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Abstract: This study addresses the problem of the maximization of the voltage stability index (λ-
coefficient) in medium-voltage distribution networks considering the optimal placement and sizing
of dispersed generators. The problem is formulated through a mixed-integer nonlinear programming
model (MINLP), which is solved using General Algebraic Modeling System (GAMS) software. A
numerical example with a 7-bus radial distribution network is employed to introduce the usage
of GAMS software to solve the proposed MINLP model. A new validation methodology to verify
the numerical results provided for the λ-coefficient is proposed by using recursive power flow
evaluations in MATLAB and DigSILENT software. The recursive evaluations allow the determination
of the λ-coefficient through the implementation of the successive approximation power flow method
and the Newton–Raphson approach, respectively. It is effected by fixing the sizes and locations of the
dispersed sources using the optimal solution obtained with GAMS software. Numerical simulations
in the IEEE 33- and 69-bus systems with different generation penetration levels and the possibility of
installing one to three dispersed generators demonstrate that the GAMS and the recursive approaches
determine the same loadability index. Moreover, the numerical results indicate that, depending on the
number of dispersed generators allocated, it is possible to improve the λ-coefficient between 20.96%
and 37.43% for the IEEE 33-bus system, and between 18.41% and 41.98% for the IEEE 69-bus system.

Keywords: voltage stability analysis; mathematical optimization; recursive solution methodologies;
dispersed generation

1. Introduction

Electrical distribution networks provide electrical energy to all end-users at medium-
and low-voltage levels [1]. These grids interface the power system in the distribution
substation with residential, industrial, and commercial consumers by following a radial
connection among nodes [2]. Utilities prefer the radial connection owing to lower invest-
ment costs in conductors and protective devices. However, these structures deteriorate the
performance in terms of different service reliability indexes [3,4]. Additionally, distribution
networks have high energy losses when compared with the transmission counterparts. In
some cases, energy losses can be between 6% and 18%, depending on the utility mainte-
nance practices, whereas, in transmission networks, the energy losses are between 1.5%
and 2% [2]. These power losses are primarily caused by the radial structure of the net-
work. The extant literature presents several methodologies to address the energy losses
based on the optimal location of shunt devices and grid topology variations. These meth-
ods include optimal location of dispersed generators [5,6], optimal location of capacitor
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banks [7,8], optimal location of distribution static compensators [9,10], optimal integration
of battery energy storage systems [11,12], and grid reconfiguration [13,14], among other
strategies. The distinctive characteristic of these approaches is the usage of advanced
optimization techniques to improve the grid performance, most of which are from the
family of metaheuristic optimization techniques because of their ease of implementation
with a master-slave structure using simple power flow formulations [15].

Reducing total grid power losses is, thus, an important and current research aspect
in optimization studies for electrical distribution grids [16]. Correspondingly, the voltage
stability performance of the network is an additional aspect that has attracted considerable
attention owing to its implications in the quality and operation reliability indexes [17].
The voltage stability performance measures the ability of the distribution grid to support
load increments without causing a blackout [18,19]. Several studies have addressed the
improvement of grid stability using a simplified line-to-load indicator, primarily using
dispersed generators [20]. However, the central drawback of these approaches is that the
adopted stability index does not measure the global state of the distribution grid and its
ability to support simultaneous load increments [21].

In the specialized literature, the voltage stability issues in distribution grids are usually
addressed using numerical indexes that concern the voltage profile and the total power
consumption. Ghaffarianfar and Hajizadeh, in Reference [22], analyzed the voltage stability
problem in AC distribution networks considering the large-scale integration of photovoltaic
generation. The authors developed a stability index that depends on the line data, active
and reactive power demands, and the voltage values, which are obtained using a classical
load flow method. The main contribution of the authors relates to their identification of the
possible positive and negative effects associated with the installation of renewable energy
resources, which allowed the authors to provide some guidelines regarding the optimal
location of these devices in electrical distribution grids. The authors of Reference [21]
presented the voltage stability analysis in AC distribution grids using a second-order cone
programming model. Numerical simulation shows that the conic formulation allows for
the maximum simultaneous increment in all the loads of the network by ensuring the
global optimum finding. Numerical results in the IEEE 33- and IEEE 69-node test feeders
demonstrated the effectiveness of the conic model when compared with the exact nonlinear
model and classical recursive approaches based on power flow solutions. Reference [17]
proposed a stability indicator that allowed identifying nodes on the verge of voltage col-
lapse. This indicator is calculated for each node using a modification of the load flow
method for voltage stability analysis, which incorporates the load variations and composite
load models. Numerical results demonstrated the effectiveness of the proposed index when
compared with others in the existing literature. Aly and Abdel-Akher, in Reference [23],
proposed an extension of the classical Newton–Raphson power flow method through the
continuation approach. Numerical results in the IEEE 33-bus system demonstrate the
effectiveness of the proposed method to obtain the voltage collapse point. Their results
were corroborated with the PSAT tool for MATLAB software (2021a, Natick, MA, USA). In
the case of the optimal placement of dispersed generators for distribution networks, most
of the approaches, in their objective formulations, consider the improvement of the voltage
stability index of the network [24]. Some of these approaches include population-based
incremental learning [25], genetic algorithms [26,27], particle swarm optimization [28], and
heuristic-based methods based on sensitive formulas [29,30]. In general, these approaches
are based on the calculation of a voltage stability index based on the branch-to-load equiv-
alent of each branch of the network. Further, as mentioned previously, these approaches
do not consider in their formulations the simultaneous increment of the loads in all the
nodes, which is indeed a complication. The present study aims to contribute to the current
literature by addressing the aforementioned complication.

