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Abstract: Research on the similarity of a graph to being a tree—called the treewidth of the graph—has
seen an enormous rise within the last decade, but a practically fast algorithm for this task has been
discovered only recently by Tamaki (ESA 2017). It is based on dynamic programming and makes use
of the fact that the number of positive subinstances is typically substantially smaller than the number
of all subinstances. Algorithms producing only such subinstances are called positive-instance driven
(PID). The parameter treedepth has a similar story. It was popularized through the graph sparsity
project and is theoretically well understood—but the first practical algorithm was discovered only
recently by Trimble (IPEC 2020) and is based on the same paradigm. We give an alternative and
unifying view on such algorithms from the perspective of the corresponding configuration graphs
in certain two-player games. This results in a single algorithm that can compute a wide range of
important graph parameters such as treewidth, pathwidth, and treedepth. We complement this
algorithm with a novel randomized data structure that accelerates the enumeration of subproblems
in positive-instance driven algorithms.

Keywords: treewidth; pathwidth; treedepth; graph searching; positive-instance driven; color coding

1. Introduction

Graph decompositions are an important tool in modern algorithmic graph theory that
provide a structured representation of a graph. A graph decomposition comes along with a
width measure that indicates how well a graph can be decomposed. Many problems that
presumably cannot be solved in polynomial time on general graphs can be solved efficiently
on graphs that admit a certain decomposition of small width [1].

The most prominent example of a width measure is treewidth, which (on an intuitive
level) measures the similarity of a graph to a tree. This parameter is a cornerstone of param-
eterized algorithms [2] and its success has led to its integration into many different fields.
For instance, treewidth has been studied in the context of machine learning [3–5], model-
checking [6,7], SAT-solving [8–10], QBF-solving [11,12], CSP-solving [13,14], or ILPS [15–19].
Tools such as Jdrasil [20] that compute tree decompositions of minimum width or that try to
find good heuristic solutions are actively used, for instance, in the analysis of large SPARQL
query logs [21] or in propositional model counting [22–24]. A large-scale experimental study
that classifies real-world data sets according to their treewidth was recently performed by
Maniu, Senellart, and Jog [25].

However, treewidth is often too general and we require more restrictive width mea-
sures in order to obtain an algorithmic advantage [26,27]. Close relatives of treewidth are
the width measures pathwidth and treedepth, which (again on an intuitive level) measure
the similarity of the graph to a path or a star, respectively. These graph parameters can be
naturally ordered in the sense that some of them are more restrictive than others, that is,
a graph of bounded treedepth has bounded pathwidth as well, and a graph of bounded
pathwidth has also bounded treewidth. Tools that compute treedepth decompositions of
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small width can be used to efficiently solve the mixed Chinese postman problem [26] or to
design algorithms for mixed integer linear programs [28]. Pathwidth was recently used as
structural parameter to prove that the well-known vertex cover problem can be solved in
polynomial time with high probability on hyperbolic random graphs (which are frequently
used to model real-world networks) [29].

No matter which of these width measures we wish to utilize for a task at hand,
we have to be able to compute it quickly. More crucially, most algorithms also need a
witness in the form of a decomposition. A lot of theoretical research has been performed
in this direction [30,31] and width measures such as treewidth can even be computed in
linear fpt-time by Bodlaender’s famous algorithm [32]. Unfortunately, it is known that
this algorithm does not work in practice due to huge constants [33] (the same holds for
similar algorithms for the other width measures). When it comes to implementations, small
progress has been made with classical exact exponential time algorithms, which are only
able to solve graphs with about 50–100 vertices. See, for instance, the QuickBB algorithm
for treewidth [34], the algorithm by Coudert, Mazauric, and Nisse for pathwidth [35],
or a recent branch-and-bound algorithm for treedepth [36]. More progress was made
with heuristics, see, for instance, [37–39] for treewidth, the algorithm by Kobayashi et
al. for pathwidth [40], and Section 24 in [41] for treedepth. We may argue that, indeed,
a heuristic is sufficient, as the attached solver will work correctly independently of the
width of the provided decomposition—and the heuristic may produce a decomposition
of “small enough” width. However, even a small error, something as “off by 5”, may put
the parameter to a computationally intractable range, as the dependency on the width is
usually at least exponential. For instance, it was observed that small changes (even by just
one or two) in the width of a tree decomposition can have a huge impact on the inference
time in probabilistic networks [42]. A similar effect was observed in recent advances of
implementing a lightweight model checker for a fragment of MSO [7], where it turned out
to be beneficial to invest additional time in order to obtain an optimal tree decomposition
rather than relying on faster heuristics. It is therefore a natural and important task to
build practical fast algorithms to determine parameters such as the treewidth, pathwidth,
or treedepth of a graph exactly.

To tackle this issue, the fpt-community came up with a contest, the Parameterized
Algorithms and Computational Experiments (PACE) challenge [43–45], with the goal of
finding new exact algorithms to determine the exact treewidth or treedepth of a graph.
Besides many, one important result of the challenge was a new combinatorial algorithm due
to Tamaki, which computes the treewidth of an input graph exactly and astonishingly fast
on a wide range of instances. An implementation of this algorithm by Tamaki himself [46]
won the corresponding track in the PACE challenge in 2016 [43] and an alternative imple-
mentation due to Larisch and Salfelder [47] won in 2017 [44]. In 2020, many participants
adapted the original algorithm to treedepth [45,48,49].

Tamaki’s original algorithm is based on a dynamic program by Arnborg, Corneil,
and Proskurowski [50] for computing tree decompositions. This algorithm has a game
theoretic characterization that can be used to generalize the algorithm to other width
measures such as treedepth. Tamaki has improved his algorithm for the second iteration of
the PACE by applying his framework to the algorithm by Bouchitté and Todinca [51,52], see,
for instance, [53] for a recent evaluation of this version of the algorithm. While Bouchitté
and Todinca’s algorithm has a game theoretic characterization as well [54], it is still unclear
how it can be generalized to other width measures.

We focus on Tamaki’s first algorithm and characterize it in a unifying way that allows
us to compute not just the treewidth of a graph but, with the same algorithm, the pathwidth,
treedepth, q-branched treewidth, and dependency treewidth as well. Perhaps even more
importantly, our description of the algorithm in a game theoretic framework is simple and
intuitive and can be implemented quite directly. In fact, our treewidth and treedepth solvers
Jdrasil and PID? are based on this characterization [20,49]. The detailed contributions of
this paper are the following:
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Contribution I: A Simple Description of Tamaki’s First Algorithm.
We describe Tamaki’s algorithm as a well-known graph searching game. This provides a
link to known theory and allows us to analyze the algorithm in depth.
Contribution II. Extending Tamaki’s Algorithm to Other Parameters
The game theoretic point of view allows us to extend the algorithm naturally to various
other parameters—including pathwidth and treedepth.
Contribution III: A Novel Randomized Data Structure.
The bottleneck in positive-instance driven algorithms is the enumeration of already com-
puted solutions. We present a lazily constructed randomized data structure that, in contrast
to existing data structures for this task, provides a guarantee that certain useless solutions
are not enumerated with high probability.

1.1. Related Work

The concepts of pathwidth and treewidth were rediscovered several times in the
literature [55–57]. Treedepth was discovered and analyzed by Nešetřil and de Mendez in
their study of sparsity [58]. The game theoretic characterization of treewidth goes back
to Seymour and Thomas [59]. Kirousis and Papadimitriou have studied a similar game
for pathwidth [60], and Giannopoulou, Hunter and Thilikos have studied game theoretic
approaches for treedepth [61]. The generalized version of this game, which we will use in
this paper, was introduced by Fomin, Fraigniaud, and Nisse [62].

The potential success of positive-instance driven algorithms was demonstrated by
Tamaki, who implemented a positive-instance driven version of Arnborg, Corneil, and
Proskurowski’s treewidth algorithm for the PACE 2016 [46]. This algorithm outperformed
all other submissions (including one by the authors) by far [43]. The winning algorithm
of the PACE 2017 also “is basically Hisao Tamakis implementation” [44,47]. Tamaki later
adapted his algorithm to the algorithm by Bouchitté and Todinca in his pioneering work
introducing positive-instance driven dynamic programming [52]. Ongoing research con-
stantly improves the performance of this version of the algorithm [39,53,63].

Positive-instance driven dynamic programming also played a key role in many sub-
missions for the PACE 2020, where the goal was to compute the treedepth of a graph rather
than the treewidth [45], for instance, in the winning submission by Trimble [48]. However,
it should be noted that in contrast to treewidth, the dominance of positive-instance driven
algorithms compared to other strategies (such as enumerating minimal separators [64,65])
was less dramatic for the computation of treedepth [45].

Besides the development of dedicated algorithms for these graph parameters, there is
also ongoing research in implementing a unifying way of computing all these parameters
using SAT or MAXSAT solvers. See, for instance, [20,66–71].

1.2. Organization of This Paper

We provide some preliminaries about graphs and their decompositions in Section 2.
We then invite the reader, in Section 3, to a gentle introduction to positive-instance driven
graph searching with the example of computing the treedepth of a graph—while not
directly necessary for the remaining paper, this section should make it easier to follow the
more general approach presented later on. Section 4 lifts the game theoretic approach to a
unifying algorithm that allows us to compute not just the treewidth or treedepth of a given
graph but also its pathwidth and dependency treewidth. The somewhat technical proof
of Theorem 2 is only sketched within the main text and we dedicate Appendix A to fill in
the details.

After the main part of the paper, in Section 5 we identify a bottleneck of the positive-
instance driven graph searching approach that was observed experimentally in various
solvers. We extend a known data structure used by such algorithms, called block sieve, with a
randomized component based on the well-known color coding technique. We illustrate the
gained performance exemplarily in our treedepth solver PID? in Section 6.

We conclude our findings and discuss further research directions in Section 7.
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1.3. Difference to the Conference Paper

This paper is an extended version of our paper Positive-Instance Driven Dynamic Pro-
gramming for Graph Searching presented at WADS 2019 [72]. In the conference version,
we already presented the unifying approach now discussed in Section 4. Because of this,
the structure and content of this section have barely changed. In the present work, we
improve the presentation of the algorithm and extend the approach further to directed
treewidth (Section 4.6).

A new contribution, compared to [72], is the gentle introduction to positive-instance
driven graph searching in Section 3. It is based on insights we gained during the develop-
ment of our treedepth solver PID? [49] and its aim is to help the reader in following the
more general algorithm presented later.

A new technical contribution is the lazily constructed randomized data structure
(dubbed color coding sieve) presented in Section 5. The most expensive part of a positive-
instance driven algorithm (be it for treewidth, treedepth, or any other width measure) is
the enumeration of already computed positive subproblems that are compatible with each
other [20,48,49,52,63]. Previous solvers use a data structure called block sieves to accelerate
this process, which are basically set tries that store the positive subproblems and that can
prune some non-compatible elements during the enumeration process. However, set tries
are cumbersome and do not provide any guarantees on the number of non-compatible
elements that actually get pruned. Our color coding sieves, in contrast, are (i) much more
compact, as they are lazily constructed, (ii) use randomization to provide a guarantee
that non-compatible elements are pruned with high probability, and (iii) allow a trade-off
between the time spend in the data structure and the amount of elements that will be
pruned. We extend this theoretical analysis by an implementation of the data structure in
our treedepth solver PID? and an experimental evaluation (Sections 6).

2. Preliminaries: Graphs and Their Decompositions

A digraph G = (V(G), E(G)) is a tuple containing a set V(G) of vertices and a binary
edge relation E(G) ⊆ { (v, w) | v 6= w ∧ v, w ∈ V }. The neighborhood of a vertex v ∈ V(G)
is defined as NG(v) = {w | (v, w) ∈ E(G) } and we define NG[v] = NG(v) ∪ {v}. For a
set X ⊆ V, we write NG(X) = ∪x∈X N(x) and G \ X = (V(G) \ X, E(G) \ { e ∈ E(G) |
X ∩ e 6= ∅ }) for the graph obtained by deleting the vertices in X from G. The subgraph
induced by X is defined as G[X] = G \ (V(G) \ X). If G is clear from the context, we may
simply refer to V(G) and E(G) as V and E, respectively, and we may drop the subscript
“G” in the other definitions. A graph is undirected if its edge relation is symmetric and we
may write abbreviations like {u, v} ∈ E instead of (u, v), (v, u) ∈ E for such graphs.

