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Abstract: The high efficiency, flexibility, and low cost of robots provide huge opportunities for the
application and development of intelligent logistics. Especially during the COVID-19 pandemic, the
non-contact nature of robots effectively helped with preventing the spread of the epidemic. Task
allocation and path planning according to actual problems is one of the most important problems faced
by robots in intelligent logistics. In the distribution, the robots have the fundamental characteristics
of battery capacity limitation, limited load capacity, and load affecting transportation capacity. So,
a smart community logistics service framework is proposed based on control system, automatic
replenishment platform, network communication method, and coordinated distribution optimization
technology, and a Mixed Integer Linear Programming (MILP) model is developed for the collaborative
and persistent delivery of a multiple-depot vehicle routing problem with time window (MDVRPTW)
of swarm robots. In order to solve this problem, a hybrid algorithm of genetically improved set-based
particle swarm optimization (S-GAIPSO) is designed and tested with numerical cases. Experimental
results show that, Compared to CPLEX, S-GAIPSO has achieved gaps of 0.157%, 1.097%, and 2.077%
on average, respectively, when there are 5, 10, and 20 tasks. S-GAIPSO can obtain the optimal or
near-optimal solution in less than 0.35 s, and the required CPU time slowly increases as the scale
increases. Thus, it provides utility for real-time use by handling a large-scale problem in a short time.

Keywords: smart community logistics service; swarm robots; collaborative and persistent delivery;
the multiple-depot vehicle routing problem with time window; S-GAIPSO

1. Introduction

Since the global outbreak of the new crown pneumonia epidemic in winter 2019,
robots replaced manual distribution which, used in drugs and goods delivery and supply
chains, contributed a lot to the prevention and control of the epidemic. The autonomous
mobile robot Phollower100 delivery robot, developed by a Slovakian company, is deployed
in hospitals and other healthcare centers for distributing medicines, laundry, and other
material to different stations [1]. Keenon Robotics provided many hospitals in the COVID-
19 affected areas of China with delivery robots for delivering medical supplies, food,
personal protective equipment (PPE), clean linens, and other supplies to people without
human contact [2,3]. In a smart community, the joining of e-health, smart home, supply
chain management, transportation, and other system technologies can help with proactive
prevention and control and the mitigation of COVID-19 and similar epidemics [4]. On
the other hand, with the rapid increase in the number and types of logistics orders, the
delivery of the last mile is almost impossible to be completed by manual delivery. Through
using various intelligent and reliable robotic technologies, logistics can be more automated.
The application of robots and drones to intelligent logistics for distribution has received
extensive attention and rapid improvement [5]. When robots are widely used in logistics,
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it is estimated that up to 40% of robots can provide cost reduction [6]. In fact, the self-
organizing intelligent Swarm Robots (SR) system composed of lots of robots can be regarded
as the prototype of future intelligent management and service systems, and it may greatly
promote changes in our daily life.

However, currently used robotic solutions have advantages in the world, as new
challenges and requirements emerge. The performing of task allocation and path planning
according to actual task requirements is one of the most important tasks faced by robots
in intelligent logistics and the future smart community, and not just for the hardware
circuits control system of robots [7]. Wen, L. et al. [8] designed a system to accurately locate
goods on the entire route, allowing the tracking of products or packages and obtaining a
predictable timetable. The use of a path planning algorithm in intelligent delivery ensures
the minimization of global routing transit times and reducing average waiting times,
thereby improving customer service levels. Regarding the task time and the consumption of
the robot as a utility function, there are still few studies on the development of models based
on battery limitations [9,10]. Therefore, reducing customer waiting time and improving
customer satisfaction is still a key issue. In addition, these researches are based on the
actual delivery background of SR, using robots, unmanned aerial vehicles, and trucks
for collaborative delivery. However, they did not consider how to achieve persistent
coordinated distribution and the uniqueness of robots from other vehicles such as electric
vehicles in the distribution:

(1) The power and load-bearing capacity of the robot itself, not like heavy-duty tool
trucks, and their speed and travel time will be affected by the weight of the load.

(2) Each robot needs to be charged at intervals and cannot work continuously for a long time.
(3) The charging of the robot takes a certain amount of time, and the charging time is

related to the power loss. The longer the travel time, the more the power loss, the
longer the charging time.

(4) Each robot should be placed in a service station instead of stopping outside when it
completes a task or is not performing the task in order to avoid the loss of the robot.

For the real application of robots, these problems need to be solved. This article is
based on the basic characteristics of the robot; a combined smart community logistics service
framework consisting of a control system, automatic replenishment platform, network
communication method, and coordinated distribution optimization technology is proposed,
in real-time dynamic collaborative and persistent delivery. Based on the characteristics of
the robots, the MILP model for SR in the context of smart communities is developed.

The contributions of this paper are threefold. First, we propose a smart community
logistics service framework, and provide detailed ideas on how to design an intelligent
distribution system, including a path planning solution for SR to achieve dynamic and
persistent delivery and reduce customer waiting time. Second, corresponding functions
are developed for the different customer-oriented needs and the transportation charac-
teristics of the robot itself, including the impact of the weight of the loaded product on
the transportation time and the behavior of the robot during idle time, we developed the
MILP model. Third, we designed a specific S-GAIPSO algorithm. Compared to CPLEX,
S-GAIPSO achieved a gap of 0.157%, 1.097%, and 2.077% on average, respectively, when
there were 5, 10, and 20 tasks. S-GAIPSO can obtain the optimal or close-to-optimal solution
in less than 0.35 s CPU time, and when the number of tasks reaches 30, it can still provide
an excellent solution relatively quickly.