In this study, we propose a mixed-integer nonlinear programming (MINLP) model
for voltage stability improvement in medium-voltage distribution networks that includes
the possibility of optimal siting and sizing of dispersed generators considering a global
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stability index named the λ-coefficient [21]. The solution of this MINLP model was
achieved using the General Algebraic Modeling System (GAMS) and the large-scale solver
BONMIN [31,32]. In addition, we propose two recursive validations using the successive
approximation power flow method in the MATLAB programming environment [33] and
the Newton–Raphson power flow method in DigSILENT software [34], which allow the
final value of the λ−coefficient to be verified via an iterative procedure by fixing the sizes
and locations of the dispersed generators based on the solution provided by GAMS soft-
ware. The main contributions of this study include: (i) the validation of the optimal value
of the λ-coefficient using two recursive power flow methods programmed in MATLAB and
DigSILENT programming environments based on the successive approximation power
flow method and the Newton–Raphson approach, respectively; and (ii) the evaluation of
multiple simulation scenarios with different numbers of available dispersed generators
with limitations of 40% and 60% in the total injection of active power by the distributed
sources. These simulation cases demonstrate that the areas with the worse voltage profiles
are the best places for locating the dispersed generators.

It is worth mentioning that this research is primarily focused on the optimal placement
and sizing of dispersed generators in medium-voltage networks in order to improve voltage
stability. We are not proposing a novel approach to determine the voltage stability factor, i.e.,
the λ-coefficient, since multiple such approaches are available in the existing literature, such
as the continuation method [23], line-to-load approach [20], and convex optimization [21].
However, the recursive validations in MATLAB and DigSILENT environments can be
considered a new possibility to determine the maximum loadability index in distribution
networks using recursive power flow solutions, particularly since they coincide perfectly
with the GAMS results. Further, it is important to emphasize that, in relation to the
dispersed generators, the proposed approach is independent of the type of generation
technology implemented; however, to ensure that the λ-coefficient is effectively maximized,
it is mandatory that they generate the designed nominal power during the peak hour.
This can be achieved by combining renewable generation technology with energy storage
systems or by using dispatchable generation sources.

The remainder of this paper is organized as follows: Section 2 presents the general
MINLP formulation for the studied problem. Section 3 illustrates the main aspects of the
solution methodology based on GAMS software and the recursive validations using power
flow solutions in MATLAB and DigSILENT programming environments. Section 4 outlines
the primary characteristics of the IEEE 33- and IEEE 69-bus systems. Section 5 presents the
main numerical results with their corresponding analysis and discussion. Lastly, Section 6
lists the main concluding remarks derived from this research and some suggestions for
potential future research.

2. Mathematical Formulation

The problem of the maximization of the voltage stability margin by considering
the optimal placement and sizing of dispersed generators in AC distribution grids can be
formulated through an MINLP model [21]. The integer part of this formulation corresponds
to the decision of whether or not to locate the dispersed sources, while the continuous part
of the model is associated with the electrical variables, such as voltages, power, and current
flows. The complete mathematical formulation of the studied problem is presented below.

2.1. Objective Function

The objective function corresponds to the maximization of the loadability index, i.e.,
the maximum simultaneous increment of the constant power consumptions, which is
labeled in this research as the λ−coefficient. It can be formulated as follows:

max zl = λ, (1)

where zl is the objective function value associated with maximum apparent power con-
sumption of the network before entering the voltage collapse point.
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It is to be noted that, in power system analysis, the λ−coefficient is typically used to
construct the nose curve that defines the maximum possible increment of a particular load
before reaching the voltage collapse point for a branch-to-load equivalent [35]; nonetheless,
in this research, we extrapolate this concept to a general AC distribution network consid-
ering dispersed generation. This corresponds with the primary objective of this research,
which is to maximize the global stability margin coefficient through the optimal placement
and sizing of distributed generation sources.

2.2. Set of Constraints

There are several constraints associated with the optimal integration of dispersed
generators in distribution grids to increase the loadability capacities of the network before
reaching the point of voltage collapse. These constraints include active and reactive power
flow equations, generator capabilities, and possible locations of generators. The complete
list of constraints is provided below.

Pcg
i + Pdg

i − (1 + λ)Pd
i = Vi ∑

i∈N
YijVj cos

(
θi − θj − δij

)
, ∀i ∈ N , (2)

Qcg
i − (1 + λ)Qd

i = Vi ∑
i∈N

YijVj sin
(
θi − θj − δij

)
, ∀i ∈ N , (3)

Vmin ≤ Vi ≤ Vmax, ∀i ∈ N , (4)

0 ≤ Pdg
i ≤ xiP

dg
max, ∀i ∈ N , (5)

∑
i∈N

xi ≤ Ndg
max, (6)

∑
i∈N

Pdg
i ≤ β ∑

i∈N
Pd

i , (7)

xi ∈ {0, 1}, ∀i ∈ N , (8)

λ ≥ 0, (9)

where Pcg
i and Qcg

i denote the active and reactive power injections at the conventional

generator, i.e., the slack source; pdg
i is the active power injection in the dispersed generators;

Pd
i and Qd

i correspond to the active and reactive power demands at each node; Vi and Vj
are the voltage magnitudes at nodes i and j, which have angles θi and θj, respectively;
Yij is the magnitude of the admittance connecting nodes i and j, with an angle δij; Vmin
and Vmax represent the minimum and maximum voltage regulation bounds allowed in
all nodes of the network; xi is a binary variable related to the presence or absence of a
dispersed generator at node i; Pdg

max indicates the maximum size allowed for a distributed
generator; Ndg

max indicates the maximum number of dispersed generators available for
allocation in the network; and β is the maximum penetration level of dispersed generation
in the distribution grid. Note that N is the set that contains all the demand nodes of
the network.