Graph Decompositions

Let G = (V, E) be an undirected graph. A tree decomposition (T, ι) of G is a tree T and
a mapping ι from the nodes of T to subsets of V (which we call bags) such that (i) for every
v ∈ V, the set { x | v ∈ ι(x) } is non-empty and connected in T, and (ii) for every edge
{v, w} ∈ E there is a node y in T with {v, w} ⊆ ι(y). The width of a tree decomposition is
the maximum size of one of its bags minus one. The treewidth tw(G) is the minimum width
over all tree decompositions of G and its pathwidth pw(G) is the minimum width over
all tree decompositions of G in which T is a path. Furthermore, its treedepth td(G) is the
minimum width over all tree decompositions in which T can be rooted in such a way that
for all nodes x, y of T we have ι(x) ( ι(y) if y is a descendant of x. Finally, its q-branched
treewidth twq(G) is the minimum width over all tree decompositions of G that can be rooted
such that there are at most q vertices with more than one descendant on any root-leaf
path. Intuitively, the treewidth of a graph measures how similar the graph is “to being
a tree”, in the same sense pathwidth measures the similarity to a path and treedepth the
similarity to a star. The q-branched treewidth allows to study the phase transition between
the pathwidth and the treewidth of a graph. Loosely speaking, we can study the trade-off
between the width of a decomposition and its “complexity”. A path decomposition has the
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highest width, but it is not “complex”. In contrast, a tree decomposition has the smallest
width but may be arbitrary “complex”, as it may contain a large number of nodes of high
degree. It is well known that we have tw(G) ≤ pw(G) ≤ td(G) ≤ tw(G) · log2 n [58]
and, by definition, we have tw(G) = tw∞(G) and pw(G) = tw0(G). Figure 1 shows an
example graph with multiple tree decompositions that minimize the various invariants
defined above.

Another important variant of these parameters is dependency treewidth, which is used
primarily in the context of quantified Boolean formulas [12]. Intuitively, this notion captures
the idea that vertices in the graph are dependent on each other and thus need to be processed
in a certain order. More formally, for a graph G = (V, E) and a partial order l of V, the
dependency treewidth dtw(G) is the minimum width of any tree decomposition (T, ι)
with the following property: Consider the natural partial order ≤T that T induces on its
nodes, where the root is the smallest elements and the leaves form the maximal elements;
define for any v ∈ V the node Fv(T) that is the ≤T-minimal node t with v ∈ ι(t) (which
is well defined); then define a partial order <T on V such that u <T v if, and only if,
Fu(T) ≤T Fv(T); finally, for all u, v ∈ V, it must hold that Fu(T) <T Fv(T) implies that
u l v does not hold.

There are multiple generalizations of treewidth for digraphs. We will use the so-called
D-width, which was introduced by Safari [73] and is based on D-decompositions. Such a
decomposition is a tuple (T, ι) as above, but with the conditions that (i) for every strongly
connected subset S ⊆ V there is at least one x in T with ι(x) ∩ S 6= ∅, and (ii) the subgraph
of T induced by { {x, y} | ι(x) ∩ ι(y) ∩ S 6= ∅ } is connected. The D-width of a digraph G,
denoted by tw (G), is the minimal width of any D-decomposition of G.

(a) 1

2

3

4

5

6

7

8 9

10

11 12

(b) {1, 2}

{2, 3}

{3, 4}

{4, 5}

{5, 6}

{6, 7}

{7, 8} {7, 9}

{6, 10}

{10, 11} {10, 12}

(c) {1, 2}

{2, 3}

{3, 4}

{4, 5}

{5, 6}

{6, 7}

{6, 7, 8}

{6, 7, 9}

{6, 10}

{6, 10, 11}

{6, 10, 12}

(d) {4}

{2, 4}

{1, 2, 4} {2, 3, 4}

{4, 6}

{4, 5, 6} {4, 6, 7}

{4, 6, 7, 8} {4, 6, 7, 9}

{4, 6, 0}

{4, 6, 10, 11} {4, 6, 10, 12}

Figure 1. Various tree decompositions of an undirected graph G = (V, E) shown at (a). The de-
compositions justify (b) tw(G) ≤ 1, (c) pw(G) ≤ 2, and (d) td(G) ≤ 3. With respect to q-branched
treewidth, the decompositions also justify (b) tw2(G) ≤ 1 and (c) tw0(G) ≤ 2.

3. A Gentle Introduction to Positive-Instance Driven Graph Searching

Before we describe a unifying algorithm that can compute all the graph decompositions
shown in Figure 1, we will illustrate the positive-instance driven graph searching technique
in a simpler example. Our goal in this section is to describe a game theoretic positive-
instance driven algorithm for the width measure treedepth alone. For that end, let us use
the following equivalent definition of this parameter: the treedepth of a graph G = (V, E)
is the minimum height of a rooted forest F such that G is a subgraph of the closure of F.
This forest is called a treedepth decomposition of G. Since the treedepth of a graph is the
maximum treedepth of its connected components, we can restrict ourselves to connected
graphs. In this case, a treedepth decomposition of G is an elimination tree.
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3.1. Graph Searching

Many graph decompositions have game theoretic characterizations in the form of
vertex pursuit-evasion games [74]. Such games, which are also known as graph searching or
cops and robber, are played by two players on an undirected graph G = (V, E). In the game
for treedepth, the first player places a team of k searchers iteratively on the vertices of G,
while the second player controls a single fugitive that hides in a connected component.
The game is played in rounds as follows [61,75]: Initially, the fugitive hides in the vertex
set C = V (which we assume to be connected). The vertices in C are said to be contaminated.
In each round, both players perform one action:

1. The searchers pick a vertex v ∈ C on which they want to place the next searcher. We
say they clean the vertex v.

2. The fugitive responds by picking a component C′ of G[C \ {v}]. The contaminated
area is reduced to C′ and the game proceeds only on this subgraph.

The game ends when the contaminated area shrinks to the empty set or if the searchers
have placed all k members of their team and C is still non-empty. In the first case, the
graph was cleaned and the fugitive was caught; in the second case, the fugitive escaped.
The searchers win if they catch the fugitive, otherwise the fugitive wins. Note that in this
version of the game, the searchers are not allowed to remove an already placed searcher
from the graph. The game is therefore monotone and always ends after, at most, k rounds.
Further observe that the fugitive is visible in the sense that the searchers know in which
connected component she hides—in contrast, an invisible fugitive could hide in subgraphs
that are not connected (which notably complicates the arguments). The game is illustrated
in Figure 2 on a small graph with eight vertices.
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Figure 2. An illustration of the graph searching game for treedepth on the 8 vertex graph shown at
the very top. Vertices that contain a green dot are currently contaminated. The searchers will place a
searcher on the vertex with a red circle in the next round. The cleaned vertices (on which a searcher
stands) are filled with blue. The arrows indicate the various choices of the fugitive. The diagram
proves that 4 searchers have a winning strategy on this specific graph.

The configurations of this game are blocks, which are tuple (C, ρ) with ρ ∈ N and
C ⊆ V being a connected subgraph with |N(C)|+ ρ ≤ k. Informally, C is the (connected)
contaminated area, and ρ is the number of remaining searchers. We require |N(C)|+ ρ ≤ k
as the neighborhood of C has to be cleaned in order to have C as contaminated area. We
denote the set of blocks of the game played on a graph G with k searchers by B(G, k). Two
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blocks (C1, ρ1) and (C2, ρ2) intersect if C1 ∩ C2 6= ∅, NG(C1) ∩ C2 6= ∅ or C1 ∩ NG(C2) 6= ∅.
The start configuration of the game is (V, k) and the winning configurations for the searchers
are (∅, ρ ≥ 0). We say the searchers have a winning strategy on a block (C, ρ) if, starting
with configuration (C, ρ), they can ensure to reach a winning configuration no matter how
the fugitive acts. The set of blocks that guarantee such a strategy is the winning region,
which we denote byR(G, k) ⊆ B(G, k)—the elements in this region are said to be positive.
The connection between the game and the width measure treedepth is established by the
following fact:

Fact 1 ([61]). Let G = (V, E) be a graph and k ∈ N. Then (V, k) ∈ R(G, k)⇐⇒ td(G) ≤ k.

3.2. Simple Positive-Instance Driven Graph Searching

By Fact 1, it is sufficient to compute the set R(G, k) in order to test whether the
treedepth of G is at most k. One way of doing so would be to first compute B(G, k),
then build an auxiliary graph on top of this set, and finally compute R(G, k) by solving
reachability queries on this auxiliary graph. We can estimate the number of configurations
with | B(G, k)| ≤ (k + 1) · nk+1, as there are nk possible ways of placing k searchers on an
n-vertex graph—at most n connected components adjacent to a separator—and we have
ρ ∈ {0, . . . , k}. Therefore, the sketched algorithm achieves a run time of nO(k), which is not
feasible in practice for even moderate values of k.

To make the game theoretic approach feasible, we present an output-sensitive algorithm
that computes just R(G, k)— without “touching” the rest of B(G, k). Figure 3 illustrates
why we may hope thatR(G, k) is smaller than B(G, k). In the remainder of this section, we
will develop some intuition about how to compute the setR(G, k). The formal details are
postponed to the unifying version of the algorithm in the next section.
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Figure 3. A directed spider with 2n legs each of length n that could be the auxiliary graph of a
graph searching game – i. e., the vertex set is B(G, k). Assume s is the start configuration and,
for the sake of argument, that t is the sole winning configuration. Then R(G, k) contains only n
elements, while the whole game has 2n · n configurations.

Surely, we can not start at some block, say (V, k), and just simulate the game in a247

top-down fashion – we could touch a lot of blocks in B(G, k) \ R(G, k) without even248

noticing it (in Figure 3 that would mean starting a graph traversal from s, which could249

explore any leg of the spider). After all, we do not know whether (V, k) 2 R(G, k). We250

Figure 3. A directed spider with 2n legs each of length n that could be the auxiliary graph of a graph
searching game—i. e., the vertex set is B(G, k). Assume s is the start configuration and, for the sake
of argument, that t is the sole winning configuration. ThenR(G, k) contains only n elements, while
the whole game has 2n · n configurations.

Surely, we cannot start at some block, say (V, k), and just simulate the game in a top-
down fashion—we could touch a lot of blocks in B(G, k) \ R(G, k) without even noticing it
(in Figure 3, that would mean starting a graph traversal from s, which could explore any leg
of the spider). After all, we do not know whether (V, k) ∈ R(G, k). We do know, however,
that (∅, 0) is a winning configuration (vertex t in Figure 3). So, let us start with the set
R =

{
(∅, 0)

}
and then try to grow it toR(G, k) in a bottom-up fashion. We can first ask

which configurations of the game lead to (∅, 0), i. e., what are configurations in which the
searchers immediately win in the next round? These are the configurations ({v}, 1) with
|N(v)| < k, as in these the searchers can surround the fugitive and have a searcher left to
place it on top of her (in Figure 3, this corresponds to the predecessor of t).

Now, assume that we have currently a setR ⊆ R(G, k) that had already grown a little.
What does a configuration (C, ρ) ∈ R(G, k) \ R that is “close to” R look like (that is, we
wish to traverse the s-t-path of Figure 3 in reverse direction)? The set C is connected by
definition and, since the searchers have a winning strategy from (C, ρ), there is a vertex
v ∈ C such that G[C \ {v}] has connected components C1, . . . , Cq (q = 1 is possible) with
(Ci, ρ − 1) ∈ R for all i ∈ {1, . . . , q}. To find (C, ρ), we first guess the vertex v, scan
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the sets of pairwise non-intersecting blocks X ⊆ { (C′, ρ′) ∈ R | v ∈ NG(C′) ∧ ρ′ < ρ },
and generate the new blocks

(⋃
(C′ ,ρ′)∈X C′ ∪ {v}, 1 + max(C′ ,ρ′)∈X ρ′

)
. Note that we can

prune a set X if
∣∣(NG(

⋃
(C′ ,ρ′)∈X C′

)∣∣ > k−max(C′ ,ρ′)∈X ρ′, as this neighborhood has to be
cleaned by the searchers before they clean one of the components C′. This will be utilized
by the randomized data structure that we develop later in Section 5. Figure 4 illustrates this
step of the algorithm, which we call a glue operation. We refer the reader who is interested in
the details of implementing this algorithm for treedepth efficiently to the description of our
solver PID? [49]. In the next section, we present a formal and more general version of the
sketched strategy—which does not just work for treedepth, but for treewidth, pathwidth
and many other width measures, too.23:6 Engineering an Exact Algorithm for Treedepth

v

C1

C2

C3

Figure 2 The glue operation of a positive-instance driven algorithm. We currently handle the
block (C, fl) and have guessed a neighbor v œ N(C) and the set X = { (C1, fl1), (C2, fl2) } with fli Æ fl.
Note that all blocks are adjacent to v and are pairwise non-intersecting, e. g., N [C] fl C1 = ÿ. The
combined neighborhood is highlighted. This area is not allowed to be larger than k ≠ fl, as the
searchers must clean it before they can proceed the search on one of the blocks. From this situation,
we generate the block (C fiC1 fiC2 fi {v}, fl + 1), if the neighborhood of this set is at most k≠ fl ≠ 1.

In order to e�ciently implement the algorithm, we manage a priority queue of newly174

discovered blocks. We process the blocks in increasing order of fl – that is, we handle175

subgraphs of smaller treedepth first. The complete algorithm is presented in Listing 1 and176

its correctness is proven in Theorem 4.177

Listing 1 The core positive-instance driven algorithm tailored towards treedepth. It obtains as
input a graph G and a number k, and outputs the set R(G, k). We assume that the set RÕ, the
priority queue, and some data structure to mark already explored subgraphs C (for instance a hash
set) are available in global memory.