The rest of the paper is organized as follows: Section 2 mainly conducts a literature
review on the application of SR, robot task allocation, and path planning. Section 3
describes the system and develops related functions for the characteristics of SR and
logistics problems, and establishes the MILP, then designs a set-based particle swarm
algorithm for a problem and uses a genetic algorithm improved by the PSO algorithm.
Section 4 numerically testes the proposed model and algorithm and compares and evaluates
the solutions proposed in this paper based on MATLAB-based S-GAIPSO and the latest
solver CPLEX. The last section summarizes this article; our study is applied to SR logistics,
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has great practical significance, and puts forward the prospect and improvement goals for
the future. Finally, acknowledgments and references are stated at the end of the paper.

2. Related Works

Li, J. and Yang, F. et al. [11,12] found that the task assignment problem under the
above background is essentially the traveling salesman problem (TSP), which is almost the
beginning of path planning-related problems. The vehicle routing problem (VRP) is the
core of the current logistics practice, and it is derived from TSP and its variants such as
probabilistic TSP and fuzzy TSP. With the development of VRP research, some complex
variants have also been derived. For example, R. J. et al. [13] explored this cooperation
by developing a model for the vehicle routing problem with drones that considers the
presence of customer time windows (VRPTW). The concept of time windows is introduced
into VRP by Christofifides, who proposed a branch and bound algorithm for small-scale
problems [14]. İLhan, İ. [15] designed an improved simulated annealing algorithm with
a crossover operator for the capacitated vehicle routing problem (CVRP). Combining
multi-depot and integrated delivery to expand the VRPTW makes the MDVRPTW more
scientific and reasonable, and the complexity of the solution is increased accordingly. Bae,
H. and Moon, I. et al. [16,17] presented an improved genetic algorithm for solving the MILP
considering specific practical issues and related factors.

Now we turn our attention to the SR literature. A recognized definition of SR was
proposed by Sahin, E. in 2005 [18]. Foton [19] developed the first cellular robot system,
which is a distributed system composed of many autonomous robots. Nedjah, N. and
Silva, L. J. [20] discussed and analyzed the urgent need for standardization in many aspects
of SR, including hardware and software, so that SR can be applied in real-world APPL.
Senanayake, M. et al. [21] summarized the advantages of robot systems and carried out
investigations on the search and tracking algorithms of SR. Miljkovicl and Xin W. J. [22]
proposed an intelligent logistics scheduling system based on the Internet of Things, which
realizes dynamic coordination between customers, sorting robots, and cloud technology,
and then used an ant colony algorithm to avoid obstacles in scheduling. Milford M.
and Wyeth, G. [23,24] mainly carried out the integrated system research of SR system
generation, execution, and monitoring, providing an advanced multi-task planning solution.
Eijyne, T. et.al. [25] proposed a task-oriented, auction-based task allocation framework,
which is implemented in a multi-robot system, allowing tasks to be dynamically allocated
to robots when a given task is completed. These literatures adopt different methods for the
research goals to obtain the task allocation table and then update the execution according
to the system framework. Boysen, N. et.al. [26] developed a scheduling program for
determining truck routes and robot launch locations based on the last mile problem, and
then determined that the number of weighted delayed customer deliveries was minimized.
Deng P. et al. [27] studied the vehicle path problem of an unmanned aerial vehicle, sidewalk
robot, or walking machine movement synchronization.

From the above, robots have high-efficiency communication capabilities, adaptability
to different tasks, and low-cost characteristics. These features provide huge opportunities
for their application and development in intelligent logistics. Robotics is an important
part of intelligent logistics and future logistics. Through the review and analysis of the
existing literature, it is found that many documents mainly study the control system
and hardware structure of robots, but the effective use of robots is also an important
concept to strengthen the development of robotics in addition to the development of service
components. So far, the research on the potential of supporting robot delivery is still
insufficient, and these documents on robot VRP in logistics delivery did not consider the
battery capacity limitations of the robot, the limited load capacity, and the impact of the load
on the transportation capacity. They also did not consider the realization of coordinated
and persistent delivery specific methods. Thus, through the research and analysis above
of all the characteristics of SR in the actual logistics distribution, we developed the SR
MILP, which includes load weight and service station charging functions. SR shares a
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community service station to supplement power and, according to the requirements of
different customers, perform corresponding tasks from the service station. Besides, from
our knowledge, ours is the first applied to achieve collaborative and durable delivery in the
context of large community cities considering customer-oriented needs and the transport
characteristics of robots themselves.

