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Abstract: In this paper, we introduce a linear program (LP)-based formulation of a rendezvous game
with markers on the infinite line and solve it. In this game one player moves at unit speed while the
second player moves at a speed bounded by vmax ≤ 1. We observe that in this setting, a slow-moving
player may have interest to remain still instead of moving. This shows that in some conditions the
wait-for-mummy strategy is optimal. We observe as well that the strategies are completely different
if the player that holds the marker is the fast or slow one. Interestingly, the marker is not useful when
the player without marker moves slowly, i.e., the fast-moving player holds the marker.

Keywords: asymmetric rendezvous on the line; markers; asymmetric speeds

1. Introduction

The problem that we discuss in this article revolves around the problem faced by
two parachutists dropped from an airplane on an island and who need to rendezvous. In
order to reduce the dimension of the search space, the two can move to the coastline and
restrict their search by moving along the coastline. The two parachutists facing the sea can
move to right or to the left. However, going to the right or the left is not a common sense of
direction. In an island, depending on where the parachutists are located (north or south)
a motion to the right can lead to go eastward or westward, and the two cannot agree on
a common direction, for instance, by observing where the sea is flowing (as it would be
possible if they were moving along a river). The distance separating them initially may
not be known. To formalize the problem, the distance may be assumed a random variable
or, this is the approach taken here, the distance is assumed to be bounded and an upper
bound on the rendezvous time are searched for. Two novel parameters are considered for
this problem. We assume that the two parachutists may move at different speeds and we
assume that the parachutists can drop off a marker at the position they are and it may be
subsequently found by the other as they pass by the same position. Finding the marker is
very useful since it indicates in which direction to go to rendezvous with the other.

More formally, we introduce a variation of the asymmetric rendezvous problem on
the line that was introduced by Alpern and Gal [1]. In the original setup, two players are
placed on a line at a known distance D and move on the line to rendezvous. The player’s
strategies may be different and start at the same time, and both players move at the same
speed v = 1. At the start and while moving, the players look in a fixed direction, say,
right or left. The directions are chosen randomly each with probability 1/2. It results that
players move either in the direction they look to or the other one, i.e., forward or backward.
A strategy is a succession of forward and backward moves. The optimal solution of this
problem is shown to be 13D/8. Many variations have been proposed showing that even
a simple topology such as the infinite line leads to interesting problems. Among the hardest
seems to be the symmetric rendezvous on the line where the two players have to play
the same strategy. Partial solutions of this problem were obtained. In [2], a strategy was
proposed that ensured the rendezvous time satisfied R ≤ 5D. Subsequent strategies were
proposed in [3,4] that used the same technique as in [2] and reduced the rendezvous time
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to R ≤ 2.28338D and R ≤ 2.2091D, respectively. Ref. [5] generalized the technique and
improved the bound to R ≤ 2.19653D. The best known bound R ≤ 2.1287D is given in [6].

Some papers deal with the problem where the initial distance between the players is
unknown, see for instance [7–10]. Usually, the distance is characterized by a probability
function. Note that if the players use strategies tailored for a known distance D with
rendezvous time R to a problem where it is only known that the distance is bounded by D,
then the rendezvous time for this problem is bounded by R.

The way time enters the game leads to relevant variations as well. The constraint
that the players start at the same time may be relaxed and this leads to asynchronous
rendezvous problems [11,12]. Asynchronous rendezvous problems may assume that an
adversary chooses the starting delay or the clocks are assumed to drift with different speeds.
There are relations between problems where clocks drift at different speeds and ones where
players move at different speed [12].

A problem where players move on the line and share similarities with the rendezvous
problem is the group search problem on the line [13]. This problem is motivated by the
evacuation problem where players must simultaneously gather at some point. One may
imagine that people need to leave a building and are helped with a line drawn on the floor
but do not know the right direction to follow. When players move at different speeds,
interesting strategies can be found where a fast player move to help slower players.

Problems where players move on a circle share similarities with problems on the
line [14–18]. Compared to the infinite line, the ring is a compact topology, but symmetry
breaking has to be solved as well to ensure rendezvous. Tokens may be left by play-
ers [19–21]. For rendezvous problems on the line, Refs. [22,23] present results where
markers are used by players. With a more robotic and computer science flavor some
problems encompass faulty agents [24,25].

Rendezvous problems are far from being limited to the infinite line or a ring. Problems
may be stated for agents moving on a plane, on graphs, on a torus, on networks and so
on, see for instance [26–28]. These problems are different from the ones considered in
this paper.

Markers can have different effects. For instance, the game may end at the time the
marker is found, i.e., rendezvous occurs or the marker is found. This would be the case if
a phone number is written on the marker. With such a marker, the game would be close
to a version of a search-and-rescue game [29]. This may be seen as a mix of rendezvous
and search games, see for instance [30–32] for search games on graphs and [26,33,34] for
general references.