178
1INPUT: graph G = (V,E) and number k œ N179

2OUTPUT: a set R = R(G, k)180

3181

4// in global memory182

5RÕ Ω empty set of blocks183

6queue Ω priority queue of blocks (C, fl) ordered by fl184

7185

8function pid()186

9// configurations leading to (ÿ, 0)187

10for v in V do188

11if |N(v)| < k then189

12insert ({v}, 1) into queue190

13end191

14end192

15193

16// compute the set RÕ ™ R(G, k)194

17while queue is not empty extract a block (C, fl) and do195

18if C was already visited then continue end196

19mark C as visited197

20198

21// compute predecessor configurations199

22for v in N(C) do200

23for X ™ { (CÕ, flÕ) œ RÕ | v œ N(CÕ) ·N [C] fl CÕ = ÿ · flÕ Æ fl } do201

24// assert: blocks in X are pairwise non -intersecting202

25if |N(C fi
t

(CÕ,flÕ)œX C
Õ fi {v})| Æ k ≠ fl ≠ 1 then203

26insert (C fi
t

(CÕ,flÕ)œX C
Õ fi {v}, fl + 1) into queue204

27end205

Figure 4. The glue operation: We have already guessed the vertex v and currently consider the
set X = { (C1, ρ1), (C2, ρ2), (C3, ρ3) }. Note that all blocks are adjacent to v and are pairwise non-
intersecting. The combined neighborhood is highlighted. This area is not allowed to be larger than
k−max{ρ1, ρ2, ρ3}, as the searchers must clean it before they can proceed the search on one of the
blocks. From this situation, we generate the block (C1 ∪ C2 ∪ C3 ∪ {v}, 1 + max{ρ1, ρ2, ρ3}).

3.3. Alternative Characterization

Let us briefly sketch an interpretation of the algorithm without the game theoretic
point of view. One can think of it as a procedure that, given a connected graph G = (V, E),
lists ever growing treedepth decompositions of subgraphs of G. In detail, a collection Td
of trees of depth at most d for some d ≥ 1 is managed—starting with the trivial trees of
depth 1 (i. e., single vertices) we have T1 ⊆ V. Then, for ever larger d, the set Td is computed
by picking a new root r ∈ V and a collection of previously computed trees S ⊆ ⋃d−1

i=1 Ti,
and by arranging the trees of S to a new tree by connecting their roots to r. Of course,
in order to obtain a valid treedepth decomposition, the elements of S must be pairwise
disjoint and non-adjacent. The selection of the set S is what was the glue operation and
what will be a universal step in the algorithm presented in the next section, and the value
d corresponds to k − ρ and will be the distance that we will compute. Let us stress out
that, in this characterization, the trees in S are, indeed, trees and thus connected. This is
an invariant that the following algorithm cannot guarantee for all parameters but which
improves the performance of the algorithm if met.

3.4. Execution Modes

It is worth noting that positive-instance driven algorithms only solve the problem for a
fixed k. Hence, to obtain an optimal treedepth decomposition (or any other decomposition),
one has to run the algorithm for various values of k. The order in which these values are
tested is called the execution mode of the algorithm. Positive-instance driven algorithms
differ from other strategies with respect to values that are “easy”. For instance, branch-and-
bound algorithms usually solve the problem quickly if k overestimates the optimal value.
However, overestimating k means more positive subproblems, making these instances hard
for positive-instance driven algorithms. On the other hand, underestimating the optimal
value yields instances that are usually hard but that are solved quickly by positive-instance
driven algorithms as there are only few positive instances. Positive-instance driven graph
searching is, thus, especially suited to compute lower bounds [63]. Therefore, the typical
execution mode is to start with k = 1 and to increase this lower bound until either an
optimal solution was found or a heuristically obtained upper bound is met [48,49].
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4. A Unifying Take on Positive-Instance Driven Graph Searching

Our goal is to generalize the algorithm that we just sketched in Section 3.2 to other
graph measures such as treewidth and pathwidth. When we generalize from treedepth
to other parameters, there are two main obstacles that we have to face. First, the sketched
algorithm for treedepth “guessed” a root vertex in every iteration and glued already
computed blocks to it. In more flexible graph decompositions such as tree decompositions,
the root no longer is a single vertex but a set of up to k vertices. Clearly, we cannot guess such
a set and, hence, have to compute it implicitly. Second, the treedepth algorithm explicitly
carried the number of remaining searchers ρ around (they were part of the blocks). In more
flexible graph measures, we may remove and reuse already placed searchers and, thus,
have to encode this information in a different way. We will handle this issue by splitting
the computation into two phases, where the first phase mainly computes a configuration
graph (intuitively, this graph contains blocks for various values of ρ) and where the second
phase then computes distances in this configuration graph (hence, computes best possible
ρ-values for the blocks). However, let us postpone the fiddling with distance queries to
Section 4.5 and focus solely on the more general search game in the first part of this section.

We study graph searching in a setting proposed by Fomin, Fraigniaud, and Nisse [62].
The input is again an undirected graph G = (V, E) and a number k ∈ N, and the question
is whether a team of k searchers can catch an invisible fugitive on G by the following set
of rules: At the beginning, the fugitive picks a connected component C of G in which she
hides—since the fugitive is invisible, in contrast to Section 3.2, the game is continued on G
and not on G[C] and we say that the set V is contaminated. In each round, the player now
follows a similar procedure as in the previous game, but the searchers have a larger set of
possible moves:

1. The searchers perform one of the following:

• Place a searcher on a contaminated vertex;
• Remove a searcher from a vertex;
• Reveal the current position of the fugitive.

2. The fugitive responds as follows:

• If the searchers place or remove a searcher, the fugitive adapts her connected
component by adding or removing the vertex, respectively. (This may join
multiple components or disconnect the current component, in which case the
fugitive selects one of the resulting connected components).

• If the searchers perform a reveal, the fugitive responds by uncovering her current
connected component C. The contaminated area is reduced to C.

We follow the same terminology as before, i. e, we say a contaminated vertex becomes
clean if a searcher is placed on it. In contrast to the previous game, a vertex v may now
become recontaminated if a searcher is removed from it and there is a contaminated vertex
adjacent to v. The searchers win the game if they manage to clean all vertices, i. e., if they
catch the fugitive; the fugitive wins if, at any point, a recontamination occurs or if she can
escape infinitely long. Note that this implies that the searchers have to catch the fugitive
in a monotone way. A priori, one could assume that the later condition gives the fugitive
an advantage (recontamination could be necessary for the cleaning strategy); however,
a crucial result in graph searching is that “recontamination does not help” in all variants of
the game that we consider [59,61,76–78].

4.1. Entering the Arena and the Colosseum

Our primary goal is to determine whether the searchers have a winning strategy.
A folklore algorithm for this task is to construct an alternating graph called the arena:
arena(G, k) = ((Vs ∪ Vf ), Earena) that contains for each position of the searchers (S ⊆ V
with |S| ≤ k) and each position of the fugitive ( f ∈ V) two copies of the vertex (S, f ),
one in Vs and one in Vf (see, for instance, Section 7.4 in [2]). Vertices in Vs correspond
to a configuration in which the searchers perform the next move (they are existential)
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and vertices in Vf correspond to fugitive moves (they are universal). The edges Earena
are constructed according to all possible moves. The question is now whether there is an
alternating path from a start configuration to some configuration in which the fugitive
is caught. Since alternating paths can be computed in linear time ([79], Section 3.4), we
immediately obtain an O(nk+1) algorithm.

Modeling a configuration of the game as tuple (S, f ) comes, however, with a major
drawback: The size of the arena does directly depend on n and k and does not depend on
some further structure of the input. For instance, the arena of a path of length n and any
other graph on n vertices will have the same size for any fixed value k. As the major goal of
parameterized complexity is to gain insight into structural parameters beyond the input
size n, such a fixed-size approach is not what we are looking for.

A bit counter intuitive, we will tackle this problem by, firstly, defining an alternating
graph that is larger than the arena: the colosseum. As it befits for any good colosseum, it is
not only larger but, in particular, “prettier” than the arena (which here means that it adapts
to the input structure of the graph).

Once we can capture the structure in the colosseum, we will introduce yet another
alternating graph that, finally, is actually small. This graph, which will be a subset of the
colosseum, is called the pit—where only true champions can survive!

4.2. Simplifying the Game

Before we define all the locations of potential gladiator fights in graph theoretic terms,
let us start with some simplifications of the game. We restrict the fugitive as follows:
Since she is invisible, there is no need for her to take regular actions. Instead, the only
moment when she is actually active is when the searchers perform a reveal. If C is the
set of contaminated vertices, consisting of the induced components C1, . . . , C`, a reveal
will uncover the component in which the fugitive hides and, as a result, reduce C to
Ci for some 1 ≤ i ≤ `. The only task of the fugitive is to answer a reveal with such a
number i. The complete process of the searcher performing a reveal, the fugitive answering
it, and finally of reducing C to Ci is called a reveal-move.

We also restrict the searchers by the concept of implicit searcher removal. Let S ⊆ V(G)
be the set of vertices currently occupied by the searchers, and let C ⊆ V(G) be the set
of contaminated vertices. We call a vertex v ∈ S covered if every path between v and C
contains a vertex w ∈ S with w 6= v.

Lemma 1. A covered searcher can be removed safely.

Proof. As we have N(v)∩ C = ∅, the removal of v will not increase the contaminated area.
Furthermore, v cannot be recontaminated at a later point, unless a neighbor of v becomes
recontaminated as well (in which case the game would already be over).

Lemma 2. Only covered searchers can be removed safely.

Proof. Since for any other vertex w ∈ S we have N(w) ∩ C 6= ∅, the removal of w would
recontaminate w and, hence, would result in a defeat of the searchers.

Both lemmas together imply that the searchers never have to decide to remove a
searcher but rather can do it implicitly. We restrict the possible moves of the searchers to a
combined move of placing a searcher and immediately removing searchers from all covered
vertices. This is called a fly-move. Observe that the sequence of original moves mimicked
by a fly-move does not contain a reveal and, thus, may be performed independently of any
action of the fugitive.

4.3. Building the Colosseum

We are now ready to define the colosseum. As for the arena, we could define it as an
alternating graph. However, as only the searchers perform actions in the simplified game,
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we find it more natural to express this game as an edge-alternating graph—a generalization of
alternating graphs. An edge-alternating graph is a triple H = (V, E, A) consisting of a vertex
set V, an existential edge relation E ⊆ V×V, and a universal edge relation A ⊆ V×V. The
neighborhoods of a vertex v are the existential neighborhood N∃(v) = {w | (v, w) ∈ E },
the universal neighborhood N∀(v) = {w | (v, w) ∈ A }, and the complete neighborhood
NH(v) = N∃(v) ∪ N∀(v). An edge-alternating s-t-path is a set P ⊆ V such that (i) s, t ∈ P
and (ii) for all v ∈ P with v 6= t we have either N∃(v) ∩ P 6= ∅ or ∅ 6= N∀(v) ⊆ P or both.
We write s ≺ t if such a path exists and define R(Q) = { v | v ∈ Q ∨ (∃w ∈ Q : v ≺ w) }
for Q ⊆ V as the set of vertices on edge-alternating paths leading to Q. We say that an
edge-alternating s-t-path P is q-branched if (i) H is acyclic and (ii) every (classical) directed
path π from s to t in H with π ⊆ P uses at most q universal edges.

For G =
(
V(G), E(G)

)
and k ∈ N, the colosseum(G, k) is the edge-alternating graph

H with V(H) = {C | ∅ 6= C ⊆ V(G) and |NG(C)| ≤ k } and the following edge sets: for
all pairs C, C′ ∈ V(H) there is an existential edge e = (C, C′) ∈ E(H) if, and only if,
C \ {v} = C′ for some v ∈ C and |NG(C)| < k; furthermore, for all C ∈ V(H) with at least
two components C1, . . . , C` we have universal edges (C, Ci) ∈ A(H).

The nodes of the colosseum are called blocks and, thinking of Section 3.2, we have
V(H) = B(G, k) (but note that the definition of “block” has slightly changed). The start
configuration of the game is the block C = V(G), i. e., all vertices are contaminated. We
define Q = { {v} ⊆ V(G) : |NG({v})| < k } to be the set of winning configurations, as at
least one searcher is available to catch the fugitive. Therefore, the searchers have a winning
strategy if, and only if, V(G) ∈ R(Q) and we will therefore refer to R(Q) = R(G, k) as
the winning region (we did so similarly in Section 3.2, but we did not have the notation of
edge-alternating graphs then). Observe that the colosseum is acyclic (that is, the digraph
(V(H), E(H) ∪ A(H)) is acyclic) as we have for every edge (C, C′) that |C| > |C′|, and
observe that Q is a subset of the sinks of this graph. Hence, we can test if V(G) ∈ R(Q) in
time O(| colosseum(G, k))|). Finally, note that the size of colosseum(G, k) may be of order
2n rather than nk+1, giving us a slightly worse overall runtime. This larger structure is
required to encode that the fugitive is invisible.