Lenstra, J. K. et.al. [28] showed that VRP is NP-hard. Solutions to the problem are
mainly divided into two categories: precise algorithms and heuristic algorithms. Although
the precise algorithm can find the optimal solution of the problem, the efficiency is low, and
the scale of the solution is limited. Therefore, many scholars favor the application of efficient
heuristic algorithms to solve the vehicle routing problem, such as a genetic algorithm [29],
ant colony algorithm [30], particle swarm algorithm [31], and other intelligent algorithms.
Calvet, L. et al. [32] combined statistical learning with metaheuristics for the multi-depot
vehicle routing problem with market segmentation. Ting, C. J. et al. [33] proposed a particle
swarm optimization approach to solve the discrete and dynamic berth allocation problem
(BAP), which assigns ships to discrete berth positions and minimizes the total waiting
times and handling times for all ships. Compared with intelligent optimization algorithms
such as ant colony optimization, the neural network algorithm, and artificial immune algo-
rithm, PSO algorithm retains a population-based global search strategy, without crossover
and mutation individuals, and has a simple structure, easy implementation, and strong
robustness. PSO is widely used to solve combinatorial optimization problems, but it is
limited to continuous space. Since many optimization problems are defined in the discrete
space, many related variants of the PSO algorithm have been proposed and used [34,35].
Yan et al. [36] designed a PSO for the leak source localization problem, combining particles
into a “minimal number of low-fitness particles removed from the current group and reset
their positions to help the global optimal particle optimization group” to enhance the un-
derstanding of the search for the global best particle. In order to plan the smooth path of the
mobile robot, in the improved PSO algorithm, an adaptive fractional velocity is introduced,
and a certain disturbance is applied to the particle swarm according to the evolution state
of the particle swarm, thereby enhancing its ability to jump out of the local minimum value
and more thoroughly explore the search space [37]. Stage I grouped the tasks into clusters
using the dynamic distributed particle swarm optimization (D2PSO) algorithm, and stage
II allocated the robots to the clusters. The assignment of robots to the clusters is represented
as multiple traveling salesman problems (MTSP) [38]. Kwa et al. [39,40] presented a fully
decentralized swarming strategy achieved by combining adaptive inter-agent repulsion
and an adjustable network PSO-based strategy. They studied the search and tracking
problem of dynamic targets for swarm robotic systems, based on an adjustable network of
PSO-based dynamics. However, most of these methods have similarities in the application
of PSO. Particles search in continuous space and convert real-valued positions into integer
values to represent routes. These PSO algorithms cannot fully reflect the characteristics of
the discrete problem space of VRP, and their operating efficiency is not satisfactory. Zhang
Jun et al. [41] proposed a new set-based PSO method, which treats the search space as a
general set, and each candidate solution represented by the position of each particle is
regarded as a clear subset of the general set. We proposed the S-GAIPSO hybrid algorithm,
which can well represent the problem space of MDVRPTW for the cooperative and persis-
tent delivery of SR, retain the advantages of fast local search of particle swarm optimization,
and improve the global optimization speed and optimization ability of particles.

3. Materials and Methods
3.1. Problem Description

In order to solve all the above problems, enable the continuous execution of robot tasks,
and reduce the waiting time of customers, this paper proposes a smart community logistics
service framework. As shown in Figure 1, it includes the control system of the robot system,
the automatic replenishment platform, the network communication technology, and the
component activities of the coordinated distribution optimization technology. The control
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center of the system receives the deterministic customer location (GPS coordinates) from
the service requester, and it is responsible for coordinating the robot tasks allocation plan.
Then the control center receives the mission planning schedule through the communication
network and executes the order at the time specified by the customer. Each robot sends
and continuously updates visual and geographic positioning information to its controller
based on the communication network and replenishes charges through the service station.
For example, in a large-scale smart community, after robot 1 starts from service station
(distribution center with charging) 1 and completes the task requirements for customer 1, it
continues to perform the task or returns to one of the service stations for charging. When
returning to one service station, this service station serves as a new departure station to
perform the following tasks. Figure 2 is the composition structure of the control center
system, which is mainly responsible for the function of allocating orders and analyzing
and processing the returned data. It realizes path planning and serves customers by
coordinating and assigning tasks to SR. Most of the control modules in this control unit
operate continuously, but not all modules actively control the robot all the time. Through
the task distribution and delivery table, which is obtained by developing a model in this
article, a map is generated for the generated task table. Ltd., G. B. et al. [42] saved the task
distribution path output to a json file and then uploaded the json file. Each robot obtains the
relevant instructions to execute and maintains real-time communication and positioning
updates throughout the process to complete dynamic and complex tasks.
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3.2. Mathematical Formulation
3.2.1. Model Parameters

The MILP was developed to support SR delivery logistics. In this section, we intro-
duced the developed SR-MILP. The parameters and variables that may be involved in the
following model are described as follows:

g,h: Index of task
k: Index of robot
s: Index of station
f : Index of transportation frequency
ΩH : Set of tasks
ΩK: Set of robots
ΩF: Set of transportation times
ΩSB: Set of robots starting station
ΩSE: Set of robots ending station
Ω:ΩSB ∪ΩSE ∪ΩH
U: Time from zero to full power
Tk: Maximum working power of the robot
Tkb: Initial power level
Tk f : Decision variable, representing the power consumption in the first transportation
Pg: Task processing time
Dg: Task demand
Qk: The maximum transportation capacity of the robot
Vk: The speed of robot k
dgh: The distance between two tasks
Xghk f : Binary decision variable, during the first transportation, if the robot processes

the task or returns to the service station to charge after the task; otherwise it is 0
Ygk f : Binary decision variable, if the task is assigned to the robot in the first transporta-

tion; otherwise it is 0
Cgk f : A non-negative real number decision variable, which is the time when the robot

starts its transportation task for the first time or charging at the service station
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Rgk f : A non-negative integer decision variable, the amount of product the robot loads
after completing the task.