2. Our Contributions

In this paper, we consider the (synchronous) rendezvous problem on the line with
known initial distance D where players move at different speeds and where a marker can
be left by one of the players. Without loss of generality, we assume that one player moves
at speed 1 while the second player moves at speed v ≤ 1. We show that investigations can
be conducted with linear programming techniques to identify optimal strategies. This is
not the conventional approach in the literature where the results are usually guessed and
optimality is subsequently proved. The reduction of rendezvous search game to another
formalism to be solved appears in the literature, see for instance [35]. Here, the reduction
to parametric linear programming has the further advantage that the same method can
be applied to compute different measures of optimality. For instance, the optimization of
the last rendezvous time. Actually, any linear combination of the rendezvous times can
be optimized.

In [23,36], a similar problem with markers is considered. The parametric linear pro-
gramming approach of this article leads to more precise results than the ad hoc approach
of [23]. Moreover, here we accommodate to players with different speeds, extending the
results of [23,36].
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3. Problem Formulation

We begin by presenting the formalization of the problem as given in [1]. Two players,
I and II, are placed at distance D = 1 (although the results depend linearly on the initial
distance and are stated for a general D). apart on the real line, and faced in random
directions which they call “forward”. Their common aim is to minimize the expected
amount of time required to meet. They each know the distance 1 but not the direction the
other player is facing. It is not a restriction to assume that player I’s starting point is located
at position 0 of the line and their speed is bounded by v ≤ 1. Their position is given by
a function f (t) ∈ F (α), where

F (α) =
{

f : [0, T]→ R, f (0) = 0,
∣∣ f (t)− f

(
t′
)∣∣ ≤ α

∣∣t− t′
∣∣}, (1)

for some T sufficiently large so that the rendezvous will have taken place.
What are unknown are the initial position of player II that may be ±1 and the forward

direction of player II that may point to the positive or negative side of the infinite line.
Again, without restriction of generality, we assume that the speed of player II is bounded
by 1. Hence, depending on the initial conditions of player II their position at time t is given
by ±1± g(t) with g ∈ F (1) = F .

The rendezvous times are defined by:

t1 = min{t : f (t) = 1 + g(t)}, (2)

when player II is originally located at +1 and their forward direction points to the positive
side of the line.

t2 = min{t : f (t) = 1− g(t)}, (3)

when player II is originally located at +1 and their forward direction points to the negative
side of the line.

t3 = min{t : f (t) = −1 + g(t)}, (4)

when player II is originally located at −1 and their forward direction points to the positive
side of the line.

t4 = min{t : f (t) = −1− g(t)}, (5)

when player II is originally located at −1 and their forward direction points to the negative
side of the line.

It is common in the literature to speak of four agents (of player II) located at positions
±1 and with forward direction ±1 and moving concurrently. Player I needs to rendezvous
with the four agents to end the game [26]. Concretely,

• Agent 1 is located at +1 with forward direction +1 and its rendezvous time is t1,
• Agent 2 is located at +1 with forward direction −1 and its rendezvous time is t2,
• Agent 3 is located at −1 with forward direction +1 and its rendezvous time is t3,
• Agent 4 is located at −1 with forward direction −1 and its rendezvous time is t4.

We show in Figure 1 the configurations of the four agents and the optimal solution
of the problem without marker. We observe on this figure that the speeds of both players
are always maximal (equal to 1). Then, a complete description of the optimal strategy is
provided by the order with which player I rendezvous with the agents, i.e., agent 2, 3, 1 and
finally 4.
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Figure 1. (On the left):the four agents of player II. Each one corresponds to a particular initial
position and direction of the forward move. (On the right): the optimal solution of the game without
marker. Player I goes forward for time 1

2 , then backward for time 1
2 , then forward for time 1 and

backward for time 1. Player II goes forward for time 1, then backward for time 3. The rendezvous
occur successively with agents 2, 3, 1 and 4 at times t2 = 1

2 , t3 = 1, t1 = 2 and t4 = 3.

Definition 1. We introduce the notation t1 ≤ t2 ≤ t3 ≤ t4 to denote the rendezvous times in the
order they occur, (oi, bi) denotes the agent with origin oi = ±1 and forward direction bi = ±1. The
order of the rendezvous times is given by the index i, t1 is the rendezvous with agent (o1, b1), t2 is
the rendezvous with agent (o2, b2), t3 is the rendezvous with agent (o3, b3) and t4 is the rendezvous
with agent (o4, b4). When necessary, we use the convention t0 = 0

For instance, for the solution in Figure 1 it holds that t1 = t2, t2 = t3, t3 = t1, t4 = t4,
and (o1, d1) = (1,−1), (o2, d2) = (−1, 1), (o3, d3) = (1, 1), (o4, d4) = (−1,−1),.

