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Abstract: In this paper, we propose a parallel algorithm for a fund of fund (FOF) optimization
model. Based on the structure of objective function, we create an augmented Lagrangian function
and separate the quadratic term from the nonlinear term by the alternate direction multiplier method
(ADMM), which creates two new subproblems that are much easier to be computed. To accelerate the
convergence speed of the proposed algorithm, we use an adaptive step size method to adjust the step
parameter according to the residual of the dual problem at every iterate. We show the parallelization
of the proposed algorithm and implement it on CUDA with block storage for the structured matrix,
which is shown to be up to two orders of magnitude faster than the CPU implementation on large-
scale problems.

Keywords: FOF construction; non-linear optimization; ADMM algorithm; parallel computing; GPU

1. Introduction

Fund of funds (FOF) has become a hot topic during the past several years. As a
mutual fund scheme, FOF uses other funds as investment targets and achieve the purpose
of indirectly holding securities such as stocks and bonds [1]. The first target of FOF
construction is to obtain optimal portfolio among different funds based on the tradeoff
between return and risk. To meet this goal, one of the main research activities for the
past few years has been FOF modeling. It is worth mentioning that many existing FOF
optimization models are based on the Mean-Variance (MV) framework. In 1952, Markowitz
introduced the seminal work, the MV model [2], which is regarded as the fundamental
finding of modern portfolio theory (MPT). Since then, it has become the most essential
theory to study the FOF asset allocation problem. Despite huge attention, the MV model
still has some obvious shortcomings. One drawback which many studies emphasize is
that the optimal portfolio can be extremely sensitive to input parameters [3,4]. Another
drawback of the MV model is that this approach sometimes provides over-concentrated
portfolios, which would probably cause huge losses if a financial crisis were to happen.
Moreover, the MV model ignores the subjective views of investors. These shortcomings
limit the MV models’ application in the FOF construction. As a result, it is not surprising
that many research efforts were placed on extending the MV model [5–11].

From a practical perspective, there exist many trading restrictions in the real-world
financial market. Transaction cost is one of which that should be paid attention. In fact,
transaction costs in the financial market is usually treated as non-linear functions, which
makes the FOF optimization model a nonlinear programming problem. The interior
point method (IPM) [12,13], sequence quadratic programming (SQP) method [14], parallel
variable distribution (PVD) [15] and line search algorithm [16] are all popular methods for
nonlinear programming problems. However, the aforementioned methods can be inefficient
since they does not explore the structure of the objective function. For example, the general
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SQP procedure uses the derivative vector and the Hessian matrix of the Lagrangian function
to construct quadratic approximation at each iteration [17]. The Hessian matrix of FOF
optimization models may not necessarily be positive semi-definite, so an approximation
of the Hessian matrix is needed. Constructing a Hessian approximation by quasi-Newton
methods may be poorly performed and time-consuming. The IPM maintains the feasibility
during iterations but it is a centralized and computationally expensive method. Moreover,
it is hard to parallelize. The PVD method is suitable for parallelization but needs to solve
a difficult convex subproblem when applied to FOF optimization model, which makes it
hard to be extended to large-scale problems.

Most of algorithms that developed in recent years have concentrated on structured
nonlinear programming, which aims to characterize a range of nonlinear problems. In 1977,
Glowinski and Marrocco [18] proposed the alternating direction method of multiplies
(ADMM) based on the decomposition. It is widely used in large-scale nonlinear optimiza-
tion problems thanks to the advantage of being easily extended to parallel and distributed
systems. However, it still faces the challenge of slow convergence when applied in the FOF
optimization model. Chaves et al. [19] first proposed a Newton-based efficient algorithm;
however, it only works when facing a non-constrained FOF model, which is unrealistic in
practice. A least-squares method and an alternating direction method were developed by
Bai et al. [20] and Costa et al. [21], respectively. However, they still consume a lot of time
as the scale of the problem grows.

The main contribution of this paper is to propose a parallel algorithm general enough
to characterize most of the existing specific FOF optimization models. Moreover, our
approach is able to solve a large number of FOF optimization models that have the same
structure as this paper studied. The main contributions of this paper could be summarized
as follows:

• We develop a new FOF optimization model which integrates complicated and diversi-
fied constraints into the Mean-Variance framework accompanied by a Black–Litterman
based-asset expected return and covariance.

• We propose an approach to handle the FOF optimization model mentioned above
based on elevating the original problem into a higher-dimension convex problem
which is solved by a modified ADMM algorithm. Moreover, we compare the modified
ADMM algorithm efficiency to two of the best performing methods, SQP and IPM.