3.2.2. Load Weight Influence Function

As shown on the left of Figure 3, Hector Montes and Lisbeth Mena found that the
power consumption of the robot is significantly affected by the load weight, which means
that its transportation time is related to the load weight [43]. On this basis, we developed a
function where load weight affects running time, as shown in the right side of Figure 3 and
the Equation (1). Where the transport influence coefficient ρghk is positively correlated with
the load, Qk represents the maximum load of the robot; A is the upper limit of the load
weight; and A ≥ 1:

ρghk =
A− 1

Qk
(Rgk f ) + 1,g ∈ ΩH ∪ΩSB, h ∈ ΩH ∪ΩSE, f ∈ ΩF, k ∈ ΩK (1)

where is ΩSB = {NH + NSTA + 1, NH + NSTA + 3, . . . NH + 2NSTA − 1}, ΩSE = {NH +
NSTA +2, NH + NSTA + 4, . . . , NH + 2NSTA − 1}.
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3.2.3. Service Station Charging Function

In the real world, the robot may be at any initial service station and power level, which
has an impact on the charging time of the robot at the service station. In this study, the
charging time in the shared service station depends on the remaining battery power of the
robot. In addition, since we did not know the remaining power level of the initial working
robot, we developed a SGN function as Equation (2) to describe:

J f = (
U
Tk

) · (Tk, f−1 + |sgn( f − 2)− 1| · (Tk f − Tkb)), f ≥ 2; f ∈ ΩF; k ∈ ΩK (2)

It can be seen from Figure 3 that the value of J f is different when f = 2, which is in line
with the real situation. These variables need to enforce constraints as show in Equation (3).

Tk f ≥ 0 (k ∈ ΩK, f ∈ ΩF)
Tk f ≤ Tk (k ∈ ΩK, f 6= 1)
Tk f ≤ Tkb (k ∈ ΩK, f = 1)

(3)

3.2.4. The Model

From the above analysis of the proposed intelligent logistics distribution service
system, it is obvious that the optimization analysis of the distribution path of the swarm
robots is the focus of our study. The purpose of the mission is to minimize the distribution
cost while improving the service level. In this part, The MILP is proposed to support the
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delivery of robots described by the system. Equation (4) is the objective function. The
objective of the objective function is to minimize the weighted sum of two objectives, the
total travel distance during the completion of the service to the customer, and the delivery
of the service within the time window, where Ogkf is the penalty cost where the robot
exceeds the customer service time in the f th transportation; the weighting factor a1 is used
to provide a balanced solution between two goals; and a2 represents the penalty coefficient
for exceeding the service time.

Min a1 ∑
g∈Ω

∑
h ∈ Ω
g 6= h

∑
k∈ΩK

∑
f∈ΩF

dgh · Xghk f + ∑
g∈Ω

∑
k∈ΩK

∑
f∈ΩF

Ogk f
(4)

The relationship between decision variables Xghk f , Ygk f is defined in Equation (5):

∑
h∈ΩH∪ΩSE

Xghk f = Ygk f , g ∈ ΩH ; k ∈ ΩK; f ∈ ΩF (5)

The robot may end the work after completing the task as show in Equation (6).

∑
h∈Ω

Xghk f = ∑
g∈Ω

Xhgk f , g, h ∈ ΩH ; k ∈ ΩK; f ∈ ΩF (6)

Equations (7) and (8) ensure that each robot starts the first transport from its ini-
tial service station, where Sbk represents the initial service station. In the same manner,
Equation (9) indicates that each time the robot k enters a service station, it means that the
f th transportation is completed.

∑
h∈ΩH∪ΩSE

Xsbkhk1 = 1, k ∈ ΩK (7)

∑
s∈ΩSB

∑
h∈ΩH∪ΩSE

Xshk f = 1, k ∈ ΩK, f ∈ ΩF (8)

∑
s∈ΩSE

∑
g∈ΩH∪ΩSB

Xgsk f = 1, k ∈ ΩK; f ∈ ΩF (9)

All service tasks need to be completed. An idle robot must stay at a station to reduce
unnecessary travel distance, and each task can be served by at most one robot, as follows:

∑
k∈ΩK

∑
g∈Ω

∑
f∈ΩF

Xghk f = 1 , h ∈ ΩH (10)

Equation (11) links previous and next shipments. With this constraint, if the robot k
completes its f th transportation at the service station s, its ( f + 1)th transportation starts
from the service station s-1:

∑
g∈ΩH∪ΩSB

Xgsk f = ∑
g∈ΩH∪ΩSE

Xs−1,gk f+1, k ∈ ΩK; f = 1 . . . N f−1; s ∈ ΩSE (11)

In addition, because each station has two indexes as the starting station and the ending
station, respectively, in order to avoid the robot from completing the transportation at the
starting station, as show in Equation (12):