We do not make any assumptions on how the functions f (t) and g(t) are computed.
A different formalism than what we are proposing here may be possible. For instance,
as in differential games [37–39], f (t) and g(t) may be bound to be solutions of ordinary
differential equation. Our approach here is different. We first show that the functions f (t)
and g(t) that may be optimal have the restricting feature of being of constant derivative
between two rendezvous. Then, we enumerate all possible solutions. Notice that pursuit–
evasion games are usually modeled as differential games. Compared to pursuit–evasion,
our rendezvous game is cooperative and this makes possible the enumeration of all efficient
strategies (player I rendezvous with the four agents and what is to be discovered is the
order leading to the shorter average of the rendezvous times).

The rendezvous value R( f , g) is defined to be the average value

R( f , g) =
1
4

(
t1 + t2 + t3 + t4

)
.

Finally, the rendezvous value of the game is defined by

R = min
{

R( f , g) : f ∈ F (v), g ∈ F
}

. (6)

A first remark that simplifies the problem is that the functional spaces F (v) and F
may be reduced to consider only functions f ∈ F (v) and g ∈ F lwhose speed is constant
between the rendezvous times. Indeed, if the speed is not constant, moving at the average
speed between rendezvous times leads to the same rendezvous value. Moreover, similarly
to Lemma 5.1 of [1], Theorem 16.10 of [26] or Proposition 3 of [23], we have the following
result for g ∈ F .

Proposition 1. If v ≤ 1, then, for the optimal strategies, the function g ∈ F is of constant slope
equal to ±1 between the rendezvous, i.e., the speed of the fast player is always maximal.
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Proof. Let us assume that player II, whose position is given by function g ∈ F and initial
position is known, does not move at maximal speed between rendezvous times ti−1 < ti.
This means that player II can reach the rendezvous position at a time ti − ε with ε > 0.
By moving faster, it may happen that player II rendezvous with player I before time
ti, reducing the rendezvous time ti. If not, we modify the trajectory of player II in the
following way. After reaching the rendezvous point at time ti − ε, player II continues in
the same direction for a period ε/2 and then goes the other way for a period ε/2, back
to the rendezvous position at time ti. At time t− ε/2, player I must be at a distance less
than vε/2 from the rendezvous position and because player II is at a distance ε/2 and
ε/2 ≥ vε/2, the rendezvous must occur before time ti. To summarize, by moving at full
speed, player II always reduces the rendezvous time ti. After time ti player II follows
the original strategy and the remaining rendezvous times are not changed. In total, the
modified strategy reduces the rendezvous value showing that the original strategy is not
optimal. We emphasize that the fast-moving player moves at maximal speed while the
slow-moving player can move at any speed in [0, v].

Corollary 1. We assume here that the speed of player I is bounded by v ≤ 1 and the speed of
player II by 1, i.e., f ∈ F (v) and g ∈ F . The sets of optimal strategies ( f , g) for players I and II,
respectively, are given by

f (t) =


v1 · t, t ∈ [0, t1]

v1 · t1 + v2 · (t− t1), t ∈ [t1, t2]

v1 · t1 + v2 · (t2 − t1) + v3 · (t− t2), t ∈ [t2, t3]

v1 · t1 + v2 · (t2 − t1) + v3 · (t3 − t2) + v4 · (t− t3), t ∈ [t3, t4]

(7)

g(t) =


d1 · t, t ∈ [0, t1]

d1 · t1 + d2 · (t− t1), t ∈ [t1, t2]

d1 · t1 + d2 · (t2 − t1) + d3 · (t− t2), t ∈ [t2, t3]

d1 · t1 + d2 · (t2 − t1) + d3 · (t3 − t2) + d4 · (t− t3), t ∈ [t3, t4]

(8)

where vi ∈ [−v, v], di = ±1 and t1 ≤ t2 ≤ t3 ≤ t4 are the rendezvous times.

Proposition 1 and Corollary 1 are not new and are constantly used in the literature, see
for instance Chapter 17.1 of [26]. We stress that player I having the smallest speed bound
may move at a slower speed than the maximal one. Indeed, we will observe that for v
small, the optimal strategy for player I is to not move before t2. The “wait for mummy”
strategy is then optimal for starting the game.

We consider that player I has at their disposal a marker that may be left at a chosen
time. The marker helps player II, who stops following the strategy after finding the marker
and continues in the same direction at maximal speed until rendezvousing with player I.
The same arguments as the ones in Proposition 1 and Corollary 1 or Proposition 3 of [23],
which show that player I move at a constant velocity before and after dropping the marker.
There are four different cases to consider for the formulation of the problem depending on
which interval, [0, t1], [t1, t2], [t2, t3], [t3, t4] player I drops off the marker at. This leads to
the following proposition that characterizes the optimal strategies.