• To explore a larger search space for better solutions, we parallelize the proposed
approach on GPU using CUDA and study its speedup on different problem scales.

The remainder of the paper is organized as follows. In Section 2, we give the step-by-
step formulation of our new FOF optimization model, especially focusing on the Black–
Litterman based-asset expected return and covariance. Section 3 contains an approach to
handle the FOF optimization model mentioned above. More specifically, we introduce
new variables to transfer the inequality constraints in the model to the equality constraints
and use a modified ADMM algorithm to construct the optimal portfolio. In Section 4,
the GPU-based parallel approach using CUDA is introduced to improve computational
efficiency and cope with large scale problems. This is followed by implementation details of
the proposed parallel approach in Section 5,where we present the efficiency of the proposed
approach compared with some of the best performing methods, as well as the acceleration
effect of the parallel approach. In Section 6, we conclude the paper.

2. Problem Formulation

The core of FOF funds is to diversify investment, so it is no surprise that asset allocation
has become an important part of FOF construction. Based on the asset allocation, we can
improve the return-risk feature of a fund portfolio. For simplicity, we limit the fund type to
equity funds, so asset allocation is beyond the scope of this paper. Furthermore, another
determining factor for the performance of an FOF strategy is the quality of the fund pool.
It is naturally an extremely important thing for fund managers to screen out their own
fund pools from a huge number of funds and build fund portfolios accordingly. There are
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many fund selection criteria such as risk/return parameters and the professionalism of the
management team. In this paper, we take return, standard deviation and fund size as the
key factors of focus to screen out funds.

It is assumed that investors with initial capital C will assign their wealth to n equity
funds in the following T periods. Let x0

i be the proportion on fund i included in the
portfolio at the previous period. Sr, Ss, Sm, Sb and Sc are the set of the funds with high risk
and high return, with medium to high risk and medium to high return, with medium risk
and medium return, with low to medium risk and low to medium return, and with low
risk and low return, included in the portfolio, respectively. A new FOF optimization model
is proposed as follows:

min
x∈Rn

1
2 xT Px + qTx + ∑n

i=1 fi(xi)

subject to ∑
i∈Sr

xi ≤ 0.2

∑
i∈Sc

xi ≤ 0.15

0.95 ∑
i∈Ss

xi + 0.6 ∑
j∈Sm

xj ≤ 0.4

∑
i∈Sb

xi + 0.3 ∑
j∈Sm

xj ≥ 0.4

1Tx = 1
li ≤ xi ≤ ui, i = 1, . . . , n

(1)

where the transaction cost fi(x) = exp(−(C max{xi−x0
i ,0}+ai

bi
)2), ai ∈ R and bi ∈ R are the

given parameters, which are various from different funds. P denotes the covariance matrix
of the fund returns, and q ∈ Rn refers to the fund returns vector. li and ui(i = 1, . . . , n) are
the lower and upper bound of investment proportion on fund i. Without loss of generality,
we can abstract the new FOF optimization model into a general form.

Notation. Let R denote the set of real numbers, Rn the n-dimensional real space, and
Sn
++(S

n
+) the set of real n-by-n symmetric positive (semi)definite matrices. We denote by

Rm×n the set of real m-by-n matrices, In ∈ Rn×n is the identity matrix and 0 ∈ Rn×n is
the zero matrix, and 1n is the n-dimensional vector with all the entries being 1. IC is the
indicator function over the affine constraints of (5), i.e.,

IC(x) =
{

0 x ∈ C
∞ otherwise

(2)

For a, b ∈ R, the projection of z onto [a, b] is given by Π[a, b](z) = min(max(z, a), b).
The FOF optimization model that considered transaction cost is given by:

min
x∈Rn

1
2 xT Px + qTx + ∑n

i=1 fi(xi)

subject to Ax ≤ b,
li ≤ xi ≤ ui, i = 1, . . . , n
1Tx = 1

(3)

where x ∈ Rn is the optimization variable. P ∈ Sn
+ is a symmetric semidefinite covariance

matrix and q ∈ Rn. A ∈ Rm×n and b ∈ R∈m. li and ui(i = 1, . . . , n) are the lower and
upper bound. fi(x), x ∈ R, i = 1, . . . , n is the transaction cost function. The function
fi(x) is the subscription and redemption cost for adjusting the ith fund. If the transaction
cost fi(x) is given by linear function or quadratic function, i.e., fi(x) = αix, then the
optimization problem (3) is quadratic programming. Throughout this paper, we consider
the transaction cost function fi(x) to be convex, so that the objective function is nonlinear
and convex. The linear constraints imply the bound of the portfolio weight and the
investment requirement of the portfolio weight.
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Transforming the Inequality to Equality