∑
g∈ΩH∪ΩSB

Xgsk f = 0, k ∈ ΩK, f ∈ ΩF, s ∈ ΩSB (12)

A penalty cost function is used to represent the time window limit of each task, and
each robot must perform the task within the allowable range of its power level, where M
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is a large positive number. The completion time of the f th of the robot is the start time of
( f + 1)th, and Csk f = Cs−1,k, f+1:

Ogk f = max(Eg − Cgk f , 0) + max(Cgk f − Lg, 0)

Cgk f + Pg + J f + dgh/Vk · ρghk(Rgk f )− Chk f ≤ M · (1− Xghk f ), g ∈ ΩH ∪ΩSB; h ∈ ΩH ∪ΩSE; k ∈ ΩK ; f ≥ 2; f ∈ ΩF

(13)

When the task g is not assigned to robot k during the f th transportation, the value of
Cgk f is set to 0 as show in Equation (14):

M · ∑
h∈ΩH∪ΩSE

Xghk f ≥ Cgk f , g ∈ ΩH ∪ΩSB, k ∈ ΩK, f ∈ ΩF (14)

Each robot’s total time from the starting station to the ending station includes the
processing task time Pg and the transportation time and considers the second section, where
the transportation time is affected by the load weight. The time that the robot completes
the task must be within the allowable range of its power level, as show in Equation (15).

∑
g∈Ω

∑
h∈Ω

dgh/Vk · ρghk(Rgk f ) · Xghk f + ∑
g∈ΩH

∑
h∈Ω

Pg · Xghk f − Tk ≥ 0, k ∈ ΩK; f ∈ ΩF; f ≥ 2

∑
g∈Ω

∑
h∈Ω

dgh/Vk · ρghk(Rgk f ) · Xghk f + ∑
g∈ΩH

∑
h∈Ω

Pg · Xghk f − Tkb ≥ 0, k ∈ ΩK; f = 1
(15)

Equation (16) means that when index g from Rgk f represents a service station, Rgk f
means the quantity of products each robot needs to transport each time, and the quantity
of each transport should be equal to the customer demand and cannot exceed the load
capacity. As each task is delivered, the number of load product gradually decreases, as
shown in Equation (17):

Rgk f = ∑
h∈ΩH

Dh ·Yhk f ≤ Qk, g ∈ ΩSB; k ∈ ΩK; f ∈ ΩF (16)

Rgk f − Dh − Rhk f ≤ M(1− Xghk f ), g ∈ ΩH ∪ΩSB, h ∈ ΩH , k ∈ ΩK, f ∈ ΩF (17)

3.3. Solving Algorithm

In order to solve the problem better, the above model proposed above is simplified
here. Only a single and multitasking transportation of each robot is considered: f = 1,
and each robot returns to its departure warehouse for charging when it completes its task.
Through the above literature review and analysis, the S-PSO can well represent the problem
space of discrete combinatorial optimization problems including VRP; in other words,
the problem space of VRP is a directed complete graph, and each candidate solution is a
generated subgraph of the complete graph. Therefore, PSO can naturally solve VRP by
using a set-based method. In this paper, a set-based particle swarm algorithm is designed
for the above-mentioned SR distribution model.

3.3.1. S-PSO Algorithm

PSO is a population-based stochastic optimization algorithm proposed by J. Kennedy
and R. C. Eberhart in 1995 [44]. The algorithm was first inspired by the social interaction
behavior of a bird community and fish education. In order to provide the best solution, each
so-called “particle” updates its flight speed and current position iteratively according to its
own flight experience and the flight experience of other particles. The speed and position
update methods of traditional particle swarms are defined in Formulas (18) and (19).

vd
i,i+1 = vd

i,t + c1 ∗ rand1 ∗
(

pbestd
i,t − xd

i,t

)
+ c2 ∗ rand2 ∗

((
gbestd

i,t − xd
i,t

)
− xd

i,t

)
(18)

xd
i,i+1 = xd

i,t + vd
i,i+1 (19)
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xh
k =

[
xh1

k , · · · , xhm
k

]
(20)

The method used in this paper is the set-based particle swarm optimization (S-PSO),
which is a discrete particle swarm optimization algorithm designed specifically for solving
the MDVRPTW. x represents the position of the particle, and u represents the velocity is
represented by u. If the number of particles in the swarm P is N, h represents each particle
in the swarm,h ∈ [1, n]. k represents the current number of iterations. The position of the
particle in VRPTW is expressed as xh

k , and the position of each particle in the m-dimension

is expressed as xhδ
k , δ ∈ (1, m). Therefore, the position of the particles can be expressed as

Equation (20). The position of each particle represents a directed Hamilton circle in the
complete graph, and the Hamilton circle can be converted into a specific solution for a set
of vehicle routes using the constraint-based decoder in this paper. As shown in Figure 4,
starting from the outer arc of the warehouse, if an arc in the Hamilton circle satisfies all
the constraints in the model, it will be retained; otherwise, the warehouse will be inserted
between two nodes and the arc replaced by two new arcs. Through the definition of particle
position and a constraint-based decoder, each particle represents a feasible solution to the
model of the collaborative and persistent delivery problem of SR in the algorithm.
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The position of the particle in each dimension is composed of two arcs adjacent to node d.δ,
as show in Equation (21), represents the current dimension; nb1 is the previous customer point;
and , nb2 is the next customer point. among them, nb1, nb2 ∈ {1, 2, . . . , δ− 1, δ + 1, . . . , m},
nb1 6= nb2.