2.3. Model Interpretation

The optimization model defined in (1) to (9) can be interpreted as follows: Equation (1)
corresponds to the objective function regarding the simultaneous maximization of the
active power consumption in all the nodes in the network; Equations (2) and (3) outline
the application of Tellegen’s theorem to all the nodes in the network (i.e., the apparent
power definition to each node) [36], which generates the classical active and reactive
power balance constraints; inequality constraint (4) defines the voltage regulation limits
in all the nodes of the grid (this constraint is generally defined by regulatory policies
and utility operative practices); inequality constraint (5) limits the maximum size of the
dispersed generator that can be connected at node i; inequality constraint (6) defines the
maximum number of dispersed generators that can be installed along the distribution
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network; inequality constraint (7) defines the maximum percentage of dispersed generation
penetration in the entire distribution network; restriction (8) indicates the binary nature of
the decision variable xi; and inequality constraint (9) represents the positiveness definition
of the loadability coefficient.

Remark 1. The core complication of the optimization model (1)–(9) corresponds to the non-
convexity of the solution space due to the presence of products among decision variables and
trigonometric functions in the active and reactive power balance constraints, in addition to the
binary nature of the decision variable xi. As a result, it is necessary to use advanced optimization
techniques in conjunction with its solution, as presented in the following section.

3. Solution Methodology

Here, we adopt an optimization methodology composed of three steps to present the
optimal solution of the optimization problem defined in (1) to (9). The three steps are as
follows: (i) solving the optimization model with the aid of GAMS software; (ii) validating
the solution using a recursive solution of the power flow problem by increasing the load
consumption using loop cycles; and (iii) validating the results in DigSILENT software by
implementing a program in DigSILENT Programming Language (DPL). Some of the most
critical aspects in the implementation of the solution methodology are described below.

3.1. GAMS Implementation

GAMS software is a popular optimization tool used in academics and industry to
solve large-scale optimization problems in science and engineering [37]. Some of the
well-known applications of GAMS software include renewable energy and battery energy
storage integration in power and distribution networks [5,7,38], optimization of pump and
valve schedules in complex large-scale water distribution systems [39], multi-objective
optimization of the stack of a thermoacoustic engine [40], and application in DC distribution
networks [41,42].

Figure 1 illustrates the general implementation of an optimization model in GAMS
software. It should be noted that, since the software uses advanced optimization techniques,
such as branch & bound and interior point methods, to decouple and solve the complete
optimization model, the primary requirement in the GAMS implementation corresponds
to ensuring a feasible optimization model [32,43].

Remark 2. The solution of the optimization model (1)–(9) was reached using the BONMIN solver
by varying the number of dispersed generators from 1 to 3 in order to identify the effect on the
loadability factor of the network.

References [32,43] provide several numerical examples and tips for GAMS beginners
and serve as useful guides when consulting particular aspects of GAMS software.

The general methodology for solving MINLP models in GAMS software, as depicted
in Figure 1, is illustrated here using a numerical example with a grid of 7 nodes taken
from Reference [31]. The electrical configuration of this grid is depicted in Figure 2, and
information concerning the branches and loads is presented in Table 1. This grid is operated
with 23 kV at the substation bus and has a radial configuration. Note that the GAMS
implementation uses 1 MVA and 23 kV as power and voltage bases, respectively.

The optimization model (1)–(9), when implemented for the 7-bus test feeder, assumes
that each generator can produce a maximum power of 2 MW, thus implying the possibility
of installing two dispersed sources. The GAMS implementation is illustrated in Listing 1.
Note that, in this implementation, the minimum and maximum voltages are set at 0.40, and
1.20; in addition, the β-coefficient is set as 0.30 for this numerical illustration.
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Start: GAMS
executionAC network information Admittance matrix

Choose sets
and maps

Insert parameters,
scalars, and tables

Choose the variables
and their bounds

Define the equa-
tions’ names

Insert the opti-
mization model

Solve the MINLP
model choosing
an adequate tool

Evaluation
ends?

End: Analy-
sis of results

Solution reportModify Ndg
max

no

yes

Figure 1. Main aspects of the solution of an optimization problem in GAMS software.

slack

1 2 3 4

5 6

7

Figure 2. Schematic nodal connection of the 7-bus test feeder.

Table 1. Branch and nodal parameters for the 7-bus system.

Node i Node j Rij (Ω) Xij (Ω) Pj (kW) Qj (kvar)

1 2 0.5025 0.3025 1000 600
2 3 0.4020 0.2510 900 500
3 4 0.3660 0.1864 2500 1200
2 5 0.3840 0.1965 1200 950
5 6 0.8190 0.7050 1050 780
2 7 0.2872 0.4088 2000 1150
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The following observations can be isolated from the GAMS implementation illustrated
in Listing 1:

X GAMS software is a mathematical interpreter where the set of equations that described
the studied problem is implemented using a very similar syntax.