To solve the nonlinear problem (1), we consider the general formulation of the non-
linear problem (3). We start by transforming the convex problem (3) to a new problem
without inequality constraints by introducing the slack variables to transfer the inequality
constraints into the equality constraints. Let x̂ ∈ Rm, the inequality constraints Ax ≤ b and
the equality constraint 1Tx = 1, which could be rewritten as[

A 1
1T 0

][
x
x̂

]
=

[
b
1

]
, li ≤ xi ≤ ui, i = 1, . . . , nx̂i ≥ 0, i = 1, . . . , m. (4)

Let x̃ =

[
x
x̂

]
, then the problem (3) could be rewritten as

min
x∈Rm+n

1
2 x̃T P̃x̃ + q̃T x̃ + ∑n

i=1 fi(x̃i)

subject to Ãx̃ = b̃,
li ≤ xi ≤ ui, i = 1, . . . , n
x̃i ≥ 0, i = n + 1, . . . , n + m.,

(5)

where

P̃ =

[
P 0
0 0

]
, q̃ =

[
q
0

]
, Ã =

[
A 1
1T 0

]
, b̃ =

[
b
1

]
By introducing the slack variable z ∈ Rm+n, the problem (5) is equivalent to

min
x∈Rm+nz∈Rm+n

1
2 x̃T P̃x̃ + q̃T x̃ + ∑n

i=1 fi(z̃i) + IC1(x) + IC2(z)

subject to x̃i − zi = 0, i = 1, . . . , n + m.
(6)

with variables x ∈ Rm+n and z ∈ Rm+n. C1 = {x|Ãx̃ = b̃}, C2 = {z|li ≤ zi ≤ ui,
i = 1, . . . , n, zi ≥ 0, i = n + 1, . . . , n + m}. One can easily figure that the original problem
(3) is transformed to problem (6) by two steps. The first step is the slack variable x̂, which
changes the inequality Ax = b to the equality Ãx̃ = b̃. The second step, with the help
of the slack variable z, transforms the problem (5) to problem (6) without any inequality
constraints remaining.

3. Algorithm for FOF Optimization Model
3.1. ADMM Steps

It is costly to solve the optimization problem (5) or (6) by calling the default solvers
such as the fmincon(MATLAB). One key to solve the problem (3) is to separate the quadratic
term and the nonlinear term, since there are effective solvers for quadratic problems.
The augmented Lagrangian of (6) is

L(x, z, u) =
1
2

x̃T P̃x̃ + q̃T x̃ +
n

∑
i=1

fi(z̃i) + IC1(x) + IC2(z) +
τ

2
||x− z +

u
τ
||2. (7)

Then, we develop the ADMM used in every iteration with regard to the variables xk

and zk as follows.

xk+1 = arg min
x̃∈C1

1
2

x̃T P̃x̃ + q̃T x̃ +
1
2
||x− zk + uk||2 + IC1(x), (8)

zk+1 = arg min
z̃∈C2

n

∑
i=1

fi(z̃i) +
τk
2
||xk+1 − z + uk||2 + IC2(z), (9)

uk+1 = uk + (xk+1 − zk+1). (10)
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The update of the variables xk is zk is obvious. We minimize the augmented La-
grangian function. In practice, we find that it requires many more iterations on large
problems. The convergence of the ADMM algorithm is guaranteed under fairly general
assumptions [22,23]. Since the objective function is convex and the global solution exists,
we have xk → x∗, zk → z∗ and uk → u∗. For faster convergence, we suggest to perform the
relaxed ADMM algorithm. The relaxed ADMM iterates xk, zk and uk, for k = 0, 1, . . . , by

xk+1 = arg min
x̃∈C1

1
2

x̃T P̃x̃ + q̃T x̃ +
τk
2
||x− zk +

uk

τk
||2 + IC1(x), (11)

xk+1 = γkxk+1 − (1− γk)zk (12)

zk+1 = arg min
z̃∈C2

n

∑
i=1

fi(z̃i) +
τk
2
||xk+1 − z +

uk

τk
||2 + IC2(z), (13)

uk+1 = uk + τk(xk+1 − zk+1). (14)

Here, uk ∈ Rm+n denotes the dual variables on iteration k. (τk, γk) are sequences
of penalty and relaxation parameters. If the problem (3) is solvable, then the sequence
(xk, zk, uk) converges to its primal-dual solution. On the other hand, if the problem is in-
feasible, then the sequence (xk, zk, uk) does not converge, but the sequence (xk − xk−1, zk −
zk−1, uk − uk−1) always converges and can be used to certify the infeasibility of the prob-
lem [24].