xhδ
k = [〈nb1, δ〉, 〈δ, nb2〉] (21)

The velocity of a particle is the probability of a set of arc lengths being selected.
uhδ

k , δ ∈ [1, m] represents the speed of the particle in the m-dimensional space. The speed in
the m-dimensional space is defined in Equation (22).

uh
k =

[
uh1

k , · · · , uhm
k

]
(22)

uhδ
k =

{〈
ci, cj

〉
/p
(
ci, cj

)∣∣∣〈ci, cj
〉
∈ Aδ

}
(23)

P(ci, cj) represents the probability of edge
〈
(ci, cj)

〉
being selected for particle position

update, P(ci, cj) ∈ [0.1]. If P(ci, cj) = 0, it means that side
〈
ci, cj

〉
will not be selected. When
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the particle position is updated, the velocity u is converted into an edge, and the edge
selection is shown in Equation (24).

Cut
(

uh
k

)
=
{〈

ci, cj
〉∣∣∣(ci, cj

)
/p
(
ci, cj

)
∈ uh

k

}
(24)

The update of the particle position xh
k+1 adopts a constructed method; Ω is used to

represent the vehicle load and service time window. At the beginning, xh
k+1 is an empty

collection and repeats the steps. Assume that the customer point currently being delivered
is i; the next delivery customer point j is selected, and there are 3 forms, given below as
shown in Equations (25)–(27).

SU =
{

cj

∣∣∣〈ci, cj
〉
∈ uh

k ,
〈
ci, cj

〉
satis f ies Ω

}
(25)

SX =
{

cj

∣∣∣〈ci, cj
〉
∈ xh

k ,
〈
ci, cj

〉
satis f ies Ω

}
(26)

SA =
{

cj
∣∣〈ci, cj

〉
∈ A,

〈
ci, cj

〉
satis f ies Ω

}
(27)

Assuming that the current delivery customer point is i, the next delivery customer
point j is selected; there are the following three forms, according to the priority order from
top to bottom. If there is no customer point Cj that can be selected, or Ω is not satisfied, a
path is generated.

When updating the speed of particles, speed × speed is defined in Equations (28) and (29).

ω× uhδ
k =

{〈
ci, cj

〉
/p′
(
ci, cj

)∣∣∣〈ci, cj
〉
∈ Aδ

}
(28)

p′
(
ci, cj

)
=

{
1, if ω× p

(〈
ci, cj

〉)
> 1

ω× p
(〈

ci, cj
〉)

, otherwise
(29)

Speed + speed is defined in Equation (30).

uhδ
k + uhδ

k
′
{〈

ci, cj
〉
/max

(
phδ

k
(
ci, cj

)
, phδ

k
′(ci, cj

))∣∣∣〈ci, cj
〉
∈ Aδ

}
(30)

Location—location is defined in Equation (31).

xhδ
k − xhδ

k
′ = Mδ =

{〈
ci, cj

〉∣∣∣〈ci, cj
〉
∈ xhδ

k and /∈ xhδ
k
′
}

(31)

From the above equation the Equations (32) and (33) can be obtained as follows:

ϕ×Mδ =
{〈

ci, cj
〉
/p′
(
ci, cj

)∣∣∣〈ci, cj
〉
∈ Aδ

}
(32)

p′
(
ci, cj

)
=


1, if

〈
ci, cj

〉
∈ Mδandϕ > 1

ϕ, if
〈
ci, cj

〉
∈ Mδand0 < ϕ < 1

0, if
〈
ci, cj

〉
/∈ Mδ

(33)

Speed update equation of S-PSO algorithm is defined in (34), and the speed update
according to this operation can obtain uhδ

k+1.

uhδ
k+1 = ω× uhδ

k + ς× σ×
(

pb fh(δ)
k − xδ

k

)
(34)

3.3.2. GA Improved S-PSO Algorithm

Considering that the particle swarm algorithm easily falls into the problem of local
extremum, and it takes a long time to solve larger-scale problems [45], this paper proposes
the genetics-improved S-PSO (S-GAIPSO) algorithm. When updating particles, it considers
the local extremum and global extremum in the traditional particle swarm algorithm. It also
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combines the crossover operation and mutation operation operator of the genetic algorithm
to cross the individual current extreme value with the overall extreme value of the particle
swarm, then follows a certain probability of mutation to increase the diversity of particles.
The improved algorithm based on the SR distribution model retains the fast local search
advantage of the particle swarm algorithm and has the global optimization performance of
the genetic algorithm at the same time. The crossover operators of the particle’s velocity
and position are defined in Equations (35)–(38).