Corollary 2. When player I has a marker that can be dropped off at chosen time z, the set of optimal
strategies f for player I are given by

f (t) =



v0 · t, t ∈ [0, z]
v0 · z + v1 · (t− z), t ∈ [z, t1]

v0 · z + v1 · (t1 − z) + v2 · (t− t1), t ∈ [t1, t2]

v0 · z + v1 · (t1 − z) + v2 · (t2 − t1) + v3 · (t− t2), t ∈ [t2, t3]

v0 · z + v1 · (t1 − z) + v2 · (t2 − t1) + v3 · (t3 − t2) + v4 · (t− t3), t ∈ [t3, t4]

(9)
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if z ∈ [0, t1].

f (t) =



v1 · t, t ∈ [0, t1]

v1 · t1 + v0 · (t− t1), t ∈ [t1, z]
v1 · t1 + v0 · (z− t1) + v2 · (t− z), t ∈ [z, t2]

v1 · t1 + v0 · (z− t1) + v2 · (t2 − z) + v3 · (t− t2), t ∈ [t2, t3]

v1 · t1 + v0 · (z− t1) + v2 · (t2 − z) + v3 · (t3 − t2) + v4 · (t− t3), t ∈ [t3, t4]

(10)

if z ∈ [t1, t2].

f (t) =



v1 · t, t ∈ [0, t1]

v1 · t1 + v2 · (t− t1), t ∈ [t1, t2]

v1 · t1 + v2 · (t2 − t1) + v0 · (t− t2), t ∈ [t2, z]
v1 · t1 + v2 · (t2 − t1) + v0 · (z− t2) + v3 · (t− z), t ∈ [z, t3]

v1 · t1 + v2 · (t2 − t1) + v0 · (z− t2) + v3 · (t3 − z) + v4 · (t− t3), t ∈ [t3, t4]

(11)

if z ∈ [t2, t3].

f (t) =



v1 · t, t ∈ [0, t1]

v1 · t1 + v2 · (t− t1), t ∈ [t1, t2]

v1 · t1 + v2 · (t2 − t1) + v3 · (t− t2), t ∈ [t2, t3]

v1 · t1 + v2 · (t2 − t1) + v3 · (t3 − t2) + v0 · (t− t3), t ∈ [t3, z]
v1 · t1 + v2 · (t2 − t1) + v3 · (t3 − t2) + v0 · (z− t3) + v4 · (t− z), t ∈ [z, t4]

(12)

if z ∈ [t3, t4]. The optimal strategies for player II are still of the form of Equation (8). In any cases,
the parameters are constrained to vi ∈ [−v, v] (v ≤ 1) and di = ±1, and t1 ≤ t2 ≤ t3 ≤ t4 are the
rendezvous times.

Corollaries 1 and 2 are very useful in making the rendezvous value of the game given
by Equation (6) computable. Indeed, the set of functions ( f , g) to be considered is finite.
Notice that for the problem with marker, the set is finite provided that v is fixed.

It is crucial to point out that in Corollary 2, the optimal strategy of player II is of the
form of Equation (8), but if the marker is found at some time, player II no longer follows
the strategy but continues in the same direction thereafter. For instance, if the marker is
found in the interval [0, t1] at time tz we must have z ≤ tz and the condition

o + d1btz = voz,

must be satisfied, where o is the original starting point of player II (o = ±1) and b is the
forward direction of player II (b = ±1). Indeed, the condition states that player II starting
at position o at time 0 is at the marker’s position at time tz, i.e., the marker is found. The
coefficient d1 is given by the strategy followed by player II and d1 · b is the effective motion
depending on the forward direction b. Thereafter, player II does not follow the strategy but
continues in the same direction, i.e., we substitute d1 for di in Equation (8). Hence, if the
rendezvous does not occur in [0, t1], player II’s motion is given by

o + d1btz + d1b(t1 − tz) = o + d1bt1.

If no rendezvous occurs in the next time interval [t1, t2], the motion of player II is given by

o + d1bt1 + d1b(t2 − t1),

(compare with the second line of Equation (8)). The same reasoning applies for the next
time intervals, [t2, t3] and [t3, t4].
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4. Solution of the Problem without Marker

The optimal strategies of the problem without marker are given in Corollary 1. There
are eight unknowns vi and di, the rendezvous time being a consequence of these variables.
To reduce the problem to a family of linear programs we rewrite the strategies to remove
the products vi · t by introducing new variables vti with the bounds 0 ≤ vti ≤ v · (ti − ti−1),
where v is the maximal speed of player I. To take into account that the speed of player I
may be negative (when player I is going backward), we introduce new variables ai = ±1
and the motion is computed relatively to ai · vti. Notice that ai is a parameter that is fixed
before calling the LP-solver (hence, the problem is still linear).