Since the nonlinear function fi(x) is separatable, we develop the ADMM-based al-
gorithm and parallelize it on CUDA. The key point of ADMM iteration presented in (6)
contains three steps: the solving of the linear equation, the minimum of the nonlinear
problem (27) and the update of the dual variables λ.

3.2. Solving the Reduced KKT System

We describe how xk is updated with (11). Minimizing the augmented Lagrangian (11)
involves solving the following equality-constrained least-squares problem:

arg min
x̃∈C1

1
2

x̃T P̃x̃ + q̃T x̃ +
τk
2
||x− zk +

uk

τk
||2, (15)

Ãx̃ = b̃. (16)

Let vk = zk − uk

τk
, the minimizing x̃ can be found by solving the following linear

equation: [
P̃ + τk I ÃT

Ã 0

][
xk+1

ν

]
=

[
τkvk − q̃

b̃

]
. (17)

P̃ is a (m + n)× (m + n) matrix and Ã is a m× (m + n) matrix, we need to solve the
2m + n linear equation. As τk goes to change, we have to solve the linear system at each
iteration, which will prevent us from solving the target problem effectively. Since τk > 0,
the matrix P̃ + τk I is positive defined. There exist orthogonal matrix Q̃ such that

P̃ = Q̃T D̃Q̃ (18)

We have[
I 0

−ÃQ̃T(D̃ + τk I)−1Q̃ I

][
P̃ + τk I ÃT

Ã 0

]
=

[
P̃ + τk I ÃT

0 −ÃQ̃T(D̃ + τk I)−1Q̃ÃT

]
. (19)

Then, xk+1 could be updated by

xk+1 = Q̃T(D̃ + τk I)−1Q̃(τkvk − q̃)− ÃTν (20)
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where

(D̃ + τk I)−1 =


(d1 + τk)

−1 · · · 0
...

. . .
...

0 · · · (dn + τk)
−1

τ−1
k Im×m

 (21)

3.3. Adaptive Step Size

The ADMM algorithm is the first-order method with a linear convergence rate.
For large-scale problems, achieving high accuracy requires more iterations. The adap-
tive step has shown a successful application in ADMM. Let k be the current iteration and k0
be an older iteration, such that k0 < k. Let ∆uk = uk − uk0 , ∆Hk = xk − xk0 . For α̂k, β̂k ∈ R,
the optimal stepsize choice is then written as

τk+1 = (α̂k β̂k)
1/2, γ̂k+1 = 1 +

2
√

α̂k β̂k

α̂k + β̂k
. (22)

The spectral stepsize α̂k is updated by

α̂k =

{
α̂MG

k if 2α̂MG
k > α̂SD

k
α̂SD

k − α̂MG
k /2 otherwise.

(23)

where

α̂SD
k =

〈∆uk∆uk〉
〈∆uk, ∆Hk〉

, α̂MG
k =

〈∆uk, ∆Hk〉
〈∆Hk, ∆Hk〉

(24)

The spectral stepsize β̂k is similarly estimated by ∆Gk = zk − zk0 and ∆uk = uk −
uk0 [25]. To guarantee convergence, τk, γk are bounded by

τk+1 = min{τk+1, (1 + Ccg/k2)τk}, (25)

γk+1 = min{γk+1, 1 + Ccg/k2}, (26)

where Ccg is a (large) constant. Algorithm 1 summarizes all the steps.

Algorithm 1 ADMM Solver

Input: initial values v0, z0

1: set k = 0, k0 = 0
2: repeat

3: xk+1 ← solve the linear equation
[

P̃ + τk I ÃT

Ã 0

][
xk+1

ν

]
=

[
τkvk − q̃

b̃

]
4: parallel for i = 1, . . . , m + n do
5: xk+1

i ← γkxk+1
i − (1− γk)zk

i
6: zk+1

i ← arg min
z̃i

fi(z̃i) +
τk
2 ||x

k+1
i − vk

i ||2

7: bound zk+1
i by (28)

8: λk+1
i ← λk

i + τk(xk+1
i − zk+1

i )
9: end

10: if mod(k, Tf ) == 1 then
11: (τk, γk)← EstimateStep(xk, xk0 , zk, zk0 , λk, λk0)
12: k0 ← k
13: end if
14: k← k + 1
15: until termination criterion is satisfied
16: return result
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The function EstimateStep is stated in Algorithm 2. The estimation updates the
stepsize τk and γk with the frequency Tf . The proposed method works by assuming a
local linear model for the dual optimization problem and selects an optimal stepsize. To
guarantee convergence, a safeguarding method is adopted to ensure that excessive steps
are not chosen if these linearity assumptions fail to hold.