X It has multiple MINLP solvers, and it selects the most adequate solver depending on
the internal complexity of the studied model. We have selected the BONMIN solver
as it combines both the Branch & Cut method and the interior point method in its
approach to solving MINLP problems.

X The complete implementation of the model using the nodal admittance matrix implies
that this matrix must be calculated and introduced to the model manually. For the
7-bus system, this matrix was calculated using the successive approximation power
flow method and introduced in the GAMS model between lines 10 and 30 in Listing 1.

Once the GAMS code in Listing 1 is executed, it was found that the dispersed genera-
tors for this system are located at nodes 4 and 6 with capacities of 2000 kW and 595 kW,
respectively. In addition, the λ−coefficient takes a value of 15.8965. Reference [32] provides
comprehensive details about the implementation of GAMS to solve electrical engineering
problems. It is also important to highlight that, once GAMS software has resolved the
optimization problem with the BONMIN solver, i.e., once the location and sizes of the
generators have been identified, the value of the λ−coefficient is verified with the recur-
sive validation using MATLAB/DigSILENT. This recursive validation is described in the
following subsection.

Listing 1: GAMS implementation of the voltage stability model (1)–(9).

1 SETS
2 G Index associated to the slack nodes /G1/
3 N Index associated to the nodes /N1*N7/
4 MAP(G,N) Relates generators and nodes /G1.N1/;
5 ALIAS(N,NP);
6 SCALARS
7 PGmax Maximum power output per DG /2/
8 NGmax DGs available /2/
9 Beta Penetration of renewables /0.30/;

10 TABLE LINE(N,N,*) YBUS matrix: YBUS = Y<PHI
11 Y PHI
12 N1.N1 901.921127450169 -0.541881487533056
13 N2.N1 901.921127450169 2.599711166056740
14 N1.N2 901.921127450169 2.599711166056740
15 N2.N2 4225.31203745061 -0.627679749517968
16 N3.N2 1116.21013633344 2.583440665436250
17 N5.N2 1226.36440161427 2.668614055686530
18 N7.N2 1058.84470205320 2.183227654872620
19 N2.N3 1116.21013633344 2.583440665436250
20 N3.N3 2401.88600124091 -0.511488986218966
21 N4.N3 1287.94374735150 2.670540998703630
22 N3.N4 1287.94374735150 2.670540998703630
23 N4.N4 1287.94374735150 -0.471051654886168
24 N2.N5 1226.36440161427 2.668614055686530
25 N5.N5 1706.01794624463 -0.540610678882462
26 N6.N5 489.524057395199 2.430858585727870
27 N5.N6 489.524057395199 2.430858585727870
28 N6.N6 489.524057395199 -0.710734067861924
29 N2.N7 1058.84470205320 2.183227654872620
30 N7.N7 1058.84470205320 -0.958364998717178;
31 TABLE BUS(N,*) Demand behavior
32 PL QL
33 N1 0.00 0.00
34 N2 1.00 0.60
35 N3 0.90 0.50
36 N4 2.50 1.20
37 N5 1.20 0.95
38 N6 1.05 0.78
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39 N7 2.00 1.15;
40 VARIABLES
41 z Objective function
42 p(G) Active power output in the slack generator
43 q(G) Reactive power output in the slack generator
44 v(N) Voltage magnitude at node N
45 d(N) Voltage angle at node N
46 pdg(N) Active power output in the DGs at node N
47 Lambda Loadability coefficient;
48 BINARY VARIABLES
49 x(N) Variable for optimal location of the DG;
50 v.lo(N) = 0.40; v.up(N) = 1.20;
51 d.fx(’N1’) = 0; v.fx(’N1’) =1.0;
52 EQUATIONS
53 OBJFUC Objective function
54 PBAL(N) Active power balance per node
55 QBAL(N) Reactive power balance
56 TGEN Number of DGs available
57 MAXGD(N) Maximum reactive power output in the DG
58 MINGD(N) Minimum reactive power output in the DG
59 TPEN Total penetration of distributed generation;
60 OBJFUC .. z =E= Lambda;
61 PBAL(N).. SUM(G$MAP(G,N),p(G))-BUS(N,’PL’)*(1+ Lambda) + pdg(N)=e=
62 v(N)*SUM(NP ,LINE(N,NP,’Y’)*v(NP)*COS(d(N)-d(NP)-LINE(N,NP,’PHI

’)));
63 QBAL(N).. SUM(G$MAP(G,N),q(G))-BUS(N,’QL’)*(1+ Lambda) =e=
64 v(N)*SUM(NP ,LINE(N,NP,’Y’)*v(NP)*SIN(d(N)-d(NP)-LINE(N,NP,’PHI

’)));
65 TGEN.. SUM(N,x(N)) =E= NGmax;
66 MAXGD(N).. pdg(N) =G= 0;
67 MINGD(N).. pdg(N) =L= x(N)*PGmax;
68 TPEN.. sum(N,pdg(N)) =L= Beta*sum(N,BUS(N,’PL’));
69 MODEL SevenNodes /ALL/;
70 OPTIONS decimals = 4;
71 SOLVE SevenNodes using MINLP maximizing z;
72 DISPLAY z.l,x.l,pdg.l;

3.2. Recursive Solution and DigSILENT Validation

To validate the solution provided by GAMS software, the validation stage of the
proposed solution methodology was implemented using the power flow method (succes-
sive approximation power flow method [33]) in the MATLAB programming environment,
which was evaluated recursively until the convergence failed. An identical approach was
adopted in DigSILENT software using the Newton–Raphson power flow method. The
general flow diagram for the numerical validation in MATLAB and DigSILENT is depicted
in Figure 3.

