comput. Math. 1985, 17, 277–283. [CrossRef]
24. Kokosinski, Z. Algorithms for unranking combinations and their applications. In Proceedings of the IASTED/ISMM International

Conference on Parallel and Distributed Computing and Systems, Washington, DC, USA, 19–21 October 1995; pp. 216–224.
25. Kokosinski, Z. Unranking combinations in parallel. In Proceedings of the International Conference on Parallel and Distributed

Processing Techniques and Applications, Sunnyvale, CA, USA, 9–11 August 1996; pp. 79–82.

http://doi.org/10.1002/9780470175668.ch1
http://page.math.tu-berlin.de/~felsner/SemWS17-18/Ruskey-Comb-Gen.pdf
http://page.math.tu-berlin.de/~felsner/SemWS17-18/Ruskey-Comb-Gen.pdf
http://dx.doi.org/10.1145/355934.355937
http://dx.doi.org/10.1145/366274.366309
http://dx.doi.org/10.1007/BF01939357
http://dx.doi.org/10.1007/BF01933707
http://dx.doi.org/10.1016/0020-0190(89)90192-0
http://dx.doi.org/10.1016/0898-1221(89)90052-7
http://dx.doi.org/10.1016/0167-8191(90)90125-S
http://dx.doi.org/10.1016/0898-1221(92)90007-5
http://dx.doi.org/10.1142/S0129626492000374
http://dx.doi.org/10.1006/jpdc.1993.1030
http://dx.doi.org/10.1590/S0104-65002001000200009
http://dx.doi.org/10.1016/0020-0190(84)90091-7
http://dx.doi.org/10.1093/comjnl/44.4.292
http://dx.doi.org/10.1142/S1793830919500605
http://dx.doi.org/10.1016/j.disc.2007.11.048
http://dx.doi.org/10.1145/360767.360811
http://dx.doi.org/10.1080/00207168508803468


Algorithms 2022, 15, 36 10 of 10

26. Ryabko, B.Y. Fast enumeration of combinatorial objects. Discret. Math. Appl. 1998, 8, 163–182. [CrossRef]
27. Shablya, Y.; Kruchinin, D.; Kruchinin, V. Method for developing combinatorial generation algorithms based on AND/OR trees

and its application. Mathematics 2020, 8, 962. [CrossRef]
28. Genitrini, A.; Pepin, M. Lexicographic unranking of combinations revisited. Algorithms 2021, 14, 97. [CrossRef]
29. Shimizu, T.; Fukunaga, T.; Nagamochi, H. Unranking of small combinations from large sets. J. Discret. Algorithms 2014, 29, 8–20.

[CrossRef]
30. Parque, V.; Miyashita, T. Towards the succinct representation of m out of n. In Proceedings of the Internet and Distributed

Computing Systems, Tokyo, Japan, 11–13 October 2018; pp. 16–26. [CrossRef]
31. Parque, V.; Miyashita, T. Unranking combinations using gradient-based optimization. In Proceedings of the International

Conference on Tools with Artificial Intelligence, Volos, Greece, 5–7 November 2018; pp. 579–586. [CrossRef]
32. Roberts, A.W.; Varberg, D.E. Convex Functions; Academic Press: New York, NY, USA, 1973.
33. Arfken, G.B.; Weber, H.J.; Harris, F.E. Mathematical Methods for Physicists; Elsevier Academic Press: Burlington, MA, USA, 2012.

[CrossRef]

http://dx.doi.org/10.1515/dma.1998.8.2.163
http://dx.doi.org/10.3390/math8060962
http://dx.doi.org/10.3390/a14030097
http://dx.doi.org/10.1016/j.jda.2014.07.004
http://dx.doi.org/10.1007/978-3-030-02738-4_2
http://dx.doi.org/10.1109/ICTAI.2018.00094
http://dx.doi.org/10.1016/C2009-0-30629-7

	Introduction
	Materials and Methods
	Algorithms for Ranking and Unranking Combinations in Co-Lexicographic Order
	Modification of Unranking Algorithm

	Results
	Conclusions
	References