Algorithm 2 EstimateStep (xk, xk0 , zk, zk0 , λk, λk0)

1: parallel for i = 1, . . . , m + n do
2: ∆λk

i ← λk
i − λk0

i
3: ∆Hk

i ← xk
i − xk0

i
4: ∆Gk

i = zk
i − zk0

i
5: end
6: Compute spectral stepsizes α̂k, β̂k using (23)
7: Update τk+1, γk+1 using (22)
8: Bound τk+1, γk+1 using (25)
9: return τk+1, γk+1

3.4. Termination Criteria

For the given iterates (xk, zk, uk), the primal and dual residuals are defined as

rk
prim = xk − zk

rk
dual = τk(vk − vk−1)

It has been observed that these residuals approach zero as the algorithm approaches a
true solution. The authors in [26] show that the pair (uk, zk) satisfies optimality conditions
for all k > 0. If the problem is also solvable, the residuals rk

prim and rk
dual will converge to

zero. A termination criterion for detecting optimality is thus implemented by checking that
rk

prim and rk
dual are small enough, i.e., rk

prim < εprim, rk
dual = εdual.

4. Acceleration Approaches

Another contribution of this paper is the GPU implementation of the proposed al-
gorithms based on CUDA. In this section, we show how we parallized the proposed
algorithm on CUDA and expose step by step the strategies that we used to achieve an
optimal performance in our CUDA implementation of the proposed algorithm.

4.1. Parallelization

In the k-th iteration for updating zk+1, we solve the nonlinear optimization prob-
lems (13). The procedure for solving each variable zk+1

i (i = 1, . . . , n + m) is independent.
We parallelize the steps for updating zk+1 by

zk+1
i = arg min

li≤z̃i≤ui
fi(z̃i) +

τk
2
||xk+1

i − vk
i ||2, i = 1, . . . , n. (27)

zk+1
i = arg min

z̃i≥0
fi(z̃i) +

τk
2
||xk+1

i − vk
i ||2, i = n + 1, . . . , n + m.

To avoid solving the constrained problems, we solve the unconstrained problems
since the objective function is convex. z̃k+1

i = arg min
z̃i

fi(z̃i) +
τk
2 ||x

k+1
i − vk

i ||2 And zk+1
i is

updated by

zk+1
i = Π[li ,ui ]

(zk+1
i ), i = 1, . . . , n

zk+1
i = max{z̃k+1

i , 0}, i = n + 1, . . . , n + m. (28)
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Listing 1 shows an overview of how we designed the kernel in the device on GPU. Each
thread computes the new variables zk+1

i by (27) and (28) in parallel. To make the program
more extendable, we created a base class named Cost to implement the different types of
the cost function by the subclass in the device and pass the point to launch the kernel.

Listing 1. Computing the variables zk+1
i in parallel.

c l a s s Cost
{
publ ic :
__device__ v i r t u a l double c o s t ( double * z ) ;
__device__ v i r t u a l double grad ( double * z ) ;
} ;
c l a s s FoF_cost : publ ic Cost
{
publ ic :
__device__ v i r t u a l double c o s t ( double * z ) overr ide {
// compute the t r a n s a c t i o n c o s t
}
__device__ v i r t u a l double grad ( double * z ) overr ide {
// compute the gradient
}
} ;
}
__global__ void update_z ( double * z , { Parameter L i s t } ) {
i n t t i d = blockIdx . x * blockDim . x + threadIdx . x ;
i f ( t i d >= n + m)
return ;
dfp_solver (& c o s t [ t i d ] , &z [ t i d ] ) ;
z [ t i d ] = min ( ub [ t i d ] , max( z [ t i d ] , lb [ t i d ] ) ;
re turn ;
}

In our implementation, we apply the quasi-Newton method for minimizing (27), w
hich is a second-order method that helps to quickly find the optimal value (see Listing 2).

Listing 2. Calling the quasi-Newton method (Davidon–Fletcher–Powell algorithm) in parallel.