The primary advantage of the proposed validation methodology using power flow
approaches implemented in MATLAB and DigSILENT software corresponds to the possi-
bility of storing the voltage profile for each simulation scenario to construct the nose curve
for the most critical nodes.

The power flow formula in the case of the recursive implementation of the successive
approximation method is presented below:

Vt+1
d = Y−1

dd

[
diag−1

(
Vt,?

d

)(
St,?

dg − St,?
d

)
−YdsVs

]
, (10)

where Vt
d denotes the vector containing all the complex voltages in demand nodes, Ydd

corresponds to a sub-matrix that relates demand nodes among them, St,?
dg indicates the

vector containing all the complex power generation in dispersed generators, St,?
d represents

the vector that contains all the complex power demands, Yds corresponds to a rectangular
sub-matrix that relates the demand and the slack nodes, and Vs corresponds to the vector
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that contains all the voltages in the slack node. Note that t is the iterative counter, implying
that, for t = 0, the initial voltage vector is assigned as V0

d = 1∠0◦ [44].

Start: MAT-
LAB/DigSI-

LENT evaluation
AC network information λ-coefficient

Select the maxi-
mum number of

iterations, i.e., tmax

Select Ndg
max

Construct the grid
matrices for MATLAB

or the grid graph
for DigSILENT

Solve the power
flow problem

Evaluation
ends?

End: Analy-
sis of results

Solution reportIncrease the
λ-coefficient

no

yes

Figure 3. Recursive validation of the maximum loadability coefficient using MATLAB and DigSILENT.

Note that the successive approximation power flow Formula (10) is evaluated until
the convergence error is reached or the maximum number of iterations is fulfilled. The
convergence criterion takes the following form:

max
{∣∣∣Vt+1

d || −
∣∣Vt

d
∣∣∣∣∣} ≤ ε, (11)

where ε corresponds to the maximum convergence error, which was assigned, as recom-
mended in Reference [44], as 1× 10−10.

Remark 3. The most significant advantage of the successive approximation power flow method
defined in (11) is that its convergence is ensured through the application of the Banach fixed-
point theorem [33]. However, when the system approaches the voltage collapse point, the number of
iterations increases, which can be used as a stopping criterion to finalize the search of the λ-coefficient,
as explained in Figure 3.

4. Test Feeders

Two test feeders were employed to validate the proposed solution methodology for
enhancing the voltage stability margin in AC distribution networks by considering the
optimal placement and sizing of dispersed generators. The test feeders correspond to the
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IEEE 33-bus system and the IEEE 69-bus system, both with a radial structure and operated
at the substation bus with 12.66 kV of nominal voltage output. The electrical configuration
of both the test feeders is depicted in Figure 4.

AC

Slack

1 2

3 4 5

6
7 8 9 10 11 12 13 14 15 16 17 18

23
24
25

19
20
21
22

26 27 28 29 30 31 32 33

(a)

Slack

AC
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27

(b)

36 37 38 39 40 41 42 43 44 45 46

47 48 49 50 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69

51
52

28 29 30 31 32 33 34 35

Figure 4. Test feeders: (a) IEEE 33-bus system and (b) IEEE 69-bus system.

Parametric information related to the active and reactive power consumption and
the line resistance and reactance parameters for both the test feeders are reported in
Tables 2 and 3. This information was obtained from Reference [15].

In the case of dispersed generators for the IEEE 33-bus system, it is assumed that each
dispersed generator can generate a maximum rating of 1200 kW, and for the IEEE 69-bus
system, the threshold is extended to 2500 kW. Moreover, the numerical evaluation used
12.66 kV and 100 kVA as the voltage and power bases, respectively.

Table 2. IEEE 33-bus system parameters.

Node i Node j Rij (Ω) Xij (Ω) Pj (kW) Qj
(kvar) Node i Node j Rij (Ω) Xij (Ω) Pj (kW) Qj

(kvar)

1 2 0.0922 0.0477 100 60 17 18 0.7320 0.5740 90 40
2 3 0.4930 0.2511 90 40 2 19 0.1640 0.1565 90 40
3 4 0.3660 0.1864 120 80 19 20 1.5042 1.3554 90 40
4 5 0.3811 0.1941 60 30 20 21 0.4095 0.4784 90 40
5 6 0.8190 0.7070 60 20 21 22 0.7089 0.9373 90 40
6 7 0.1872 0.6188 200 100 3 23 0.4512 0.3083 90 50
7 8 1.7114 1.2351 200 100 23 24 0.8980 0.7091 420 200
8 9 1.0300 0.7400 60 20 24 25 0.8960 0.7011 420 200
9 10 1.0400 0.7400 60 20 6 26 0.2030 0.1034 60 25

10 11 0.1966 0.0650 45 30 26 27 0.2842 0.1447 60 25
11 12 0.3744 0.1238 60 35 27 28 1.0590 0.9337 60 20
12 13 1.4680 1.1550 60 35 28 29 0.8042 0.7006 120 70
13 14 0.5416 0.7129 120 80 29 30 0.5075 0.2585 200 600
14 15 0.5910 0.5260 60 10 30 31 0.9744 0.9630 150 70
15 16 0.7463 0.5450 60 20 31 32 0.3105 0.3619 210 100
16 17 1.2860 1.7210 60 20 32 33 0.3410 0.5302 60 40
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Table 3. IEEE 69-bus system parameters.