4.4. Fighting in the Pit

The sketched algorithms have running time proportional to the size of the arena
and the colosseum. Both of these auxiliary graphs might be large, as the arena has fixed
size of order O(nk+1) while the colosseum may even have size O(2n). Additionally, both
graphs can contain unnecessary configurations, that is, configurations not part of the
winning region. In the light of dynamic programming, this is the same as listing all possible
configurations, and in the light of positive-instance driven dynamic programming, we
would like to list only the positive instances—which is exactly the winning regionR(Q).

The pit pit(G, k) inside the colosseum is now formally defined as the subgraph of
colosseum(G, k) induced by R(Q), that is, as the induced subgraph on the winning re-
gion. The key insight is that |pit(G, k)| may be smaller than | colosseum(G, k)| or even
| arena(G, k)| on various graph classes. Our primary goal for this section will therefore be
the development of an algorithm that computes the pit in time depending only on the size
of the pit (rather the size of the arena or the colosseum).

The algorithm traverses the colosseum “backwards” starting from the winning con-
figurations Q and uncovering R(Q) layer by layer. In order to achieve this, we need to
compute the predecessors of a block C. This is easy if C was reached by a fly-move as we
can simply enumerate the n possible predecessors. Reversing a reveal-move, that is, finding
the universal predecessors, is significantly more involved. A simple approach is to test for
every subset of already explored configurations if we can “glue” them together—as we did
in the sketched algorithm in Section 3.2. However, this results in an even worse runtime of
2|pit(G,k)|. To avoid this exponential blow-up, we require the following structural property
of the colosseum.
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Definition 1 (Universal Consistent). We say that an edge-alternating graph H = (V, E, A)
is universal consistent with respect to a set Q ⊆ V if for all v ∈ V \ Q with v ∈ R(Q) and
N∀(v) = {w1, . . . , wr} we have (1) N∀(v) ⊆ R(Q) and (2) for every I ⊆ {w1, . . . , wr} with
|I| ≥ 2 there is a vertex v′ ∈ V with N∀(v′) = I and v′ ∈ R(Q).

Intuitively, Definition 1 implies that for every vertex with high universal-degree, there
is a set of vertices that can be arranged in a tree-like fashion to realize the same adjacency
relation. This allows us to glue only two configurations at a time and, thus, removes the
exponential dependency. The definition is illustrated in Example 1.

Example 1. Consider the following three edge-alternating graphs, where black edges are existential
and the blue edges are universal. The set Q contains a single vertex that is highlighted. From left to
right: the first graph is universal consistent, the second and third one are not. The second graph
conflicts the condition that v ∈ R(Q) implies N∀(v) ⊆ R(Q), as the vertex on the very left is
contained inR(Q) by the top path, while its universal neighbor on the bottom path is not contained
inR(Q). The third graph conflicts the condition that N∀(v) = {w1, . . . , wr} implies that for every
I ⊆ {w1, . . . , wr} with |I| ≥ 2 there is a vertex v′ ∈ V with N∀(v′) = I and v′ ∈ R(Q) as
witnessed by the vertex with three outgoing universal edges.
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that for every I ✓ {w1, . . . , wr} with |I| � 2 there is a vertex v0 2 V with N8(v0) = I and473

v0 2 R(Q) as witnessed by the vertex with three outgoing universal edges.474

475

Lemma 3. For every graph G and number k, the edge-alternating graph colosseum(G, k) is
universal consistent.

Proof. For the first property, observe that “reveals do not harm”: Searchers that can catch
the fugitive without knowing where she hides, certainly can do so if they know.

For the second property, consider any configuration C ∈ V(H) that has universal edges
to C1, . . . , C`. By definition, we have |NG(C)| ≤ k and NG(Ci) ⊆ NG(C) for all 1 ≤ i ≤ `.
Therefore, we have for every I ⊆ {1, . . . , `} and C′ = ∪i∈ICi that NG(C′) ⊆ NG(C) and
|NG(C′)| ≤ k and, thus, C′ ∈ V(H).

The algorithm for computing the pit, see Figures 5 and 6, runs in three phases: it first
computes the set Q of winning configurations; then the winning regionR(Q) (the vertices
of pit(G, k)); and finally, it computes the edges of pit(G, k).

Theorem 1. The algorithm discover(G,k) finishes in at most O
(
| R(Q)|2 · |V|2

)
steps and correctly

outputs pit(G, k).

Proof. The algorithm computes Q in phase I, the winning regionR(Q) in phase II, and the
edges of colosseum(G, k)[R(Q)] in phase III. First observe that Q is correctly computed in
phase I by the definition of Q.

For the correctness of the second phase, we show that the computed set V(pit(G, k))
equalsR(Q). Let us refer to the set V(pit(G, k)) during the computation as K and observe
that this is exactly the set of vertices inserted into the queue. We first show K ⊆ R(Q)
by induction over the ith inserted vertex. The first vertex C1 is in R(Q) as C1 ∈ Q. Now,
consider a Ci ∈ K. It was either added in Line 18 or Line 24. In the first case, there was a
vertex C̃i ∈ K such that Ci = C̃i ∪ {v} for some v ∈ N(C̃i). By the induction hypothesis
we have C̃i ∈ R(Q) and by the definition of the colosseum we have (Ci, C̃i) ∈ E(H) and,
thus, Ci ∈ R(Q). In the second case, there were vertices C̃i, Ĉi ∈ K with Ci = C̃i ∪ Ĉi.
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By the induction hypothesis, we have again C̃i, Ĉi ∈ R(Q). Let t1, . . . , t` be the connected
components of C̃i and Ĉi. Since the colosseum is universal consistent with respect to Q
by Lemma 3, we have t1, . . . , t` ∈ R(Q). By the definition of the colosseum, we have
N∀(Ci) = t1, . . . , t` and, thus, Ci ∈ R(Q).

To see R(Q) ⊆ K, consider for a contradiction the vertices of R(Q) in reversed
topological order (recall that the colosseum is acyclic) and let C be the first vertex in
this order with C ∈ R(Q) and C 6∈ K. If C ∈ Q, we have C ∈ K by phase I and are
complete, so assume otherwise. Since C ∈ R(Q), we have either N∃(C) ∩R(Q) 6= ∅ or
∅ 6= N∀(C) ⊆ R(Q). In the first case, there is a block C̃ ∈ R(Q) with (C, C̃) ∈ E(H). Block
C̃, thus, precedes C in the reversed topological order and, by the choice of C, we have
C̃ ∈ K. Therefore, at some point, C̃ is extracted from the queue and, in Line 18, C would be
added to K, a contradiction.

In the second case, there are vertices t1, . . . , t` ∈ R(Q) with N∀(C) = {t1, . . . , t`}.
By the choice of C, we have again t1, . . . , t` ∈ K. Since H is universal consistent with respect
to Q, we have for every I ⊆ {1, . . . , `} that

⋃
i∈I ti is contained in R(Q). In particular,

the vertices t1 ∪ t2, t3 ∪ t4, . . . , t`−1 ∪ t` are contained in R(Q), and these elements are
added to K whenever the ti are processed (for simplicity, assume here that ` is a power of
2). Once these elements are processed, Line 24 will also add their union, that is, vertices of
the form (t1 ∪ t2) ∪ (t3 ∪ t4). In this way, the process will add vertices that correspond to
increasing subgraphs of G to K, resulting ultimately in adding

⋃`
i=1 ti = C into K, which is

the contradiction we have been looking for.
OnceR(Q) is known, it is easy to compute the subgraph colosseum(G, k)[R(Q)], that

is, to compute the edges of the subgraph induced by R(Q). Phase III essentially iterates
over all vertices and adds edges according to the definition of the colosseum.

For the runtime, observe that the queue will contain exactly the setR(Q) and, for every
element extracted, we search through the current K′ ⊆ R(Q), which leads to the quadratic
timebound of | R(Q)|2. Furthermore, we have to compute the neighborhood of every
extracted element, and we have to test whether two such configurations intersect—both
can easily be achieved in time O(|V|2). Finally, in phase III, we have to compute connected
components of the elements inR(Q), but since this is possible in linear time per element, it
is clearly possible in time O

(
| R(Q)| · |V|2

)
for the whole graph.

4.5. Distance Queries in Edge-Alternating Graphs

We have just discussed how to compute the pit for a given graph and k ∈ N. The com-
putation of graph measures such as treewidth now boils down to simple distance queries
to this pit. To obtain an intuition of “distance” in edge-alternating graphs, think about
such a graph as in our game and consider some vertex v. There is always one active player
that may decide to take one existential edge (a fly-move in our game) or the player may
decide to ask the opponent to make a move and, thus, has to handle all universal edges (a
reveal-move in our game). From the point of view of the active player, the distance is thus
the minimum over the minimum of the distances of the existential edges and the maximum of
the universal edges.
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1 procedure discover ( G , k )
2 V(pit(G, k)) := ∅
3 E(pit(G, k)) := ∅
4 A(pit(G, k)) := ∅
5 i n i t i a l i z e empty~queue
6
7 / / Phase I : compute Q
8 f o r v ∈ V(G) do
9 o f f e r ({v} , k− 1 )

10 end
11
12 / / Phase I I : compute R(Q) = V(pit(G, k))
13 while queue not empty do
14 e x t r a c t C from~queue
15
16 / / r e v e r s e f l y −moves
17 f o r v ∈ N(C) do
18 o f f e r ( C ∪ {v} , k− 1 )
19 end
20
21 / / r e v e r s e r e v e a l −moves
22 f o r C′ ∈ V(pit(G, k)) do
23 i f not i n t e r s e c t ( C , C′ ) then
24 o f f e r ( C ∪ C′ , k )
25 end
26 end
27 end
28
29 / / Phase I I I : compute E and A
30 discoverEdges ( V(pit(G, k)) , E(pit(G, k)) , A(pit(G, k)) )
31
32 re turn

(
V(pit(G, k)), E(pit(G, k)), A(pit(G, k))

)
33 end

Figure 5. The discover algorithm computes, given a graph G = (V, E) and an integer k ∈ N,
the auxiliary graph pit(G, k). Using the positive-instance driven paradigm, only the elements of the
pit are explored during this process. The executed subprocedures can be found in Figure 6.

1 procedure o f f e r ( C , t )
2 i f C ∈ V(pit(G, k)) then
3 re turn
4 end
5 i f |NG(C)| ≤ t then
6 add C to V(pit(G, k))
7 i n s e r t C i n t o queue
8 end
9 end

1 procedure i n t e r s e c t ( C , C′ )
2 i f C ∩ C′ 6= ∅ then
3 re turn true
4 end
5 i f NG(C) ∩ C′ 6= ∅ then
6 re turn true
7 end
8 i f C ∩ NG(C′) 6= ∅ then
9 re turn true

10 end
11 re turn f a l s e
12 end

1procedure discoverEdges ( V , E , A )
2f o r C ∈ V do
3
4/ / add f l y −move e d g e s
5f o r v ∈ C do
6i f C \ {v} ∈ V then
7add (C, C \ {v}) to E
8end
9end
10
11/ / add r e v e a l −move e d g e s
12l e t C1, . . . , C` be the
13components of G[C]
14i f C1, . . . , C` ∈ K then
15f o r i = 1 to ` do
16add (C, Ci) to A
17end
18end
19end
20end

Figure 6. Subprocedures used by the discover algorithm. The offer procedure adds a block to the
queue if t is not too large. The intersect procedure simply checks if two blocks are compatible (i. e.,
that they can be glued together), and the discoverEdges procedure identifies the edges of the pit.
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Definition 2 (Edge-Alternating Distance). Let H = (V, E, A) be an edge-alternating graph
with v ∈ V and Q ⊆ V, let further c0 ∈ N be a constant, and ωE : E → N and ωA : A → N
be weight functions. The distance d(v, Q) from v to Q is inductively defined as d(v, Q) = c0 for
v ∈ Q and otherwise:

d(v, Q) = min
(

min
w∈N∃(v)

(d(w, Q) + ωE(v, w)), max
w∈N∀(v)

(d(w, Q) + ωA(v, w))
)
.

Lemma 4. Given an acyclic edge-alternating graph H = (V, E, A), two weight functions ωE : E→
N and ωA : A→ N, a source vertex s ∈ V, a subset of the sinks Q, and a constant c0 ∈ N. The value
d(s, Q) can be computed in time O(|V|+ |E|+ |A|) and a corresponding edge-alternating path
can be output in the same time.

Proof of Lemma 4. Since H is acyclic, we can compute a topological order of (V, E ∪ A)
using the algorithm from [80]. We iterate over the vertices v in reversed order and compute
the distance as follows. If v is a sink, we set:

d(v, Q) =

{
c0 if v ∈ Q;
∞ otherwise.

If v is not a sink, we have already computed d(w, Q) for all w ∈ N(v) and, hence, can
compute d(v, Q) by the formula of the definition. Since this algorithm has to consider every
edge once, the whole algorithm runs in time O(|V|+ |E|+ |A|). A path from s to Q of
length d(s, Q) can be found by backtracking the labels starting at s.