__device__ void dfp_solver ( Cost * cost , double * z ) {
double Hk = 1 . 0 ; double gk = 0 . 0 ; double dk = 0 . 0 ;
i n t k = 0 ;
while ((++ k ) < MAXITER) {
gk = cost −>grad ( z ) ;
i f ( ( gk * gk ) < eps i lon )
break ;
dk = −Hk * gk ;
i n t m=0; double step = 1 . 0 ;
while ( (++m) < INNERITER) {
double c o s t = cost −> c o s t ( z + step * dk ) ;
double cost_new = cost −> c o s t ( z ) + step * gk * dk ;
i f ( c o s t < cost_new ) { break ; }
e l s e { s tep *= rho ; } ;
}
double sk = step * dk ;
* z += sk ;
double yk = cost −>grad ( z ) − gk ;
Hk = sk / ( yk ) ;
}
}

Remark 1. When the function fi(x), i = 1, . . . , n is a linear or quadratic function, it is achievable
to perform the matrix equilibration to transfer the matrix P̃ into diagonal matrix. After that, we
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do not have any term like x̃i x̃j, which will reduce the number of iterations. However, for more
complicated functions, such preconditioning will make updates of zk+1 difficult to be parallelized.

4.2. Do as Much as You Can on CUDA

CUDA is an extension of the C programming language created by NVIDIA. Its main
idea is to have a large number of threads that solve a problem in parallel. To execute the
program on GPU, we launch the kernels which are defined by the global keywords.

Before calling the kernel, CUDA needs the input data to be transferred from CPU to
GPU through the PCI Express bus [27]. This stage of data transfer is a necessary part of
any GPU code and can be the bottleneck affecting the program’s performance. So once the
data has been transferred to the device memory, it should not return to the CPU until all
operations are finished. In our first CUDA implementation of the algorithm, this fact was
not taken into account since the data is transferred from GPU to CPU during iterations.
Therefore, the results of this first implementation are not outperform. This shows that
direct implementations of not trivially parallelizable algorithms may initially disappoint
the programmers expectations regarding GPU programming. This occurs regardless of the
GPU used, which means that optimizations are necessary for this type of algorithms even
when running on the latest CUDA architecture. We suggest finishing all the computing
steps on GPU and avoid data copy as much as possible. First, we copy the matrix P̃, q̃, Ã
and b̃ to GPU and start the iteration. It is admirable to conduct the upgrade steps (11)−(14)
on GPU at each iteration; however, when it comes to the steps for judging the stopping
criteria, we have to copy the data from GPU to CPU, which will increase unnecessary time
on data transmission. Usually, the stopping criteria is calculated by comparing some matrix
or vector norms, so we suggest avoiding data transfer by calling the cuBLAS to compute the
norms and output the result on a CPU, which will significantly reduce the time spending
on data transmission (see Listing 1).

4.3. Use CUDA Libraries

There exist excellent libraries shipped with the CUDA Toolkit that implement various
functions on the GPU. We summarize the NVIDIA libraries used in our paper.

cuBLAS is a CUDA implementation of BLAS, which enables easy GPU acceleration
of code that uses BLAS functions. We use the level-1 API function for the computation
of norms. Level-2 and level-3 API functions are used for the matrix–vector product and
matrix–matrix product (see Listing 3).

Listing 3. A general process for the proposed algorithm. The iteration is conducted on GPU and
output of the residual is on CPU

double * A_host // data in the host A i s an n x n matrix
double *A, * x , *b , * r ; // a l l o c a t e the device memory
cudaMalloc ( ( void * )&A, s i z e o f ( double ) *n*n ) ;
cudaMemcpy (A, A_host , x_s ize , cudaMemcpyHostToDevice ) ;
f o r ( i n t i = 0 ; i < MAXITER; i ++) {
// excute the i t e r a t i o n
// compute the r e s i d u a l r = Ax−b
cudaMemcpy ( r , b , n* s i z e o f ( double ) , cudaMemcpyDeviceToDevice ) ;
//the norm ||r|| i s computed and storage on host
cublasDnrm2 ( handle , n , temp , 1 , r e s u l t ) ;
i f ( * r e s u l t < eps )
break ;
}

cuSolver is a high-level package based on the cuBLAS and cuSPARSE libraries. It is a
GPU accelerated library for decompositions and linear equation for both dense and sparse
matrices. We use the syevj to compute the spectrum of a dense symmetric system.
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4.4. Constant Memory and Page-Locked Memory Usage

Constant memory is a read-only memory, so it cannot be written from the kernels.
Therefore, constant memory is ideal for storing data items that remain unchanged along
with the whole algorithm execution and are accessed many times from the kernels. In our
implementation of the proposed algorithm, we store the constant parameters we need
during iteration. These values do not depend on the FOF model and do not change along
with the thread execution, so they are ideal for constant memory. Our tests indicate that the
algorithm is 5% to 15% faster, depending on the model size when using constant memory.