Node i Node j Rij (Ω) Xij (Ω) Pj (kW) Qj
(kvar) Node i Node j Rij (Ω) Xij (Ω) Pj (kW) Qj

(kvar)

1 2 0.0005 0.0012 0.00 0.00 3 36 0.0044 0.0108 26.00 18.55
2 3 0.0005 0.0012 0.00 0.00 36 37 0.0640 0.1565 26.00 18.55
3 4 0.0015 0.0036 0.00 0.00 37 38 0.1053 0.1230 0.00 0.00
4 5 0.0251 0.0294 0.00 0.00 38 39 0.0304 0.0355 24.00 17.00
5 6 0.3660 0.1864 2.60 2.20 39 40 0.0018 0.0021 24.00 17.00
6 7 0.3810 0.1941 40.40 30.00 40 41 0.7283 0.8509 1.20 1.00
7 8 0.0922 0.0470 75.00 54.00 41 42 0.3100 0.3623 0.00 0.00
8 9 0.0493 0.0251 30.00 22.00 42 43 0.0410 0.0478 6.00 4.30
9 10 0.8190 0.2707 28.00 19.00 43 44 0.0092 0.0116 0.00 0.00

10 11 0.1872 0.0619 145.00 104.00 44 45 0.1089 0.1373 39.22 26.30
11 12 0.7114 0.2351 145.00 104.00 45 46 0.0009 0.0012 29.22 26.30
12 13 1.0300 0.3400 8.00 5.00 4 47 0.0034 0.0084 0.00 0.00
13 14 1.0440 0.3450 8.00 5.50 47 48 0.0851 0.2083 79.00 56.40
14 15 1.0580 0.3496 0.00 0.00 48 49 0.2898 0.7091 384.70 274.50
15 16 0.1966 0.0650 45.50 30.00 49 50 0.0822 0.2011 384.70 274.50
16 17 0.3744 0.1238 60.00 35.00 8 51 0.0928 0.0473 40.50 28.30
17 18 0.0047 0.0016 60.00 35.00 51 52 0.3319 0.1114 3.60 2.70
18 19 0.3276 0.1083 0.00 0.00 9 53 0.1740 0.0886 4.35 3.50
19 20 0.2106 0.0690 1.00 0.60 53 54 0.2030 0.1034 26.40 19.00
20 21 0.3416 0.1129 114.00 81.00 54 55 0.2842 0.1447 24.00 17.20
21 22 0.0140 0.0046 5.00 3.50 55 56 0.2813 0.1433 0.00 0.00
22 23 0.1591 0.0526 0.00 0.00 56 57 1.5900 0.5337 0.00 0.00
23 24 0.3463 0.1145 28.00 20.00 57 58 0.7837 0.2630 0.00 0.00
24 25 0.7488 0.2475 0.00 0.00 58 59 0.3042 0.1006 100.00 72.00
25 26 0.3089 0.1021 14.00 10.00 59 60 0.3861 0.1172 0.00 0.00
26 27 0.1732 0.0572 14.00 10.00 60 61 0.5075 0.2585 1244.00 888.00
3 28 0.0044 0.0108 26.00 18.60 61 62 0.0974 0.0496 32.00 23.00

28 29 0.0640 0.1565 26.00 18.60 62 63 0.1450 0.0738 0.00 0.00
29 30 0.3978 0.1315 0.00 0.00 63 64 0.7105 0.3619 227.00 162.00
30 31 0.0702 0.0232 0.00 0.00 64 65 1.0410 0.5302 59.00 42.00
31 32 0.3510 0.1160 0.00 0.00 11 66 0.2012 0.0611 18.00 13.00
32 33 0.8390 0.2816 14.00 10.00 66 67 0.0470 0.0140 18.00 13.00
33 34 1.7080 0.5646 19.50 14.00 12 68 0.7394 0.2444 28.00 20.00
34 35 1.4740 0.4873 6.00 4.00 68 69 0.0047 0.0016 28.00 20.00

5. Computational Validation

The simulation cases outlined below were considered to validate the proposed method-
ology, i.e., to find the maximum loadability factor λ:

X Case 1 (C1): Corresponds to the benchmark case of the network, i.e., without including
dispersed generators.

X Case 2 (C2): Considers the possibility of installing one to three dispersed generators
with a total grid penetration of 40%, i.e., β = 0.40.

X Case 3 (C3): Considers the possibility of installing one to three dispersed generators
with a total grid penetration of 60%, i.e., β = 0.60.

5.1. Results in the IEEE 33-Bus System

The voltage regulation bounds were relaxed to Vmax = 1.20 pu and Vmin = 0.30 pu
to ensure that GAMS software solves the optimization model (1)–(9), since the primary
objective is to determine the maximum value of the λ-coefficient before reaching the voltage
collapse point, implying that the typical regulation bounds of ±10% do not correspond
under this extreme condition.

Table 4 lists the numerical results in the IEEE 33-bus system for all the simulation
cases studied.
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Table 4. Numerical performance of the λ-coefficient in the IEEE 33-bus system for all the simula-
tion cases.