Being able to answer distance queries in the pit yields an easy way of computing
graph measures that have game theoretic characterizations [61,62,76]. For instance, if we
wish to compute a tree decomposition (there is no bound on the number of branches
nor on the depth), we seek a winning strategy that may use an unbounded number of
reveals and fly-moves—hence, we just can look for any path from the start configuration
to Q. If we, instead, look for a path decomposition, we seek a tree decomposition without
branches—hence, we need a winning strategy that does not use reveals and we can find
one by introducing heavy weights on the universal edges. The following theorem collects
graph measures that can be computed with similar arguments. We provide a sketch that
illustrates how the weights have to be chosen within the main text; the interested reader
finds the full (unfortunately somewhat technical) proof in Appendix A.

Theorem 2. Given a graph G and an integer k, we can decide in time O(|pit(G, k + 1)|2 · |V|2)
whether G has { treewidth, pathwidth, treedepth, q-branched treewidth, dependency treewidth } at
most k.

Proof. All five problems have game theoretic characterizations in terms of the same search
game with the same configuration set [61,62,76]. More precisely, they condense to various
distance questions within the colosseum by assigning appropriate weights to the edges.

treewidth: To solve treewidth, it is sufficient to find any edge-alternating path from the
vertex Cs = V(G) to a vertex in Q. We can find a path by choosing ωE and ωA as (x, y) 7→ 0,
and by setting c0 = 0.
pathwidth: In the pathwidth game, the searchers are not allowed to perform any reveal [76].
Hence, universal edges cannot be used and we set ωA to (x, y) 7→ ∞. By setting ωE to
(x, y) 7→ 0 and c0 = 0, we again only need to find some path from V(G) to Q with weight
less than ∞.
treedepth: In the game for treedepth, the searchers are not allowed to remove a placed
searcher again [61]. Hence, the searchers can only use k existential edges. Choosing ωE as
(x, y) 7→ 1, ωA as (x, y) 7→ 0, and c0 = 1 is sufficient. We have to search a path of weight at
most k.
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q-branched treewidth: For q-branched treewidth, we wish to use at most q reveals [62].
By choosing ωE as (x, y) 7→ 0, ωA as (x, y) 7→ 1, and c0 = 0, we have to search for a path of
weight at most q.
dependency treewidth: This parameter is, in essence, defined via graph searching game
that is equal to the game we study with some fly- and reveal-moves forbidden. Forbidding
a move can be achieved by setting the weight of the corresponding edge to ∞ and by
searching for an edge-alternating path of weight less than ∞.

4.6. Extending the Algorithm to Directed Treewidth

D-width has a game theoretic characterization based on the following version of the
game: The searchers and the fugitive now play on a digraph G, the searchers have unlimited
reveals (q = ∞), and the fugitive is restricted to move inside strongly connected components
(i. e., she can only reach vertices from which there is path back to her current position).
Let D-search(G) be the minimal number of searchers required to catch the fugitive in a
monotone way. In contrast to the games we have considered previously, the number of
required searchers may be reduced if we allow non-monotone strategies [81]. However,
this is not relevant for the D-width, as we have:

Fact 2 ([81]). D-search(G) = tw (G) + 1.

Similar to the undirected games, we can construct a colosseum H, where each vertex
C ∈ V(H) corresponds to a configuration of the game. We put an existential edge from C1
to C2 when we can transform C1 to C2 by placing a searcher in C1 and by removing all
covered searchers (i. e., all searchers that stand on vertices v with v 6∈ NG(C2)). A universal
edge is put from C to all its strongly connected components C1, . . . , Cr.

Observation 1. Apart from G now being directed, not much changes for the colosseum. In partic-
ular, it is easy to see that it is still an acyclic edge-alternating graph. Thus, we can compute the pit
in it using Theorem 1.

Corollary 1. Given a digraph G = (V, E) and an integer k, we can test whether or not we have
tw (G) ≤ k in time O(|pit(G, k)|2 · |V|2).

Proof. Compute the pit for the directed graph using Theorem 1; weight the edges with ωE
and ωA as (x, y) 7→ 0, and set c0 = 0 (as for undirected treewidth in Theorem 2). Find a
shortest edge-alternating path from V to the sinks of the pit using Lemma 4.

5. Color Coding Sieves

The bottleneck in practical implementations of the presented algorithm is the enu-
meration of compatible blocks that can be glued (Line 22 and 23 in Figure 5). The same
problem was observed in the positive-instance driven algorithms for treewidth [52] and
treedepth [48]. Both used so called block sieves to tackle this problem.

These sieves are data structures based on set tries [82] allowing for an efficient enu-
meration over blocks that are possible candidates. More precisely, if K is the set of already
computed blocks and the algorithm from Figure 5 reaches Line 22 with a block C, a block
sieve shall efficiently enumerate a set K′ ⊆ K such that all C′ ∈ K for which the algorithm
reaches Line 24 are contained in K′ while |K \ K′| is maximized. Trivially, one could store K
as list and just test for every element whether it is compatible (this is exactly what Figure 5
does). A block sieve improves this naive idea by storing the sets in a tree that represents
intersections. Hence, while enumerating the output, one can prune some parts of the tree
(of K) and, thus, has to consider only a subset of K′ ⊆ K. Tamaki presented this idea for
the first time [52] and a more involved version was used by Trimble [48]. However, both
implementations came with the drawback that they do not provide any guarantee on how
well they sieve. We provide a randomized data structure for which we can provide tight
bounds for the probability that certain unnecessary blocks are pruned. Furthermore, we
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show how to derandomize this data structure using the well-known color coding technique
and obtain an implementation of the block sieve data structure that correctly prunes all of
these blocks.

Another disadvantage of set tries is the overhead introduced by managing a tree
structure of sets compared to, say, storing the blocks in a simple list or array. During the
development of our treedepth solver PID? for PACE 2020, we actually observed that
block sieves can negatively impact the performance of positive-instance driven solvers on
instances of medium size [49].

In this section, we develop a randomized data structure that gives us the performance
advantage of block sieves, reduces the overhead introduced by the set tries, and provides
provable guarantees on the sieve quality. Color coding sieves apply different filter strategies
successively to divide the set of all blocks into smaller and smaller sets. These sets often
become small enough to be stored in simple lists. Only if these lists become too large, we
divide them into multiple lists via a random choice. If such a separation happens frequently,
the data structure converges into a classical set trie.

We assume a total order < on V, that is, V = {1, 2, . . . , n}. Furthermore, we denote
the smallest vertex in a set C ⊆ V by min(C). Observe that < implies a partial order l on
subgraphs where C1 l C2 if, and only if, min(C1) < min(C2). The color coding sieve will be
used to store the setR(Q) = V(pit(G, k)), which, as before, consists of blocks C. The first
operation supported by our data structure is the insertion operation that inserts a block C to
the set represented by the data structure and is denoted by insert(C).

The second operation is used to speed up Line 22 in Listing 5. For a fixed block C,
we have to enumerate all blocks C′ that (i) do not intersect C (procedure intersect(C, C′) in
Figure 6) and that (ii) satisfy |NG(C ∪ C′)| ≤ k (procedure offer(C, t) in Figure 6). Recall
that two blocks intersect if C ∩ C′ 6= ∅, NG(C) ∩ C′ 6= ∅ or C ∩ NG(C′) 6= ∅.

Definition 3. A block C′ is compatible with respect to a block C if all of the following holds:

1. C l C′;
2. |NG(C ∪ C′)| ≤ k;
3. C ∩ C′ = ∅, NG(C) ∩ C′ = ∅, and C ∩ NG(C′) = ∅.

The set of all blocks that are compatible to C is denoted by comp(C).

In light of this definition, query operation query(C) should return a super set of
comp(C). To support efficient implementation of such queries, a color coding sieve stores a
set of blocks in three levels. Each level filters the blocks by making use of one of the three
items of Definition 3.

The level-1 sieve partitions the blocks into sets Si = {C ∈ R | 2i ≤ min(C) < 2i+1 }
for i ∈ {0, . . . , log n− 1} to make use of the partial ordering l. We choose this partition
because there are in general many more blocks with min(C) = 1 than with min(C) = n.

Each set Si is stored as a level-2 sieve of depth γ. These sieves are the eponym for the
data structure and partition Si by making use of γ colorings color1, . . . , colorγ. Each coloring
assigns two colors, say blue and orange, to the vertices of G. Let orangej and bluej be the
set of orange and blue vertices according to colorj, respectively. The set Si is partitioned
into sets Si[`], where ` = (`1, . . . , `γ) ∈ {0, . . . , k}γ. A block C belongs to Si[`] if, and only
if, the number of orange neighbors w. r. t. colorj is exactly `j, that is,

Si[`] = {C ∈ Si : |NG(C) ∩ orangej | = `j for all j ∈ {1 . . . , γ} }.

The idea is that whenever we query a block C with [r1, r2, . . . , rγ] blue neighbors, we only
have to search for compatible blocks in those sets Si[`1, . . . , `γ] with `j + rj ≤ k.

Finally, the sets Si[`] are stored as level-3 sieves, which are lazily built random set tries.
Initially, we store the set Si[`] as a list. If the size of the list grows too large, i. e., |Si[`]| > Θ
for a threshold Θ, we pick a random vertex x ∈ V and divide Si[`] into {C ∈ Si[`] | x ∈ C }
and {C ∈ Si[`] | x 6∈ C }. These sets are then recursively managed by new level-3 sieves.
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Observe that a level-3 sieve degenerates into a set trie with random order after n splits.
However, because of the other sieve levels, we hope for far fewer recursive steps in the
level-3 sieves.

5.1. Insert a Block to the Color Coding Sieve

Inserting a block C is straight forward: Every sieve adds it to the corresponding
sieves of the next level. In detail, the level-1 sieve would add C to the sieve Si with
2i ≤ min(C) < 2i+1. The level-2 sieve, on the other hand, counts, for j = 1, . . . , γ,
the number `j of orange neighbors of C and adds the block to Si[`]. Finally, this level-3
sieve follows a path from the root in the trie to a leaf by checking for vertices on that path
whether they are in C. Then C is added to the list stored at the leaf, which eventually is
split if it grows too large.

5.2. Query the Color Coding Sieve

To answer query(C), we need to iterate through the sieves. For the level-1 sieve, let
q be such that 2q ≤ min(C) < 2q+1. As we only need to find blocks C′ with C l C′, we
can focus our search on the sets Si with i ≥ q. In order to sieve out elements on level 2, let
C have rj blue neighbors (w. r. t. colorj). We only need to consider sets Si[`1, . . . , `γ] with
`j + rj ≤ k for all j ∈ {1, . . . , γ}.

Finally, for level-3 sieves, if Si[`] is a list, we simply output that list. If Si[`] is split into
X = {C′ ∈ Si[`] | x ∈ C } and X = {C′ ∈ Si[`] | x 6∈ C } for a vertex x ∈ V, we have to
investigate these sets recursively. If x ∈ C, we only have to recur in X, as we seek blocks
that are disjoint from C. Otherwise, we have to search in both sets.

The data structure is illustrated in Figure 7 together with the steps corresponding to
an insert and a query. The following lemma states that the color coding sieve is, in fact,
a block sieve: the output of query(C) contains all blocks that are compatible to C.

Lemma 5. After a sequence of insertions has inserted a set K of blocks to a color coding sieve that
corresponds to a graph G = (V, E) and k ∈ N, we have comp(C) ⊆ query(C) for all possible
blocks C.

Proof. All three levels of the color coding sieve manage a partition of the set of blocks they
contain and, thus, of K. We argue that any C′ ∈ comp(C) is output on query(C). The proof
is by contradiction, so assume C′ is pruned by one of the sieves.

If C′ is pruned on level 1, it must have been in a set Si with 2i ≤ min(C′) ≤ 2i+1 and
i < q for 2q ≤ min(C) ≤ 2q+1. Thus, C′ l C and, hence, C′ is not compatible with respect
to C by property 1 of being compatible.

Now, assume C′ was pruned by the level-2 sieve. Then C′ was stored in a set
Si[`1, . . . , `γ] that was not explored. Hence, there must be an index j ∈ {1, . . . , γ} and
a number rj ≥ 0 with `j + rj > k such that NG(C ∪ C′) contains at least `j orange and
rj blue vertices with respect to colorj. This is a witness for |NG(C ∪ C′)| > k and, thus,
a contradiction to property 2 of being compatible.

Finally, if C′ was pruned by the level-3 sieve, then clearly the sieve contains multiple
layers (otherwise the whole list is output). The only way the sieve prunes is that it had split
its list with a vertex x ∈ V and x ∈ C. Since C′ was pruned, we have x ∈ C′ and, hence,
C ∩ C′ 6= ∅—a contradiction to property 3 of being compatible.
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Level Data Structure Insert {2, 8} to Query ({3, 4, 5}) from

1 S0 S1 S2 S3

2 S1[0] S1[1] S1[2] S1[3]

3 S1[2] = { {2, 3}, {2, 3, 4}, {2, 8, 9} }
8 2 C 8 62 C

{2, 8}
{2, 8, 9}

{2, 3}
{2, 3, 4}random split at 8

S1

S1[2]

S1, S2, S3

S1[0], S1[1], S1[2]

We have to query
both branches of the
trie, as 8 62 {3, 4, 5}.