To define the meeting times ti, we need to specify in which order they occur. Ordering
the meeting times amounts to choosing a permutation σ of {1, 2, 3, 4} such that ti = tσ(i)

where ti are defined by Equations (2)–(5). For this, we introduce new variables (oi, bi) with
oi = ±1 and b1 = ±1 to refer to specific agents of player II. Concretely,

• Agent 1 is referred by (oi = +1, bi = +1) and the rendezvous time t1 is defined by (2),
• Agent 2 is referred by (oi = +1, bi = −1) and the rendezvous time t2 is defined by (3),
• Agent 3 is referred by (oi = −1, bi = +1) and the rendezvous time t3 is defined by (4),
• Agent 4 is referred by (oi = −1, bi = −1) and the rendezvous time t4 is defined by (5).

The rendezvous always occur in the order (o1, b1), (o2, b2), (o3, b3), (o4, b4). The values
of oi and bi are given by:

min
∆i

t1 + t2 + t3 + t4

o1 + d1b1t1 = a1vt1

o2 + d1b2t1 + d2b2(t2 − t1) = a1vt1 + a2vt2

o3 + d1b3t1 + d2b3(t2 − t1) + d3b3(t3 − t2) = a1vt1 + a2vt2 + a3vt3

o4 + d1b4t1 + d2b4(t2 − t1) + d3b4(t3 − t2) + d4b4(t4 − t3) = a1vt1+

a2vt2 + a3vt3 + a4vt4

0 ≤ vt1 ≤ v · t1

0 ≤ vt2 ≤ v · (t2 − t1)

0 ≤ vt3 ≤ v · (t3 − t2)

0 ≤ vt4 ≤ v · (t4 − t3)

ai, bi, oi, di ∈ {0, 1}∑ oi = 0, ∑ di = 0, oi = oj ⇒ di 6= dj.

t1 ≥ 0, t2 ≥ 0, t3 ≥ 0, t4 ≥ 0

For the computation of the solution, we use the variables oi, bi, di, ai as parameters.
For each set of values, we solve the corresponding linear program. The number of linear
programs solved was 1536, which was solved in a few seconds using the Python Gurobi
library [40]. Notice that by symmetry, we fixed a1 = 1 and d1 = 1.

The plot of the results are shown in Figure 2, where the optimal rendezvous value is
plotted versus the maximal speed of player I for discrete values n/1000, n = 0, 1, . . . , 1000.

Besides the computation of the optimal rendezvous values, we recorded the corre-
sponding optimal strategy. We observe that for v ≤ 0.618 the optimal strategy is (a1 = 0,
a2 = 0, a3 = 1 and a4 = −1) for player I and (d1 = 1, d2 = 1, d3 = −1, d4 = −1) for
player II as illustrated in Figure 3. In terms of the optimal strategy of Corollary 1, the
speeds of player I are v1 = 0, v2 = 0, v3 = −v and v4 = v. Notice that player I can play the
symmetric strategy (a1 = 0, a2 = 0, a3 = 1, a4 = −1) as well, which is not illustrated.
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Figure 2. Plot of the solution of the rendezvous problem vs. the maximum speed of player I. The
computed solution is a plot a 1001 points evaluated at n/1000, n ∈ [0, 1000]. The exact solution has
two algebraic forms for v < (

√
5− 1)/2 (exactl<, (13)) or v > (

√
5− 1)/2 (exact >, (14)).

time 

D 

-D 

𝑡2 = 𝑡3 

𝑡4 𝑡1 

Figure 3. Optimal strategy for v ∈ [0.001, 0.618].

It is relevant to observe that until t2 = t3 the wait-for-mummy strategy is the optimal
strategy for player I, as motion starts only after. For this strategy the expressions for the
rendezvous times and the rendezvous value of the game are given by:

t1 = 1, t2 = 1, t3 =
3 + v
1 + v

, t4 =
v2 + 8v + 3
(1 + v)2 ,

R =
4v2 + 16v + 8

(1 + v)2 . (13)

Since v = 0.619 the optimal strategy is a switch to a1 = 1, a2 = −1, a3 = 1 and a4 = −1
for player I and d1 = 1, d2 = 1, d3 = −1 and d4 = −1. In terms of the optimal strategy of
Corollary 1 the speeds of player I are v1 = −v, v2 = v, v3 = −v and v4 = v. The speed of
player I is large enough to allow the improvement of the rendezvous value by moving from
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the start. The expressions for the rendezvous times and rendezvous value of the game are
given by:

t1 =
1

v + 1
, t2 =

3v + 1
(v + 1)2 , t3 =

5v + 3
(v + 1)2 ,

t4 =
7v2 + 14v + 3

(1 + v)3 , R =
16v2 + 28v + 8

(1 + v)3 . (14)

With direct computations, we see that (13) is better that (14) for v ≤ (
√

5− 1)/2, see
Figure 2.