Case Ndg
ava

Location
(node) PG1 (pu) PG2 (pu) PG3 (pu) GAMS

(λ)

MATLAB
DigSILENT

(λ)

1 0 0 — — — 2.4079 2.4079

1 18 1.2000 — — 2.9128 2.9128
2 2 (18,32) 0.9316 0.5544 — 3.0590 3.0590

3 (17,18,32) 0.5735 0.3663 0.5462 3.0635 3.0635

1 18 1.2000 - — 2.9128 2.9128
3 2 (17,32) 1.2000 1.029 — 3.3068 3.3068

3 (17,18,32) 0.8324 0.3885 1.0080 3.3091 3.3091

From the numerical results in Table 4, the following can be summarized: (i) the active
power injection allowed the loadability factor to increase by approximately 27.22% and
37.43% for the simulation cases C2 and C3, respectively, with the maximum number of
dispersed generators installed, i.e., Ndg

ava = 3; (ii) the optimization methodology identified
an identical set of nodes for one to three dispersed generators independent of the percentage
of generation penetration allowed, i.e., nodes 17, 18, and 32; however, depending on the
β-coefficient, the final value of the loadability coefficient showed important variations,
which was an expected behavior; as the percentage of generation increases, the capacity
of the grid to support a load also increases; and (iii) the λ-coefficient identified by the
BONMIN solver in GAMS was exactly the same as that provided by the recursive approach
in the MATLAB/DigSILENT environments. However, the maximum variation step in the
λ increments was set as 1× 10−6 to ensure this equivalence; this implies that 2.9128 million
power flow solutions are required in C2 with one dispersed generator, and 3.3091 million
power flow solutions are required in C3 with three dispersed generators.

Further, the following observations were noted concerning the processing times. For
the IEEE 33-bus system, the solution of the benchmark case in GAMS software with the
BONMIN solver took about 0.387 ms; in addition, the processing time was about 3.0632 s in
the case of one dispersed generator, about 6.770 s for two generators, and about 3.423 s for
three generators. Note that these processing times confirm the effectiveness and robustness
of GAMS software in solving MINLP models, as demonstrated in Reference [32].

Figure 5 presents the voltage profiles in the benchmark case and the C2 and C3 cases
with three dispersed generators installed. These profiles were obtained from DigSILENT
software to illustrate the effect of the optimal placement and sizing of dispersed generators
in the IEEE 33-bus system.

The voltage profiles shown in Figure 5 indicate that the minimum voltage profile
in C1 was caused at node 18 with a magnitude of 0.3905 pu, which directly relates to
the numerical results in Table 4. Accordingly, in all the simulation cases, node 18 was
selected as the optimal location for the dispersed generators, particularly since the unique
increase in the voltage profile at this node reduces the total power consumption through
the injection of active power locally.

Figure 6 depicts the voltage performance at the worst node, i.e., bus 18, for all the
simulation cases and for different numbers of dispersed generators.
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Figure 5. Behavior of the voltage profiles in the benchmark case, i.e., C1, and simulation cases C2
and C3 with three dispersed generators for the IEEE 33-bus system.

From the results in Figure 6, we can note that (i) the worst voltage profile occurs in C1,
when the grid does not have the penetration of dispersed generation, with a magnitude
of 0.3904 pu when the loadability index assumes a value of 2.4079 (Figure 6a); however,
when one dispersed generator was installed in C2 and C3, the voltage profile increased to
0.5240 pu with the λ-coefficient increasing to 2.9128, which is an improvement of approx-
imately 20.96% with respect to the benchmark case; (ii) when two dispersed generators
were installed for C2 and C3, it was observed that the λ-coefficient values became 3.0590
and 3.30968, respectively, which correspond to improvements of approximately 5.02% and
13.53% with respect to the same scenarios with one dispersed generator; however, the
voltage collapse point does not present high variations; it was approximately 0.4489 pu
and 0.4435 pu in C2 and C3, respectively; and (iii) when three dispersed generators were
installed, the increments of the λ-coefficient were approximately 0.15 % and 0.07%, respec-
tively. It can be concluded from these values that the limitation imposed by the β-coefficient
saturates the total improvement of the loadability index when the possibility of installing
dispersed generators increases. However, the numerical results in the IEEE 33-bus sys-
tem exhibited the effectiveness of using dispersed generation to enhance the grid voltage
stability index.

5.2. Results in the IEEE 69-Bus System

For the computational evaluation of the test feeder, the voltage regulation constraints
were relaxed to Vmax = 1.20 pu and Vmin = 0.45 pu during the GAMS implementation of
the model (1)–(9). It is worth recalling that these relaxations were only used to determine
the maximum λ-coefficient. During normal operative conditions, these bounds must be
restored to ±10% to ensure the fulfillment of regulatory policies.

Table 5 reports the numerical performance for all the simulation cases in the IEEE
69-bus system using the BONMIN solver in the GAMS environment and the verification in
MATLAB and DigSILENT software.

The numerical results listed in Table 5 yield the following observations: (i) For C2
and C3 with three units of generation, increments of approximately 28.55% and 41.98%,
respectively, were observed in the λ-coefficient. Moreover, the verification processes in
MATLAB and DigSILENT indicated that, for all the simulation cases, the λ-coefficient
was the same as that provided by GAMS software, which confirms the efficacy of the
recursive evaluation processes. In C2 with two distributed generators, an estimation error
lower than 4× 10−3% was noted, which is attributable to convergence errors of the power
flow methods used in the recursive validations owing to the near singularity behavior of
the Jacobian matrix when approaching the voltage collapse point. (ii) In the case of one
dispersed generator, when the β-coefficient was varied from 40% to 60%, it was observed
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that the location of the generator changed from node 58 to 59. However, in both the
cases, the λ-coefficient was higher than 2.84, which improved the loadability coefficient
by approximately 28.43% and 30.32%, respectively. (iii) When two and three dispersed
generators were installed, they always appeared at nodes 64 and 65; however, node 65 had
minimum generation with values of 0.2274 pu and 0.2451 pu, respectively. This behavior
can be explained as follows: since the active power injection in upstream nodes reduces the
power requirement at this node, voltage profiles increase owing to the power injections at
nodes 61 and 64, respectively.
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Figure 6. Voltage performance at node 18: (a) benchmark case and C2 and C3 with one dispersed generator,
(b) C2 and C3 with two dispersed generators, and (c) C2 and C3 with three dispersed generators.
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Table 5. Numerical performance of the λ-coefficient in the IEEE 69-bus system for all the simula-
tion cases.