1 2 3 4 5

7

9

8
6

Figure 7. A color coding sieve for the nine vertex graph shown on the bottom left with k = 4 and g = 1. The three levels are
illustrated as gray boxes and show the contained sieves of the next level – green pointers indicate which level-i sieve is
shown, i. e., the level-2 sieve is S1 and the level-3 sieve is S1[2] (all the other sieves are not shown). In the center, an insert of
{2, 8} is illustrated: the first sieve inserts it to S1, the level-2 sieve S1 inserts it to the level-3 sieve S1[2] (other branches are
not shown). The level-2 sieve uses the random partition shown on the graph, that is, {2, 8} has two orange neighbors. The
level-3 sieve S1[2] is an ordinary list before the insert and becomes a trie after the insert, as a random split at vertex 8 occurs.
On the right side of the figure we see all sieves that we have to search through in order to answer the query ({3, 4, 5}).

Lemma 5. After a sequence of insertions has inserted a set K of blocks to a color coding sieve692

that corresponds to a graph G = (V, E) and k 2 N, we have Compat(C) ✓ query(C) for all693

possible blocks C.694

Proof. All three levels of the color coding sieve manage a partition of the set of blocks695

they manage and, thus, of K. We argue that any C0 2 Compat(C) is output on query(C).696

The proof is by contradiction, so assume C0 is pruned by one of the sieves.697

If C0 is pruned on level 1, it must have been in a set Si with 2i  min(C0)  2i+1
698

and i < q for 2q  min(C)  2q+1. Thus C0 l C and, hence, C0 is not compatible with699

respect to C by property 1 of being compatible.700

Now assume C0 was pruned by the level-2 sieve. Then C0 was stored in a set701

Si[`1, . . . , `g] that was not explored. Hence, there must be an index j 2 {1, . . . , g} and a702

number rj � 0 with `j + rj > k such that NG(C [ C0) contains at least `j orange and rj703

blue vertices with respect to colorj. This is a witness for |NG(C [ C0)| > k and, thus, a704

contradiction to property 2 of being compatible.705

Finally, if C0 was pruned by the level-3 sieve, then clearly the sieve contains multiple706

layers (otherwise the whole list is output). The only way the sieve prunes is that it had707

splitted its list with a vertex x 2 V and x 2 C. Since C0 was pruned, we have x 2 C0 and,708

hence, C \ C0 6= ∆ – a contradiction to property 3 of being compatible.709

Optimizing Level-2 Sieves. We have not yet specified the colorings used in level 2.710

In the following, we first consider randomized colorings and then make use of color711

coding for derandomization. Using the guarantees provide by this technique, we obtain712

a provable running time bound for the level-2 sieve. We are interested in the probability713

that a block C0 with |NG(C [ C0)| > k is part of the output if we use random colorings.714

Lemma 6. Let g = 1 and fix some blocks C and C0 with |NG(C [ C0)| > k. If color1 is chosen
randomly, the probability that C0 is output by query(C) is at most

1 � k + 1
2k+1 .

Figure 7. A color coding sieve for the nine vertex graph shown on the bottom left with k = 4 and
γ = 1. The three levels are illustrated as gray boxes and show the contained sieves of the next
level—green pointers indicate which level-i sieve is shown, i. e., the level-2 sieve is S1 and the level-3
sieve is S1[2] (all the other sieves are not shown). In the center, an insert of {2, 8} is illustrated: the
first sieve inserts it to S1, the level-2 sieve S1 inserts it to the level-3 sieve S1[2] (other branches are
not shown). The level-2 sieve uses the random partition shown on the graph, that is, {2, 8} has two
orange neighbors. The level-3 sieve S1[2] is an ordinary list before the insert and becomes a trie after
the insert, as a random split at vertex 8 occurs. On the right side of the figure, we see all sieves that
we have to search through in order to answer the query ({3, 4, 5}).

5.3. Optimizing Level-2 Sieves

We have not yet specified the colorings used in level 2. In the following, we first
consider randomized colorings and then make use of color coding for derandomization.
Using the guarantees provided by this technique, we obtain a provable running time
bound for the level-2 sieve. We are interested in the probability that a block C′ with
|NG(C ∪ C′)| > k is part of the output if we use random colorings.

Lemma 6. Let γ = 1 and fix some blocks C and C′ with |NG(C ∪ C′)| > k. If color1 is chosen
randomly, the probability that C′ is output by query(C) is at most

1− k + 1
2k+1 .

Proof of Lemma 6. Let k̂ = |NG(C ∪ C′)| ∈ {k + 1, . . . , 2k} and let color1 be a randomly
sampled coloring. Note that C′ is output by query(C) if, and only if, β(C) + ω(C′) ≤ k,
where we define β(C) := |{ v ∈ NG(C) | color(v) = blue } as the number of blue neighbors
and ω(C) equivalently as the number of orange neighbors.

A coloring is called good if β(C) + ω(C′) > k as it allows to discard C′. A vertex
v ∈ NG(C ∪ C′) is good if either color(v) = blue and v ∈ NG(C) or color(v) = orange and
v ∈ NG(C′). Hence, a coloring is good if at least k + 1 vertices are good. Note that all
vertices in NG(C) ∩ NG(C′) are good (as each vertex is colored). In the following, we thus
assume that NG(C) ∩ NG(C′) = ∅, which is the worst case. As each coloring occurs with
probability 2−k̂, the probability to hit a good coloring is then exactly

(
2k̂)−1

k̂

∑
i=k+1

(
k̂
i

)
.

Hence, the probability of hitting a non-good coloring (and outputting C′) is at most

1− ∑k̂
i=k+1 (

k̂
i)

2k̂
=

∑k
i=0 (

k̂
i)

2k̂
.
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This term is maximized for k̂ = k + 1, as the denominator grows faster than the
nominator. Hence, the probability to output C′ is at most

∑k
i=0 (

k̂
i)

2k̂
≤ ∑k

i=0 (
k+1

i )

2k+1 = 1− k + 1
2k+1 .

If we choose all γ colorings randomly and independent, we obtain:

Corollary 2. Fix some blocks C and C′ with |NG(C ∪ C′)| > k. If color1, color2, . . . , colorγ are
chosen randomly and independent, the probability that C′ is output by query(C) is at most

(1− k + 1
2k+1 )γ.

We can now increase γ until the term (1− k+1
2k+1 )

γ is below a tolerable threshold. If we
add sufficiently many colorings, we may obtain the same result with deterministic colors
that are produced by hash functions (that is, the level-2 sieve can be derandomized).

Definition 4. For two natural numbers n and k, an (n, k, 2)-universal coloring family is a set Λ
of functions λ : {1, . . . , n} → {orange, blue} such that for every subset S ⊆ {1, . . . , n} of size
|S| = k and for every mapping µ : S→ {orange, blue}, there is at least one function λ ∈ Λ with
µ(s) = λ(s) for all s ∈ S.

It is well-known that such families can be constructed via hash functions.

Theorem 3 (Theorem 13.41 in [83]). For all natural numbers n and k, an (n, k, 2)-universal
coloring family Λ of size |Λ| ≤ 2O(k) · log2(n) can be found in time 2O(k) · n · log2(n).

Let Λ be (n, k, 2)-universal coloring family and assume that we operate the level-2
sieve with γ = |Λ| colorings such that each of the colorings is produced by one of the
hash functions in Λ. Now assume we perform query(C) and fixate any block C′ with
|NG(C ∪ C′)| > k. By the properties of (n, k, 2)-universal coloring families, there is at least
one coloring in Λ that colors the vertices in C ∪ C′ in such a way that N(C) contains at least
` orange vertices, N(C′) contains at least r blue vertices, and `+ r > k. Hence, the level-2
sieve prunes C′ and, therefore, prunes all blocks that are incompatible to C by property 2 of
being compatible. We collect this finding in form of the following theorem:

Theorem 4. There is a computable function f : N → N such that for any graph G on n vertices
and any k ∈ N, the level-2 sieve can be implemented deterministically with γ = f (k) · poly(n)
colors. When a block C is queried, this sieve prunes all stored blocks C′ with |NG(C ∪ C′)| > k.

5.4. Pruning Queries in Level-3 Sieves

If the level-3 sieve degenerates into a set trie, we can use the structure of the trie
to prune queries. Consider a node p of the trie and observe that the path from p to
the root defines two sets Rp and Fp of required and forbidden vertices, respectively. Each
block C′ stored in the subtrie rooted at p fulfills Rp ⊆ C′ and Fp ∩ C′ = ∅. Hence,
if min(Rp) ≤ min(C), we do not have to explore p or its children. Define a pin to be a
vertex v ∈ V with v ∈ Fp and NG(v) ∩ Rp 6= ∅, and let Pp be the set of pins at p. Note that
all blocks stored in the subtrie rooted at p are adjacent to v and, thus, we can prune the
search if v ∈ C as all blocks then intersect with C. Pins become neighbors of glued blocks
and, hence, we can also prune if |NG(C) ∪ Pp| > k.

6. Experimental Evaluation of Color Coding Sieves

In this section, we experimentally evaluate the performance gain of a positive-instance
driven algorithm when equipping it with a color coding sieve. We exemplarily do so
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by adding the color coding sieve (with γ = 1 and randomly generated coloring) to our
treedepth solver PID? that is built on the algorithms developed within this paper [49].
A comparison of PID? with other state-of-the-art treedepth solvers was recently performed
in the light of PACE 2020 and can be found in [45].

We perform the experiments on a computer equipped with 64 GB of RAM and an AMD
Ryzen Threadripper 3970X with 32 cores of 3.7 Ghz each and with 144 MB of combined
cache. The system runs on Ubuntu 18.04.5 LTS, 64bit. We let the solver run on two
benchmark sets: the well-known DIMACS graph coloring instances (see [34,84] for an
overview of these instances in light of treewidth), and the instances that were used in the
exact track of the treedepth challenge PACE 2020 [45]. Both solvers (without and with color
coding sieves) were run for 10 min on each instance. The results of the experiment are
illustrated as scatter plots in Figure 8 (the left one corresponds with the DIMACS instances,
the right one to the PACE 2020 instances).
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we can use the structure of the trie to prune queries. Consider a node p of the trie742

and observe that the path from p to the root defines two sets Rp and Fp of required and743

forbidden vertices, respectively. Each block C0 stored in the subtrie rooted at p fulfills744

Rp ✓ C0 and Fp \ C0 = ∆. Hence, if min(Rp)  min(C), we do not have to explore p745

or its children. Define a pin to be a vertex v 2 V with v 2 Fp and NG(v) \ Rp 6= ∆, and746

let Pp be the set of pins at p. Note that all blocks stored in the subtrie rooted at p are747

adjacent to v and, thus, we can prune the search if v 2 C as all blocks then intersect748

with C. Furthermore, all pins become neighbors of glued blocks and, hence, we can also749

prune if |NG(C) [ Pp| > k.750

5.1. Experimental Evaluation of Color Coding Sieves751

In this section we experimentally evaluate the performance gain of a positive-752

instance driven algorithm when equipping it with a color coding sieve. We exemplarily753

do so by adding the sieve to our treedepth solver PID? that is build on the algorithms754

developed within this paper [42]. A comparison of PID? with other state-of-the-art755

treedepth solvers was recently done in the light of PACE 2020 and can be found in [38].756

We perform the experiments on a computer equipped with 64 GB of RAM and757

an AMD Ryzen Threadripper 3970X with 32 cores of 3.7 Ghz each and with 144MB of758

combined cache. The system runs on Ubuntu 18.04.5 LTS, 64bit. We let the solver run759

on two benchmark sets: the well-known DIMACS graph coloring instances (see [26,77]760

for an overview of these instances in light of treewidth); and the instances that where761

used in the exact track of the treedepth challenge PACE 2020 [38]. Figure 8 provides762

the results of our experiments in the form of a scatter plot (the left one corresponds the763

DIMACS instances, the right one to the PACE 2020 instances).764

1 2 4 6 8 10

1
2

4

6

8

10

PID?-ccs

PID?

timeout

1 2 4 6 8 10

1
2

4

6

8

10

PID?-ccs

PID?

timeout

Figure 8. Scatter plots that show the performance of PID? without color coding sieves compared
to the performance of the solver with them enabled. Each point corresponds to an instance, the
x-axis is the time needed by the solver without the feature, and the y-axis using the feature. The
color of the dot indicates which version was better, it is gray if they are equal. If a solver needed
more than 10 minutes for an instance, the coordinate is set to the red dotted line.

Figure 8. Scatter plots that show the performance of PID? without color coding sieves compared to
the performance of the solver with them enabled (γ = 1 and a randomly generated coloring is used).
The left plot contains the DIMACS graph coloring instances, the right plot the PACE 2020 test set.
Each point corresponds to an instance; the x-axis is the time needed by the solver using color coding
sieves and the y-axis without using this feature. The color of the dot indicates which version was
better; it is gray if they are equal. If a solver needed more than 10 min for an instance, the coordinate
is set to the red dotted line.