It is stated in [26], Chapter 17.1, that the optimal solution is given by (13) for
v ≤ (

√
5 − 1)/2 and by (14) for v ≥ (

√
5 − 1)/2. With our linear programming ap-

proach we first conclude that (13) is optimal for v = n/1000 ≤ (
√

5− 1)/2 and by (14) for
v = n/1000 ≥ (

√
5− 1)/2, n = 0, 1, 2, . . . (discrete values).

However, we can say more. Let us denote opt(v) the function that returns the optimal
value of the game when the speed of player I is bounded by v and nextToopt(v) the function
that returns the next-to-optimal value of the game when the speed of player I is bounded
by v. These two functions are decreasing since a strategy for v is always a strategy for
v′ ≥ v. Hence, if we have that opt(v) < nextToopt(v + dv) and the strategy at opt(v) is the
same as that at opt(v + dv), it must be that this strategy is optimal in the interval [v, v + dv].
By computing opt(n/1000) and nextToopt(n/1000), n = 0, . . . , 1000, we detect that the
condition stated above is satisfied for v ∈ [1/1000, 0.618] and for v ∈ [0.619, 0.990]. To
summarize, we have proved the following theorem.

Theorem 1 ([26], Chapter 17.1). For v ∈ [1/1000, 0.618], the rendezvous value of the game
is given by (13) and the optimal strategy is plotted in Figure 3 and for v ∈ [0.619, 0.990] the
rendezvous value of the game is given by (14) and the optimal strategy is plotted in Figure 4.

time 

D 

-D 

𝑡1 𝑡4 𝑡2 𝑡3 

Figure 4. Optimal strategy for v ∈]0.619, 0.990].

The interval in which Theorem 1 is stated to be true may be enlarged by computing
the numerical solutions on a finer mesh, i.e., increasing the number values of n for which
we solve the LP.

5. Solution of the Problem with a Marker Held by the Slow Player

The marker is held by one of the players and may be dropped off at any given time.
Once dropped off, the marker is to be found by the other player when is passes at the
location. Once found, the player stops following the original strategy and continues in
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the same direction until rendezvous occurs. We first assume that the marker is held by
player I, who moves with the lowest speed bounded by v ≤ 1, and denote z as the dropping
time. There are four possibilities, z ∈ [0, t1], z ∈ [t1, t2], z ∈ [t2, t3] and z ∈ [t3, t4], each one
leading to a family of linear programs to solve. It happens that only the first case z ∈ [0, t1]
is relevant. For all other cases the optimal solutions do not make use of the marker and are
given in Section 4.

The strategy of player I is now given by (a0, a1, a2, a3, a4) where ai indicates whether
vi is positive or negative, i.e., the speed vi are always assumed positive and the motions
are depending on the product ai · vi. With respect to Section 4, the only novelty is the
introduction of a0, see Equation (9) (compare with (7) with no marker).

Agents of player II can find the marker or not. Hence, for each agent we must generate
two linear programs each one assuming the agent finds the marker or not. Actually, for
the first agent rendezvousing (agent (o1, d1)), we do not need to differentiate whether
the marker is found or not, as the equations are the same. We use the new variable k1 to
indicate that agent (o2, d2) finds the marker k1 = 1 or not (k1 = 0), in the interval [0, t1].
Again if the marker is found by (o2, d2) in the interval [t1, t2], the equations do not change.
The variable k21, k22 indicate that agent (o3, d3) finds the marker in the interval [0, t1] or
[t1, t2], respectively. Finally, the variables k31, k32 and k33 indicate that agent (o4, d4) finds
the marker in the interval [0, t1], [t1, t2] or [t2, t3], respectively.

This leads to the family of linear programs shown in Equations (15)–(17) (we denote
∆ti = (ti − ti−1) and tiz the time at which the marker is found by (oi, bi)).

min
∆i

t1 + t2 + t3 + t4

o1 + d1b1t1 = a0vz + a1vt1 (*)

k1(o2 + d1b2t1 + d2b2∆t2)+

(1− k1)(o2 + d1b2t1z + d1b2(t1 + ∆t2 − t1z)) = a0vz + a1vt1 + a2vt2

(1− k1)(o2 + d1b2t1z) = (1− k1)a0vz (**)

k21k22(o3 + d1b3t1 + d2b3∆t2 + d3b3∆t3)+

(1− k21)(o3 + d1b3t2z + d1b3(t1 + ∆t2 + ∆t3 − t2z))+ (15)

(1− k22)(o3 + d1b3t1 + d2b3t2z + d2b3(∆t2 + ∆t3 − t2z)) =

a0vz + a1vt1 + a2vt2 + a3vt3

(1− k21)(o3 + d1b3t2z) + (1− k22)(o3 + d1b3t1 + d2b3t2z) = (***)