Page-locked (or “pinned”) memory is used as a staging area to transfer the device to
the host. We can avoid the cost of the transfer between pageable and pinned host arrays by
directly allocating our host arrays in pinned memory. Pinned memory is beneficial because
it avoids copying data directly between the CPU and GPU. Listing 4 shows how we apply
fixed memory and compute residual norm in conjunction with the CuBLAS library. Since
the residual is stored on the GPU, we need to calculate its norm to determine the stopping
criteria on the CPU.

Listing 4. Using the CUDA memory and the CuBLAS library to compute residual norm.

void Fof_so lver ( { Parameter L i s t } ) {
double * resNorm ;
// use the pinned memory
cudaMallocHost ( ( void * * )&resNorm , s i z e o f ( double ) ) ;
f o r ( i n t i t e r = 0 ; i t e r < MAXITER; ++ i t e r ) {
// excute the i t e r a t i o n
// compute the norm of the r e s i d u a l $r$
cublasDnrm2 ( handle , n , r , 1 , resNorm ) ;
i f ( * resNorm < eps ) {
break ;
}
}

Listing 5. Finding the optimal threads to achieve a maximum speedup.

# def ine THREAD 32
// . . .
dim3 block ( ( n−1)/THREAD + 1) ;
update_z <<<block ,THREAD>>>(z , { Parameter L i s t } ) ;

4.5. GPU Occupancy

Occupancy is the ratio of active warps per multiprocessor to the maximum number
of possible active warps. The highest occupancy is no guarantee for obtaining the best
overall performance, but the low occupancy always reduces the ability to hide latencies,
resulting in general performance degradation. Therefore, we perform an experimental test
on the device to determine exactly the best number of threads per block for our algorithm.
The best values of serialized warps appear with a size of 128 threads and it achieves a
maximum speedup. (See Listing 5)

Figure 1 shows the roofline of the kernel for computing the variables zk+1
i . The roofline

provides a visually intuitive way for users to identify performance bottlenecks and motivate
code optimization strategies. Performance (GFLOP/s) is bound by

GFLOP/s ≤ min
{

Peak GFLOP/s
Peak GB/s×Arithmetic Intensity

(29)

which produces the traditional Roofline formulation when plotted on a log-log plot. As can
be seen from Figure 1, the performance of the kernel increases about 4.5× after optimization
when solving an FOF model (N = 2000). As the scale of the model increases, the utilization
for compute and memory resource of the kernel approximates to the theoretical maximum
performance bottleneck.
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Figure 1. Overview of the utilization for compute and memory resources of the GPU presented as a
roofline chart.

4.6. Storage Block Matrix on Device

In practice, we do not have to store the whole matrix P̃, Ã, b̃ and Q̃ on CUDA. It is
feasible to store the matrix in blocks since those matrices have many zero blocks. All of the
matrix–vector or matrix–matrix operations presented in our algorithm could be done via
block operation. For example, Q̃(D + τk I)−1Q̃(τkvk − q̃) could be calculated by

Q̃T(D̃ + τk I)−1Q̃ =

[
QT

I

][
D1

τ−1
k I

][
Q

I

][
τkvk

1 − q
τkvk

2

]
=

[
QT D1Qτkvk

1 − q
vk

2

]
where v = [v1, v2], D1 = diag((d1 + τk)

−1, . . . , (dn + τk)
−1). For the diagonal matrix, it is

stored as an array in GPU. The computation steps of D + τk I could be done via vector–
vector operation.

5. Experiment

We implemented our algorithms on CPU and parallelized them on GPU. All the
programs run on a server with i9-10940X with 128 M RAM and one NVIDIA RTX2080ti,
11 GB memory. The server’s CPU is i9-10940X, with 128 M memory and an NVIDIA
RTX 2080ti GPU, 11 GB memory. The performance of the proposed methods is reported
in comparison with the sequential quadratic programming (SQP) and the interior point
method (IPM). We simulated the net value of N = 5n different funds with N ranging from
50 to 5000, which could be the maximum portfolio capacity for the funds. All the fund data
is simulated by the Geometric Brownian motion (GBM), with different risk level σ with
regard to the different type of funds. The following table shows the running time for solving
the problems (1) of SQP and the CPU implementation of our proposed method. The relative
error is calculated by the |x∗ − x∗SQP|/x∗fmincon, where x∗ and x∗SQP represent the optimal
value of the proposed method and the SQP, respectively. For smaller-scale problems, we ran
numerical experiments 100 times and then averaged them, and for larger-scale problems,
we ran the experiments 20 times.