p1
child(xhδ

k ) = pc × p1
parent(xhδ

k ) + (1− pc)× p2
parent(xhδ

k ) (35)

p2
child(xhδ

k ) = pc × p2
parent(xhδ

k ) + (1− pc)× p1
parent(xhδ

k ) (36)

p1
child(u

hδ
k ) =

p1
parent(u

hδ
k ) + p2

parent(u
hδ
k )∣∣∣p1

parent(u
hδ
k ) + p2

parent(u
hδ
k )
∣∣∣
∣∣∣p1

parent(u
hδ
k )
∣∣∣ (37)

p2
child(u

hδ
k ) =

p1
parent(u

hδ
k ) + p2

parent(u
hδ
k )∣∣∣p1

parent(u
hδ
k + p2

parent(u
hδ
k )
∣∣∣
∣∣∣p2

parent(u
hδ
k )
∣∣∣ (38)

where pchild represents the offspring of the particle; pparent represents the parent of the
particle; and pc represents the crossover probability. pc(pc ∈ [0, 1]) is a random number.
Based on multiple experiments, we set the value of pc to 0.2. The two parents are combined
to produce two new offspring. If the fitness of offspring is more than the fitness of the
parents, the offspring will be selected to replace the parents; otherwise, the offspring
are discarded.

4. Experimental Evaluation

In this example, we tested the proposed MILP and S-GAIPSO algorithm. All experi-
ments were performed on a personal computer using Intel(R) Core (TM) i7-8565U CPU
@1.99 GHz and 8.00 GB RAM. We used a CPLEX solver based on MATLAB to call the
YAMLIP toolkit and MATLAB R2016a to implement the S-GAIPSO algorithm, which are
compared and discussed in terms of the solution gap and computational power with vari-
ous sizes of randomly generated problems; a1 and a2 are set to 10 and 100, respectively. The
following cases were simulated and tested based on real large-scale community distribution.
In this case, Figure 5 is a planning map of a community, with two service stations where
robots can charge and load goods. A set of randomly generated data is used to represent the
service information of customer, including the X/Y coordinates, time window, and service
time. The position of the customer is represented by the two-dimensional coordinates of
each point, and the distribution path between the two tasks is represented by calculating
the Euclidean distance of the two points. Each customer has a serviceable time window,
and the robot needs to complete the delivery for it during this time period. The speed
of robot is 1.0–1.5 m/s under light load conditions. Some new small robots such as ABB,
KUKA, FANUC, etc. can basically reach 5–6 m/s. We take the robot’s speed as 4 m/s.
During the transportation process, the robot does not consider the problem of congestion.
It is only related to its load weight and drives at a constant speed between the two tasks. In
delivery services, an effective delivery schedule achieved by minimizing the total travel
distance is very important. In addition, our study considered the time window of customer
service, that is, to provide service to each customer in the earliest and latest time period.

4.1. Example Background

The system layout of the smart community is shown in Figure 5. We supposed that
there are two service stations, located at (104, 32), (16, 69). Service station 1 has two robots, 1
and 2, and service station 2 has two robots, 3 and 4. The loadable capacity of these robots is
3, and their maximum distance is 300. Table 1 describes the 10 task requests in the delivery
service area, and in this table, the serial number of the first column represents service
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customers. The second and third columns represent the X and Y coordinates of the service
customers. The fourth column and the fifth column, respectively, represent the service time
window required by the customer; the sixth column represents the time required for service
at the customer point. For example, task 1 is located at coordinates (31, 82); it should start
between time 0 and 2, and the execution of this task requires 0.5 s of service time. The
charging time of the service station is supplemented according to the power loss of the
robot during transportation. Since the simplified model considers that each robot is only
transported once, it will return to the originating station to recharge or load the product
after completing the task. As always, the robot has strict restrictions on the products that
can be loaded. However, it is possible that a certain task is too heavy, so we divided this
task into two tasks sharing the same location and time constraint, such as task A in the table.
In our follow-up algorithm application, the distance between the two tasks is calculated
according to the position of each task on the map. The specific calculation is shown in the
following formula:

d12 =

√
(X1 − X2)

2 + (Y1 −Y2)
2 (39)
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Figure 5. System layout of smart community delivery service using SR.

Using the proposed algorithm, we obtained the best solution where the objective
function value is 5496.2. As shown in Figure 6, it is the final assignment route of the
10 tasks. The optimal value iteration curve obtained by the algorithm is shown in Figure 7,
and the specific task plan is shown in Table 2. Robot 1 leaves station 1 and returns to
station 1 after performing tasks 2, 8, and 5. Robot 2 leaves station 1, performs tasks 10, 4,
and 9, and then returns to station 1. Robot 3 leaves stations 2 and returns to station 2 after
performing task 3, task 7, task 6, and task 1. It can be seen robot 4 is not used. Task A is
finished by the robot 1 and 3 together.
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Table 1. Task delivery information of the robot.

Task
Delivery Point Earliest Service

Time (Eg)
Latest Service

Time (Lg)
Service Time

(Pg)X Y

1 31 82 0 2 0.4
2 57 28 5 6 2
3 57 28 5 6 2
4 90 94 1 3 0.5
5 87 34 7 8 0.3
6 24 16 2 6 0.2
7 48 8 2 3 0.4
8 71 32 7 9 0.6
9 73 10 1 3 0.2

10 104 56 6 7 0.1
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Table 2. Optimal schedule of SR.