(1− k21)(1− k22)a0vz

(1− k31)(1− k32)(1− k33)(o4 + d1b4t1 + d2b4∆t2 + d3b4∆t3 + d4b4∆t4)+

(1− k31)(o4 + d1b4t3z + d1b4(t1 + ∆t2 + ∆t3 + ∆t4 − t3z))+

(1− k32)(o4 + d1b4t1 + d2b4t3z + d2b4(∆t2 + ∆t3 + ∆t4 − t3z))+ (16)

(1− k33)(o4 + d1b4t1 + d2b4∆t2 + d3b4t3z + d3b4(∆t3 + ∆t4 − t3z)) =

aovz + a1vt1 + a2vt2 + a3vt3 + a4vt4

(1− k31)(o4 + d1b4t3z) + (1− k32)(o4 + d1b4t1 + d2b4t3z)+

(1− k33)(o4 + d1b4t1 + d2b4∆t2 + d3b4t3z) = (****)

a0vz(1− k31)(1− k32)(1− k33)

In this set of equations, the first one is the minimization problem to be solved. Notice
that we minimize the sum of the rendezvous time while the number given in the Introduc-
tion and Results sections are the average of the rendezvous times. There are four sets of
equations, (*), (**), (***) and (****). Equation (*) is the constraint that player I rendezvous
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with agent (o1, b1) at time t1. Agent (o1, b1) may find the marker before time t1. However,
in this case, the optimal solution is to continue in the same direction, i.e., the equation
would be

k(o1 + d1b1t1) + (1− k)(o1 + d1 ∗ t0zd1b1(t1 − t0z) = a0vz + a1vt1,

where k = 1 if player II does not find the marker and k = 0 else, and toz is the time at which
player II finds the marker. This equation reduces to (*). In (*), if a player finds the marker in
the interval [t1, t2] the optimal strategy is to continue in the same direction and the marker
is useless, and so on for (***) and (****) if the marker is found in the interval [t2, t3] and
[t3, t4], respectively.

The three remaining sets of equations (**), (***) and (****) are composed of two equa-
tions. The first one accounts for the rendezvous of agent (oi, bi) with player I and the
second one is valid only if the marker is used (k1, k21, k22, k31, k32, k33 equal 1) and we
define the times when the marker is found as t1z, t2z, t3z.

The next set of equations is composed of the speed constraints. The variable vz is the
product of the speed of player I and the time z at which the marker is dropped; this product
is bounded by v · z since the speed of player I is bounded by v. In the results, we observed
that the speed of player I is v (maximal) or 0 but we obtaind no solution with v in between.

0 ≤ vz ≤ v · z
0 ≤ vt1 ≤ v · (t1 − z)

0 ≤ vt2 ≤ v · ∆t2

0 ≤ vt3 ≤ v · ∆t3

0 ≤ vt4 ≤ v · ∆t4

(17)

The family of linear programs was generated by assigning values to the parameters of
Equations (15)–(17). These values must satisfy the constraints (the constraints ti ≥ 0 were
included in all linear programs)

ai, bi, oi, di ∈ {0, 1}∑ oi = 0, ∑ di = 0, oi = oj ⇒ di 6= dj,

t1 ≥ 0, t2 ≥ 0, t3 ≥ 0, t4 ≥ 0.

The families of linear programs were solved for a maximal speed of player I ranging
from 0 to 1 with a step size of 1/1000, i.e., the optimal solutions opt(v) were computed
for v = n/1000, n = 0, 1, . . . , 1000. The result was that the same strategy was used, see
Figure 5. The speed of player I was maximal along the trajectory and the best solution was
obtained for z ∈ [0, t1]. With respect to the notation of Corollary 2 the speeds of player I
were (v0 = −v, v1 = v, v2 = −v, v3 = v). The marker reduced the rendezvous value
even when the speed of player I was very slow.

The rendezvous times are given by:

z =
1

v + 3
, t1 =

3
v + 3

, t2 =
5v + 3

(v + 1)(v + 3)
,

t3 =
7v2 + 12v + 9
(v + 1)2(v + 3)

, t4 =
9v3 + 27v2 + 35v + 9

(v + 1)3(v + 3)
,

R =
24v3 + 68v2 + 76v + 24

(v + 1)3(v + 3)
.

(18)
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time 

D 

-D 

𝑡1 𝑡4 

𝑡3 𝑧 

𝑡2 

Figure 5. Optimal strategy when player I holds the marker and is the slower player.

The optimal solution function opt(v) is decreasing because a strategy for v is a strategy
for v′ ≥ v as well. Hence, if the value of the next-to-optimal strategy nextToopt(v + dv)
for a speed v + dv is larger than opt(v), the strategy that leads to opt(v) is optimal for
speeds in [v, v + dv]. With our mesh size of 1/1000, we numerically observed that this
occurred since v ≥ 17/1000. Hence, we have a computer-assisted proof summarized in the
following Theorem.