Algorithms 2022, 15, 35 12 of 15

Table 1. Running time and relative error for solving the portfolio problem.

time(s)\N 10 50 100 150 200

SQP 0.018 0.106 0.236 0.614 0.939
IPM 0.038 0.145 0.355 0.780 1.088

ADMM 0.073 0.086 0.159 0.267 0.409
relative error 1 × 10−6 2.073 3.934 1.323 2.442 4.701

N 300 350 400 450 500

SQP 1.798 2.267 2.735 3.814 5.203
IPM 2.376 3.144 3.894 5.000 7.024

ADMM 0.739 0.970 1.760 2.148 3.098
relative error 1 × 10−6 1.804 5.591 5.066 3.595 9.684

N 700 800 900 1000 1200

SQP 12.297 19.300 26.657 51.833 118.145
IPM 13.992 17.669 25.677 36.335 82.592

ADMM 3.124 3.947 6.111 8.955 10.646
relative error 1 × 10−6 7.633 2.294 3.737 1.603 1.660

N 1500 2000 3000 4000 5000

SQP 309.069 1082.843 >3000 >3000 >3000
IPM 164.336 357.703 1683.123 >3000 >3000

ADMM 13.277 24.263 88.709 152.531 266.024
relative error 1 × 10−6 5.339 2.892 1.381

Table 1 shows the running time and relative error for solving the portfolio proble
with different methods. As N increases to more than 2 × 103, it will be challenge for the
commercial solver to solve the problems in an acceptable time (3 × 103 s). The proposed
algorithm does not show an outstanding performance in the CPU version. Table 2 shows
the GPU implementation of the proposed algorithm. By conducting the iteration in parallel,
we reach a respectable acceleration.

Table 2. Running time for solving the portfolio problem in parallel.

time(s)\N 10 50 100 150 200

cuADMM 7.075 0.096 0.125 0.151 0.201
relative error 1 × 10−6 2.568 3.367 1.324 2.403 1.775

N 300 350 400 450 500

cuADMM 0.216 0.250 0.273 0.309 0.369
relative error 1 × 10−6 2.073 3.907 1.414 3.442 0.701

N 700 800 900 1000 1200

cuADMM 0.613 0.623 0.700 0.703 0.871
relative error 1 × 10−6 1.041 3.042 1.400 2.705 0.799

N 1500 2000 3000 4000 5000

cuADMM 1.255 1.539 2.958 4.751 5.733
relative error 1 × 10−6 1.042 3.041

Figure 2 shows the calculation time and relative error curves of the FOF model
(2.1) solved by different methods. We implement this method in CPU(ADMM) and
GPU(cuADMM). We can see that the CPU implementation of the proposed method is
better than SQP and IPM. When solving problems of different scales, the relative error
of this method decreases faster, and the solving speed of the GPU version accelerates
significantly.
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Figure 2. Comparison of different methods for N = 500, 1000, 2000 and 5000. The parallelization of
the proposed algorithm(cuADMM) outperforms and shows a significant acceleration compared with
other methods.

Figure 3 (left) shows the changes of relative error for N = 200, 500, 2000 and 5000. We
also implemented a fixed stepsize (τk ≡ 1) for comparison. For N = 200, the relative error
of the fixed stepsize decreases very slowly . As the relative error decreases, the convergence
speed becomes slower. The adaptive stepsize method converges and reaches the stopping
criteria in only a few iteration.
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Figure 3. Left: The changes of relative error for different N. Right: Comparison of the speedup ratio
for different problem sizes.

Figure 3 (right) compares the speedup ratios for problems of different sizes. When
N is small (N < 200), the acceleration of the GPU’s implementation is not obvious as
the copying data step takes up most of the time to execute the code. As N increases,
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the proposed algorithm not only maintains a fast convergence ratio but also significantly
outperforms the existing methods.

6. Conclusions

This paper solved the convex FOF optimization model. The ADMM algorithm helped
us separate the quadratic terms and the nonlinear terms of the objective function. We
solved the KKT linear system and the nonlinear optimization problem at each iteration and
parallelized the proposed algorithm on CUDA to solve nonlinear optimization problems.
The number of iterations could be significantly reduced by the adaptive stepsize, which
enables us to apply the proposed method to solve large-scale problems faster. We also
implemented the proposed methods on CUDA and reported the optimization techniques
to maximize the number of utilized kernels and use the device’s memory architecture.
The GPU version showed a very satisfying speedup for large-scale problems. Our numerical
experiment raised the dimension of the FOF optimization model into a new scale, enabling
the investors to allocate assets in the broader range of funds. However, there still exist
certain limitations. For example, if there is a correlation between the nonlinear transaction
cost functions when constructing the FOF model, the model could be more challenging to
solve and parallelize. Therefore, the research on how to solve the model in parallel and
reach the maximum performance of the algorithm on CUDA remains to be studied.
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