As one can observe, the color coding sieve generally improves the performance of the
solver. Just on a few outlier instances, the solver cannot utilize this data structure, which is
probably due to many non-compatible blocks that have a small neighborhood and, thus,
are not pruned by the level-2 sieve. We can also observe that the obtained speedup is larger
on the PACE 2020 instances than on the DIMACS instances. The PACE instances were
generally harder to solve for PID? and contained more blocks. Hence, the solver can utilize
the color coding sieve better on this benchmark set.

6.1. Color Coding Sieves on Hyperbolic Random Graphs

In this section, we investigate the potential performance boost obtained by using
coloring coding sieves on hyperbolic random graphs. We use the same experimental setup as
in the last section and, again, equip our treedepth solver PID? [49] with the color coding
sieve data structure. In contrast to the last section, we will now:

1. Vary the used layers and the number of colorings γ;
2. Run the solver on random graphs rather than predefined benchmark sets.

For this experiment, we use hyperbolic random graphs, which are known to replicate
many structural properties of real-world networks [85,86]. Loosely speaking, these graphs
are generated by sampling points randomly in a disk (these are the vertices) and by
connecting points by an edge if their hyperbolic distance is smaller than some predefined
threshold.
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We generated a set of 210 hyperbolic random graphs using the Hyperbolic Graph
Generator [87]. The generator expects six parameters that we set as shown in Table 1.
The solver PID? was used with the four configurations explained in Table 2, whereby the
level-2 sieves always use uniformly sampled random colorings.

Table 1. Parameters of the used hyperbolic graph generator [87]. We set the number of vertices
to a range in which the instances are tractable but challenging for the solver PID?. The expected
average degree is k1 for n ∈ {100, 110, 120}, k2 for n ∈ {130, 140}, k3 for n ∈ {150, 160}, and k4

for n ∈ {170, 180, 190, 200}. For each combination of n and the corresponding ki, we generated six
instances with random seed s ∈ {1, . . . , 6} yielding 210 instances. The remaining parameters of the
generator are set to their default value.

number of nodes n ∈ {100, 110, 120, . . . , 200}
expected average degree k1 ∈ {10, 20, 30}, k2 ∈ k1 ∪ {40}, k3 = k2 ∪ {50}, k4 ∈ {3, 5}

expected power-law exponent 2 (default)
square root of curvature 1 (default)

temperature 0 (default)
seed i ∈ {1, 2, . . . , 6}

All configuration of the solver were run on all instances for at most 30 min. The results
of the experiment are illustrated in a cumulative distribution function plot in Figure 9.
Various interesting findings are contained in the plot: First, we can observe that the core
solver without any sieve layer (-wo) cannot fully utilize the provided 30 min time window.
All instances solved by this configuration are solved within 20 min and, indeed, afterwards
the amount of blocks becomes too large to be enumerated naively.

Second, we see the small (and expected) disadvantage of solvers with color coding
sieves (-trie and -color-1) compared to the core algorithm (-wo) on “easy” instances (that
can be solved in a minute or less). Of course, using involved data structures comes
with an overhead and, if there are simply not enough blocks, we may not overcome this
disadvantage with the improvements provided by the data structure. However, we can
also observe that the performance of the solver with lazily built tries (-trie) and with the full
color coding sieve (-color-1) quickly outperforms the core solver on the remaining instances.
For the same reason as mentioned above, the lazily built set trie alone is better than the
whole sieve on “medium hard” instance (solvable in about five minutes). Then, on even
harder instances with more blocks, the additional layers can be utilized and the full color
coding sieve provides the overall best performance.

Third, we can observe that, on this test set, choosing γ > 1 (-color-2) has no positive
effect compared to using γ = 1 (-color-1). Adding more colorings increases the overhead
of the data structure and, thus, a negative effect is expected if a layer cannot be fully
utilized. Here, we conclude that on instances that are currently tractable for the solver,
there are not enough blocks such that a second random partition sufficiently improves the
enumeration of compatible blocks. However, we can also observe that the trend is positive,
i. e., the overhead of a second coloring is reduced more and more on harder instances. We
thus conjecture that, if the solver can be tuned to solve larger instances, the positive effect
of γ > 1 colorings, theoretically provided by Corollary 2, will also have a positive impact
in practical implementations.

Table 2. Four configurations of PID? used in the experiment.

Configuration Meaning

-wo Color coding sieves are not used.
-trie Only the lazy set tries are used.

-color-1 All three sieves are used and γ = 1.
-color-2 All three sieves are used and γ = 2.
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Table 1. Parameters of the used hyperbolic graph generator [88]. We set the number of vertices to
a range in which the instances are tractable but challenging for the solver. The expected average
degree is k1 for n 2 {100, 110, 120}, k2 for n 2 {130, 140}, k3 for n 2 {150, 160}, and k4 for
n 2 {170, 180, 190, 200}. For each combination of n and the corresponding ki, we generated six
instances with random seed s 2 {1, . . . , 6} – yielding 210 instances. The remaining parameters of
the generator are set to their default value.

number of nodes n 2 {100, 110, 120, . . . , 200}
expected average degree k1 2 {10, 20, 30}, k2 2 k1 [ {40}, k3 = k2 [ {50}, k4 2 {3, 5}

expected power-law exponent 2 (default)
square root of curvature 1 (default)

temperature 0 (default)
seed i 2 {1, 2, . . . , 6}

Table 2. Seven configurations of PID? used in the experiment. All modes either do not use the
color coding sieve at all, or use the lazy set trie and a subset of the remaining sieves (that is, we
either extend the solver by block sieves or we do not).

Configuration Meaning

-wo Color coding sieves is not used.
-trie Only the lazy set tries are used.

-level-1 The level-1 and level-3 sieves are used.
-color-1 All three sieves are used and g = 1.
-color-2 All three sieves are used and g = 2.
-color-3 All three sieves are used and g = 3.
-color-4 All three sieves are used and g = 4.

-wo (69 %)
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-color-2 (71 %)
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6. Conclusion and Outlook822

Treewidth is one of the most useful graph parameters that is successfully used in823

many different areas. The positive-instance driven dynamic programming paradigm824

has led to the first practically relevant algorithm for this parameter, as well as for its825

close relative treedepth. We formalized such algorithms in the general setting of graph826

searching, which has allowed us to provide a clean and simple formulation and to extend827

the algorithm to many natural graph parameters.828

Figure 9. A cumulative distribution function plot that shows the performance of PID? without color
coding sieves (-wo), with just the lazily built set trie (-trie), with the full color coding sieve and γ = 1
(-color-1), and with the full color coding sieve and γ = 2 (-color-2). The experiments are performed
on the set of 210 hyperbolic random graphs described in Table 1.

6.2. Sieve-Quality of the Individual Layers

So far, we measured the performance boost obtained by adding a color coding sieve to
PID? with respect to the overall time the solver needs to solve an instance. In this section,
we rather focus on the quality of the individual layers of the sieve. That is, we do not
measure the time used to solve an instance but measure the amount of blocks that a sieve
filtered.

In more detail, we measure the total number of blocks generated by PID? (that is, the total
number of blocks inserted into the sieve) and the number of compatible blocks that were
filtered from the output of the sieve (over the complete run of the solver). We compare this
number with the number of loaded blocks, which is the number of blocks returned by the
sieve. Of course, all compatible blocks are loaded, but (if the sieve works poorly) many
other blocks may be loaded, too. We measure the performance of the sieve as the fraction of
falsely loaded blocks over all non-compatible blocks. See Table 3 for the exact terminology.

Table 3. Variables used to describe the performance of a sieve. The values t, c and ` are considered
over a complete run of the solver for a given instance, e. g., summed over various values for the target
width k.

Variable Meaning Comment

t Total number of blocks.
c Number of compatible blocks. c ≤ t
` Number of blocks loaded by the sieve. c ≤ ` ≤ t

α Performance as α = 1− `−c
t−c

α = 0 for a trivial sieve
α = 1 for a perfect sieve

Observe that, in the light of Corollary 2 and Theorem 4, the performance of a color
coding sieve converges to 1 if γ, the number of colorings, converges to infinity. See Figure 10
for an illustrative example.
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Figure 10. Performance a of a level-2 sieve with g colorings on instance exact_036 from the
PACE 2020 benchmark set [46].

the following procedure: start with a star with n leaves, then replace every edge by a873

path with d vertices, and finally replace every vertex by a clique on c vertices that is874

fully-connected to the vertices of adjacent cliques1. The corresponding experiment is875

summarized in Table 5. Finally, we performed the experiment on a set of instances from876

the PACE 2020 benchmark set [46] (see Section 5.1). The results are presented in Table 6.877

Table 4. Overview of the performance of PID? if a single layer of the color coding sieve is used.
The columns n, m, and td describe the number of vertices and edges, as well as the tree depth
of the corresponding graph. The columns labeled “Level-i” indicate that a level-i sieve is used
(and non of the other layers). In this case, the level-2 sieve is used with g = 1 and the level-3
sieve in its plain version (without any improvements). Columns labeled with g = c indicate that a
level-2 sieve with c colorings was used (the “random” colorings were generated with a seeded
pseudo-random generator, that is, the first coloring of the g = 3 sieve is the same as the coloring
of the g = 1 sieve and the first three colorings of the g = 6 sieve are the ones of the g = 3 sieve),
and the column “imp. Level-3” corresponds to a level-3 sieve with the improvements discussed
after Theorem 7. In each row the sieve with the best performance on this instance is highlighted.

a of . . .
Graph n m td Level-1 Level-2 g = 3 g = 6 Leve-3 imp. Level-3

grid_4 ⇥ 4 16 24 7 0.00 0.22 0.41 0.63 0.25 0.34
grid_5 ⇥ 5 25 40 9 0.00 0.20 0.49 0.66 0.46 0.65
grid_6 ⇥ 6 36 60 11 0.02 0.26 0.52 0.70 0.62 0.81
grid_7 ⇥ 7 49 84 13 0.07 0.29 0.59 0.78 0.69 0.92
grid_8 ⇥ 8 649 112 15 0.12 0.31 0.62 0.81 0.72 0.96

Table 5. Same as Table 4, but on spider-graphs rather than grids.

a of . . .
Graph n m td Level-1 Level-2 g = 3 g = 6 Leve-3 imp. Level-3

spider_(10, 5, 5) 255 1760 20 0.00 0.23 0.38 0.51 0.04 0.13
spider_(10, 10, 5) 505 3510 25 0.03 0.18 0.35 0.49 0.05 0.22
spider_(10, 10, 6) 606 5115 30 0.03 0.16 0.34 0.44 0.05 0.19
spider_(20, 10, 3) 606 2403 15 0.11 0.16 0.38 0.57 0.03 0.33
spider_(30, 10, 5) 1505 10510 25 0.15 0.14 0.31 0.42 0.02 0.34

From the experimental data shown in Table 4, 5, and 6 we conclude three observa-878

tions: First, the level-1 sieve alone does not much. This was expected, as this sieve has879

semantically the least function. It is intended as fast preprocessing for the other sieves.880

Secondly, the level-2 and level-3 sieve (a single random partition and a normal set trie)881

are relatively equivalent. While the former is better on spider graphs, the later is better882

1 Intuitively, a star is a worst-case instance for the positive instance driven approach, as initially only the leaves are positive subproblems and, by
trying to glue them together, the solver has to explore all 2n subsets of the leaves. By stretching and thickening the edges, we enforce that is
behaviour remains the same and is not overcome by heuristics internally used by the solver.

Figure 10. Performance α of a level-2 sieve with γ colorings on instance exact_036 from the PACE 2020
benchmark set [45].

For the following experiments, we only use a single layer of the color coding sieve and
make all measurements with respect to a complete run of the solver for a given instance (i. e.,
summed over various values of the target width k). Since we aim to obtain a good estimation
of the actual performance of the various sieves via experimental means, we consider rather
difficult instances in this section. First, in Table 4, we consider n× n-grid graphs, which
are well-known to be difficult for various graph decomposition algorithms. Secondly, we
hand-crafted a set of instances that are particularly difficult for the positive-instance driven
approach. Let a (n, d, c)-spider be the graph obtained by the following procedure: start with
a star with n leaves, then replace every edge by a path with d vertices, and finally replace
every vertex by a clique on c vertices that is fully-connected to the vertices of adjacent
cliques. (Intuitively, a star is a worst-case instance for the positive-instance driven approach,
as initially only the leaves are positive subproblems and, by trying to glue them together,
the solver has to explore all 2n subsets of the leaves. By stretching and thickening the edges,
we enforce that this behaviour stays the same and circumvent heuristics internally used by
the solver.) The corresponding experiment is summarized in Table 5. Finally, we performed
the experiment on a set of instances from the PACE 2020 benchmark set [45] (see Section 6).
The results are presented in Table 6.