Case Ndg
ava

Location
(node) PG1 (pu) PG2 (pu) PG3 (pu) GAMS

(λ)

MATLAB
DigSILENT

(λ)

1 0 0 — — — 2.2118 2.2118

1 58 1.5562 — — 2.6191 2.6191
2 2 (64,65) 1.3289 0.2273 — 2.8408 2.8408

3 (61,64,65) 0.4276 0.9011 0.2274 2.8432 2.8431

1 59 2.3343 — — 2.8825 2.8825
3 2 (61,64) 1.1140 1.2202 — 3.1394 3.1394

3 (61,64,65) 1.1172 0.9719 0.2451 3.1403 3.1403

It was observed that the total processing times required for GAMS software with the
BONMIN solver in the IEEE 69-bus system was 648 ms for the base cases, 23.353 s for
one dispersed source, 11.867 s in the case of two generators, and about 9.585 s for three
generators. These processing times confirm the effectiveness and robustness of the GAMS
in solving complex MINLP models [32].

Figure 7 presents the voltage profiles in the benchmark case and C2 and C3 with three
dispersed generators installed. These profiles were obtained from DigSILENT software to
illustrate the effect of the optimal placement and sizing of dispersed generators in the IEEE
69-bus system.
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Figure 7. Behavior of the voltage profiles in the benchmark case, i.e., C1, and simulation cases C2
and C3 with three dispersed generators for the IEEE 69-bus system.

Figure 7 presents the weakest node in the IEEE 69-bus system, which is node 65; it
has a voltage magnitude of 0.4720 pu in C1. Moreover, the figure confirms that all the best
nodes for the optimal placement and sizing of dispersed generators to improve the voltage
stability index are in the region between nodes 58 and 65, as presented in Table 5.

Figure 8 depicts the voltage performance at the worst node, i.e., bus 65, for all the
simulation cases with different numbers of dispersed generators.
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Figure 8. Voltage performance at node 65: (a) benchmark case and C2 and C3 with one dis-
persed generator, (b) C2 and C3 with two dispersed generators, and (c) C2 and C3 with three
dispersed generators.

The numerical results in Figure 8 indicate the following: (i) the installation of one
dispersed generator increased the loadability factor in the range of 18.41% and 30.32%,
while the point of voltage collapse improved from 0.4720 pu to 0.4820 pu and 0.4856 pu,
respectively; (ii) in general, the possibility of installing three dispersed generators allows
better voltage profile performances in the 65-node bus system, independent of the value of
the β-coefficient, since distributed power injections allow better load flow redistribution,
which is directly linked to the final voltage values; and (iii) for λ values between 0 and 0.60,
it can be assured that, independent of the number of generators installed in the network,
the voltage profile at the worst node, i.e., node 65, will be higher than 0.90 pu. This confirms
the efficacy of installing dispersed generators to improve the voltage stability index of the
network and simultaneously fulfill regulatory policies regarding voltage profiles under
normal operating conditions.
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6. Conclusions and Future Research

An exact MINLP formulation was proposed to solve the problem of determining the
maximum loadability in medium-voltage networks by considering the optimal placement
and sizing of dispersed generators. The solution of the MINLP model was reached using the
BONMIN solver in the GAMS environment. A small 7-bus system was used as a numerical
example to illustrate the usage of GAMS from a tutorial perspective. The value of the
λ-coefficient provided by GAMS in both the test feeders was verified through evaluations
implemented in MATLAB using the successive approximation power flow and also in
DigSILENT software using the Newton–Raphson power flow method. Numerical results
demonstrated that the λ-coefficient can be improved between 20.96% and 37.43% for the
IEEE 33-bus system when one to three dispersed generators are installed and between
18.41% and 41.98% for the IEEE 69-bus system in identical simulation conditions.

The numerical results indicated that, in both the test feeders, the regions where the
dispersed generators corresponded to the nodes were associated with the worst voltage
profiles, i.e., node 18 for the IEEE 33-bus system and node 65 for the IEEE 69-bus system. In
addition, the number of dispersed generators available for installation in conjunction with
the values of the β-coefficient directly influence the total improvement of the loadability
coefficient; for two or three dispersed sources, the differences in the indicator were lower
than 2%, implying that the limitation imposed by the β-coefficient produces a saturation
effect in the λ-coefficient.

Future studies can consider the following research directions: (i) the reformulation of
the exact MINLP model through a mixed-integer conic model to ensure the determination
of the global optimum owing to the convexity properties assignable to the conic solution
spaces; (ii) the formulation of an optimization model with reactive power compensators
(STATCOMs or capacitor banks) to enhance the voltage stability margin in medium-voltage
distribution networks; and (iii) economical aspects regarding batteries and renewable gener-
ation can be included in the proposed model for stability studies in distribution networks.
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