Station Robot Optimal Scheduling

1
1 station1→2→8→5→station1
2 station1→10→4→9→station1

2
3 Station2→3→7→6→1→station2
4 station1

Obj. value 5496.2

4.2. Performance Evaluation of CPLEX and S-GAIPSO

In general, as the scale of the problem increases, its complexity will increase. As
an advanced solver CPLEX can solve VRP models of general complexity, the S-GAIPSO
proposed in this paper can obtain the optimal solution in a short time. In order to test
the calculation and optimization capabilities of the proposed S-GAIPSO algorithm, we
conducted experiments on numerical cases with tasks of 5, 10, 20, and 30 in different
scales. Table 3 shows the corresponding results and compares the calculation time and
optimized gap value of CPLEX and S-GAIPSO. Figure 8 compares the average target values
for different scale tasks in the form of a bar graph. As the number of tasks increases,
the difference between the function values (the total travel cost of the robot used and
the penalty cost of exceeding the customer’s service time) obtained by the algorithm and
CPLEX becomes larger and larger. The calculation time of the SR MILP increases rapidly
with the increase of the number of tasks. In the experiment to solve a scale of 20 tasks,
it appeared that CPLEX could not generate the best solution for 2 cases. As the scale of
the experiment continues to increase, for example, and each case has 30 tasks, CPLEX can
no longer be used to provide a feasible solution, and our proposed algorithm also shows
strong computing power and requires less than 0.35 s CPU time to obtain the optimal or
close-to-optimal solution. Compared with CPLEX solvable solutions, S-GAIPSO achieved
a gap of 0.157%, 1.097%, and 2.077%, respectively, when there were 5, 10, and 20 tasks on
average. The optimality gap is determined by the Formula (40) calculations.

Gap =
Obj.value(CPLEX)−Obj.value(CPLEX− S− GAIPSO)

Obj.value(CPLEX)
× 100% (40)
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Table 3. Result comparison of CPLEX and S-GAIPSO.

Experiment Task Size
CPLEX S-GAIPSO

GAPCPU Time
(s)

Obj.
Value

CPU Time
(s)

Obj.
Value

1

5

0.63 2563 0.063 2563 0%
2 0.59 2436.8 0.065 2436.8 0%
3 0.86 2957.7 0.062 2946.3 0.385%
4 1.03 2531.6 0.065 2531.6 0%
5 0.92 2879.4 0.064 2876.9 0.087%

1

10

50.53 5597.5 0.105 5496.2 1.842%
2 123.25 5563.2 0.103 5426.8 2.416%
3 83.9 5296.1 0.105 5296.1 0%
4 125.04 5632.4 0.096 5563.2 1.225%
5 42.69 5432.8 0.098 5432.8 0%

1

20

3965 10,213.3 0.107 10,110.3 1.008%
2 3662 11,356.1 0.118 11,029.6 2.88%
3 3869 10,697.6 0.129 10,002.4 6.497%
4 - - - 12,658.6 0.225
5 - - - 11,972.4 0.113

1

30

4352 12,536.9 0.234 11,965.4 4.559%
2 - N/A 0.306 12,878.9 -
3 - N/A 0.166 12,536.9 -
4 - N/A 0.193 13,142.8 -
5 - N/A 0.154 12,897.4 -

5. Conclusions and Future Work

A combined intelligent logistics service framework is proposed based on the Internet
of Things technology, network communication technology, and coordinated delivery opti-
mization technology in this paper. This study not only focuses on how to realize intelligent
logistics services, but also is directly related to reducing customer waiting time, improving
customer satisfaction, and the efficiency of completing tasks. The research significance of
this article is mainly reflected in two aspects. (a) This article provides detailed ideas on
how to design an intelligent distribution system, including how to realize the start-up time
and path planning solutions of customers and corresponding robots. (b) This article uses
the proposed methods to obtain the corresponding solutions in the form of a case study,
which helps the operator to obtain a better reference in practice.

At the departure service station, SR replenish their consumables, including battery
charging and loading delivery products. In this way, through solving the problem of
being unable to operate remotely for a long time due to the limitation of the power level
and load capacity of the robot, we realize the cooperative and persistent delivery service
of SR. Corresponding functions are developed for the different customer-oriented needs
and the transportation characteristics of the robot itself, including the load weight effects,
transportation time, and the behavior of the robot during the idle state. The constructed SR
MILP is advanced and applied to the delivery service of large-scale smart communities.
The S-GAIPSO algorithm and the solver CPLEX are tested with numerical examples of
different scales, and the superiority of the proposed algorithm is proved by the comparison
of optimality loss and CPU time. We hope that this research will contribute to existing
and emerging robotic applications, improving customer satisfaction by shortening the time
customers wait for payment.

Although this article uses model data instead of the actual case data to verify the
methods and algorithms we designed, the speed of the robot is based on the existing
data, and all task data are based on realistic simulations. Therefore, it does not affect the
theoretical and practical value of this paper. Due to the limitation of practical conditions,
in the future, the SR of large smart communities can be considered for the experiment
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of logistics distribution. Our next goal is to consider the collision of obstacles in the
driving path of the robot. The dynamic vehicle path optimization problem with changes in
customer demand and time window will be more in line with the actual situation of future
distribution. In addition, there may be more optimized and comprehensive algorithms for
model resolution.
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