Theorem 2. For v ∈ [17/1000, 1], the rendezvous value of the game is given by (18). The optimal
strategy is plotted in Figure 5 and the optimal rendezvous values in Figure 6.

0.0 0.2 0.4 0.6 0.8 1.0
Maximal speed v of player I

6.00

6.25

6.50

6.75

7.00

7.25

7.50

7.75

8.00

Op
tim

al
 R

en
de

zv
ou

s v
al

ue

Optimal RDV value vs max speed v of player I
optimal with marker
optimal without marker

Figure 6. Optimal solutions with (18) and without marker. The slow player holds the marker.

The interval in which the Theorem is stated to be true may be enlarged by com-
puting the numerical solutions on a finer mesh. It is relevant to point out that for the
optimal strategy, the time at which the marker is found is t1, i.e., the same time as the first
rendezvous occurs.

6. Solution of the Problem with Marker Held by the Fast Player

The family of linear programs to be solved when the marker is held by the fast
player (I) is very similar to the one defined by Equations (15)–(17). The changes are that the
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coefficients ai are no longer multiplied by the maximal speed v, as are now the coefficients
di. The system of equations is not reproduced here to save some space.

The results are plotted in Figure 7. We observe that for speeds slower than v ≈ 0.805
the marker is not useful and the optimal solution is given by the optimal solutions without
marker stated in Theorem 1. For speeds faster than v ≈ 0.805, the marker starts to be useful
and the strategy is similar to the optimal one when the marker is held by the slow player,
see Figure 5. When the fast player holds the marker, we obtain that the rendezvous times
are given by:

z =
1

3v + 1
, t1 =

3
3v + 1

, t2 =
3v + 5

(v + 1)(3v + 1)
,

t3 =
9v + 5

(v + 1)(3v + 1)
, t4 =

3v + 7
(v + 1)2 ,

R =
24v2 + 52v + 20
(v + 1)2(3v + 1)

.

(19)

0.0 0.2 0.4 0.6 0.8 1.0
Maximal speed v of player II

6.0

6.5

7.0

7.5

8.0

8.5

9.0

Op
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 R
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zv
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s v
al
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Optimal RDV value vs max speed v of player II
optimal marker hold by slow player
exact>
exact<
exact>>
optimal marker hold by fast player

Figure 7. Optimal solutions with marker, i.e., (13) for v ≤ (
√

5− 1)/2, (14) for v ≥ (
√

5− 1)/2,
(19) for v > 0.805, and without marker. The fast player holds the marker.

The optimal rendezvous value is decreasing with the maximal speed v because a strat-
egy for maximal speed v is a strategy for maximal speed v′ ≥ v. Moreover, if we denote
opt(v) the optimal rendezvous value for maximal speed v, and nextToopt(v) the next-to-
optimal rendezvous value, it follows that if nextToopt(v + dv) ≥ opt(v) and the strategy
leading to opt(v) and opt(v + dv) is the same, then the strategy is optimal on the entire
interval [v, v + dv]. By numerical computation and using the two stated observations we
obtain the following Theorem.

Theorem 3. For v ∈ [1/1000, 0.618] the rendezvous value of the game is given by (13) and the
optimal strategy is plotted in Figure 3; for v ∈ [0.619, 0.805], the rendezvous value of the game is
given by (14) and the optimal strategy is plotted in Figure 4; for v ∈ [0.807, 0.966], the rendezvous
value of the game is given by (19), the rendezvous values are plotted in Figure 7 and the optimal
strategy is plotted in Figure 8.
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time 

D 

-D 

𝑡2 

𝑡4 

𝑡1 

𝑡3 
𝑧 

Figure 8. Optimal solutions with marker, i.e., (19) for v > 0.805; for lower speeds the optimal
solutions are the ones without marker (Theorem 1). The fast player holds the marker.

It is relevant to point out the difference between the optimal strategies when the
marker is held by the slow (Figure 5) or fast player (Figure 8). After the rendezvous time t2
in Figure 5 the slow player (who holds the marker) turns, while in Figure 8, the fast player
(who holds the marker) continues on their way. The transition from the two strategies is
“continuous” in the sense that when the speeds are equal at time t2, the two remaining
agents to be found are at equal distance from player I. Hence, both strategies are optimal
(turning or continuing).

7. Conclusions

In this paper, we presented variations and solutions of the classical rendezvous prob-
lem on the line. In particular, we considered that players moved at different speeds and
made use of markers as communication channels. We showed, for instance, that in some
conditions the slow player had better waiting still for the fast one.

We showed how the search space F given by (1) can be reduced to a space of much
smaller dimension making the enumeration of all elements realistic, in order to find the ones
leading to the optimal solution of our problem. The reduction follows from Proposition 1.
This new formulation is compatible with mixed-integer linear programming and is shown
to lead to a solution efficiently using the Gurobi solver [40].
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