Table 4. Overview of the performance of PID? if a single layer of the color coding sieve is used.
The columns n, m, and td describe the number of vertices and edges, as well as the treedepth of
the corresponding graph. The columns labeled “Level-i” indicate that a level-i sieve is used (and
none of the other layers). In this case, the level-2 sieve is used with γ = 1 and the level-3 sieve is
used in its plain version (without any improvements). Columns labeled with γ = c indicate that
a level-2 sieve with c colorings was used (the “random” colorings were generated with a seeded
pseudo-random generator, that is, the first coloring of the γ = 3 sieve is the same as the coloring
of the γ = 1 sieve and the first three colorings of the γ = 6 sieve are the ones of the γ = 3 sieve),
and the column “imp. Level-3” corresponds to a level-3 sieve with the improvements discussed after
Theorem 4. In each row, the sieve with the best performance on this instance is highlighted.

α of . . .
Graph n m td Level-1 Level-2 γ = 3 γ = 6 Level-3 imp. Level-3

grid_4× 4 16 24 7 0.00 0.22 0.41 0.63 0.25 0.34
grid_5× 5 25 40 9 0.00 0.20 0.49 0.66 0.46 0.65
grid_6× 6 36 60 11 0.02 0.26 0.52 0.70 0.62 0.81
grid_7× 7 49 84 13 0.07 0.29 0.59 0.78 0.69 0.92
grid_8× 8 649 112 15 0.12 0.31 0.62 0.81 0.72 0.96

Table 5. Same as Table 4, but on spider-graphs rather than grids.

α of . . .
Graph n m td Level-1 Level-2 γ = 3 γ = 6 Level-3 imp. Level-3

spider_(10, 5, 5) 255 1760 20 0.00 0.23 0.38 0.51 0.04 0.13
spider_(10, 10, 5) 505 3510 25 0.03 0.18 0.35 0.49 0.05 0.22
spider_(10, 10, 6) 606 5115 30 0.03 0.16 0.34 0.44 0.05 0.19
spider_(20, 10, 3) 606 2403 15 0.11 0.16 0.38 0.57 0.03 0.33
spider_(30, 10, 5) 1505 10510 25 0.15 0.14 0.31 0.42 0.02 0.34
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Table 6. Same as Table 4, but on instances from the PACE 2020 benchmark set [45].

α of . . .
Graph n m td Level-1 Level-2 γ = 3 γ = 6 Level-3 imp. Level-3

exact_057 50 75 13 0.19 0.31 0.65 0.87 0.77 0.97
exact_077 66 120 12 0.10 0.27 0.53 0.75 0.51 0.83
exact_078 67 152 12 0.04 0.12 0.26 0.33 0.13 0.20
exact_079 68 83 9 0.06 0.27 0.59 0.71 0.36 0.69
exact_083 70 274 22 0.16 0.33 0.63 0.79 0.67 0.92

From the experimental data shown in Tables 4–6, we conclude three observations: First,
the level-1 sieve alone does not much. This was expected, as this sieve has semantically the
least function. It is intended as fast preprocessing for the other sieves. Secondly, the level-2
and level-3 sieve (a single random partition and a normal set trie) are relatively equivalent.
While the former is better on spider graphs, the latter is better on instances from the PACE
benchmark set. Our final observation is that both sieves greatly improve their performance
if the extensions are added (more colorings for the level-2 sieve or the improvements
discussed after Theorem 4 for the trie, respectively). Comparing the level-2 sieve with
γ = 6 to the improved trie leads again to a mixed picture in which both of the sieves
are better than the other on some of the instances. We conclude that taking a random
partitioning is a valuable alternative to a set trie.

The level-2 sieve has two advantages over the set trie: (i) it is comparatively easy to
implement and comes with low constants and (ii) we can easily improve its performance
by adding more colorings. On the downside, adding more colorings slows this sieve down.
Hence, if we need a large γ, a set trie becomes the better choice.

7. Conclusions and Outlook

Treewidth is one of the most useful graph parameters that is successfully used in many
different areas. The positive-instance driven dynamic programming paradigm has led to
the first practically relevant algorithm for this parameter, as well as for its close relative
treedepth. We formalized such algorithms in the general setting of graph searching, which
has allowed us to provide a clean and simple formulation and to extend the algorithm to
many natural graph parameters.

With a few modifications of the colosseum, our approach can also be used for the
notion of special treewidth [88]. We assume that a similar modification may also be possible
for other parameters such as spaghetti treewidth [89].

We also extended the block sieve data structure to a randomized multi-level sieve that
is constructed lazily and that utilizes the well-known color coding technique. By modifying
the number of colorings used, we can change the probability that a non-compatible block is
pruned by the sieve. Hence, introducing more and more colors makes it unlikely that non-
compatible blocks are output by the sieve. On the theoretical side, we may derandomize
the data structure and obtain a guarantee that certain non-compatible blocks are filtered.

Experiments have revealed that the color coding sieve in general increases the per-
formance of our treedepth solver PID?. For the instances that are currently tractable by
the solver, a single random coloring provides the best overall performance, but we expect
that on harder instances the theoretical guarantees of using more colorings will result in a
positive practical impact. An interesting next step would be to implement the color cod-
ing sieve in state-of-the-art treewidth solvers such as [20,53,63], which currently perform
slightly better than the state-of-the-art treedepth solvers [44,45].
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Appendix A. Proof of Theorem 2

We dedicate this section to the missing proof of Theorem 2. The theorem states that
we can compute various graph parameters in polynomial time width respect to the size of
the pit, the formal statement was:

Recall the sketched proof idea from Section 4.5: We wanted to use the fact that all
five problems have game theoretic characterizations that can be encoded in the colos-
seum [61,62,76]; then we argued that, by setting the weights in the pit correctly, we would
obtain all parameters by simply computing shortest edge-alternating paths. We further
claimed that the required weights are the following:

treewidth: Choose ωE and ωA as (x, y) 7→ 0, and set c0 = 0.
pathwidth: Set ωA to (x, y) 7→ ∞, ωE to (x, y) 7→ 0, and c0 = 0.
treedepth: Choosing ωE as (x, y) 7→ 1, ωA as (x, y) 7→ 0, and c0 = 1.
q-branched treewidth: Set ωE to (x, y) 7→ 0, ωA to (x, y) 7→ 1, and c0 = 0.
dependency treewidth As for treewidth, but we have to set the weight of some forbidden
edges to infinity.

Let us first observe that, by the definition of the colosseum, k searchers in the search
game have a winning strategy if, and only if, the start configuration V(G) is contained
in R(Q). With other words, if there is an edge-alternating path from V(G) to some
winning configuration in Q. Note that such a path directly corresponds to the strategy by
the searchers in the sense that the used edges directly correspond to possible actions of
the searchers.

Since for any graph G = (V, E) and any number k ∈ N the edge-alternating graph
colosseum(G, k) is universal consistent by Lemma 3, all vertices of an edge-alternating
path corresponding to a winning strategy are contained in R(Q) as well. In fact, every
edge-alternating path from V(G) to Q (and, thus, any winning strategy) is completely
contained in R(Q). Therefore, it will always be sufficient to search such paths within
pit(G, k). By Lemma 4, we can find such a path in time O(|pit(G, k)|2). In fact, we can even
define two weight functions wE : E → N and wA : A → N and search a shortest path from
V(G) to Q.

Appendix A.1. Computing Branched Tree Decompositions

To compute the invariants of G as stated in the theorem, we make the following claim:

Claim A1. Let G = (V, E) be a graph and k ∈ N. Define wE as (x, y) 7→ 0 and wA as (x, y) 7→ 1,
and set c0 = 0. Then we have d(V(G), Q) ≤ q in pit(G, k) if, and only if, twq(G) ≤ k− 1.

Proof. We follow the proof of Theorem 1 in [62] and use the following fact that follows
from the observation that in a tree decomposition (T, ι), for each three different nodes
i1, i2, i3 ∈ T, we have ι(i1) ∩ ι(i3) ⊆ ι(i2) if i2 is on the unique path from i1 to i3 in T.

Fact A1. Let (T, ι) be a tree decomposition of G = (V, E) rooted arbitrarily at some node r ∈ T.
Let i ∈ T be a node and j ∈ T be a child of i in T. Then, the set ι(i) ∩ ι(j) is a separator between
C =

[⋃
d∈desc(j) ι(d)

]
\
(
ι(i) ∩ ι(j)

)
and

(
V \ C

)
\
(
ι(i) ∩ ι(j)

)
, where desc(x) denotes the set of

descendants of x including x. Hence, every path from some node u ∈ C to some node v ∈ V \ C
contains a vertex of ι(i) ∩ ι(j).
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Appendix A.1.1. From Tree Decompositions to Edge-Alternating Paths

Let (T, ι) be a q-branched tree decomposition of G = (V, E) of width k. Without loss
of generality, we can assume that G is connected. We will show how to construct an edge-
alternating path from the start configuration V of cost at most q in colosseum(G, k + 1).
As described above, this is also an edge-alternating path with the same costs in pit(G, k + 1).
The first existential edge from V leads to the configuration V \ ι(r), where r is the root of T.
Observe that we clearly have N(V \ ι(r)) ⊆ ι(r). Suppose a configuration C was reached
with N(C) ⊆ ι(i) ∈ V(colosseum(G, k + 1)) for some node i ∈ T and we have:

C ⊆
[ ⋃

j∈desc(i)

ι(j)
]
\ ι(i).

Clearly, for i = r, this assumption holds trivially. If i is a leaf in T, there are no
more descendants and thus C = ∅. Hence, we have reached a winning configuration in
colosseum(G, k + 1). Now, suppose that i is a non-leaf node. We distinguish two cases:

• If i has exactly one child j, we can find a path P1 of existential edges leading from C to
a configuration C1 with N(C1) ⊆ ι(i) ∩ ι(j). Moreover, we can also find a path P2 of
existential edges from C1 to a configuration C2 with N(C2) ⊆ ι(j). The path P1 will
be constructed by iteratively removing all vertices v ∈ C with N(v) ∩ [ι(i) \ ι(j)] 6= ∅.
For the remaining vertices C1, we have N(C1) ⊆ ι(i) ∩ ι(j). If all configurations that
we aim to visit on P1 exist, the corresponding edges also exist by definition. Assume
that we are in some configuration C′ with N(C′)∩ [ι(i) \ ι(j)] 6= ∅ and want to remove
a vertex v ∈ C′ with N(v) ∩ [ι(i) \ ι(j)] 6= ∅, but C′ \ {v} 6∈ V(colosseum(G, k + 1)).
By definition of colosseum(G, k + 1), this means that |N(C′ \ {v})| ≥ k + 2. As we
wanted to remove v, we have N(v) ∩ ι(i) 6= ∅. As N(C′ \ {v}) ⊆ N(C′) ∪ {v} and
|N(C′ \ {v})| ≥ k + 2, we know that there is some u ∈ C′ with v ∈ N(u). Fact A1
implies that v ∈ ι(i) ∩ ι(j), a contradiction and, hence, all configurations in P1 exist.
Similarly, we construct P2 by iteratively removing all vertices in ι(j) from C1. It is easy
to see that the neighborhood of the visited configurations will always be a subset of
ι(j) and, hence, all configurations on this path exist.
We have arrived at a configuration C2 with N(C2) ⊆ ι(j) and due to Fact A1:

C2 ⊆
[ ⋃

j′∈desc(j)

ι(j′)
]
\ ι(j).

• If node i has a set of children J with |J| ≥ 2, we will use universal edges. Let C be the
connected components of G[

⋃
j∈desc(i) ι(j) \ ι(i)]. We claim that for each component

Γ ∈ C there is a unique index j(Γ) ∈ J such that Γ ∩ ι(j(Γ)) 6= ∅. If no such index
exists, we have ι(j) = ι(i). We can iteratively remove such bags ι(j) until this cannot
happen anymore. If two indices j1, j2 ∈ J exist with ι(j1) ∩ Γ 6= ∅ and ι(j2) ∩ Γ 6= ∅,
the connectivity property implies that ι(i) ∩ Γ 6= ∅, a contradiction to our assumption.
Hence, for each component Γ, we follow the universal edge to Γ and then proceed as
above: first, we find a path P1 of existential edges from Γ to a configuration Γ1 with
N(Γ1) ⊆ ι(i)∩ ι(j(Γ)) and then a path P2 of existential edges from Γ1 to a configuration
Γ2 with N(Γ2) ⊆ ι(j(Γ)). The same arguments as above imply that all configurations
on these paths exist and that we arrive at a configuration Γ2 with N(Γ2) ⊆ ι(j(Γ)) and:

Γ2 ⊆
[ ⋃

j′∈desc(j(Γ))

ι(j′)
]
\ ι(j(Γ)).

This shows that we will eventually reach the leaves of the tree decomposition and,
thus, some wining configuration. This is an edge-alternating path in colosseum(G, k + 1)
and pit(G, k + 1). Furthermore, as each path from the root of T to some leaf of T contains
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at most q nodes with more than one children, this path is q-branched, as we use at most q
universal edges from the initial configuration V to any used winning configuration for every
induced directed path. Hence, we have found an edge-alternating path in pit(G, k + 1) of
cost at most q.

Appendix A.1.2. From Edge-Alternating Paths to Tree Decompositions

Let P ⊆ V(pit(G, k + 1)) be an edge-alternating q-branched path from the initial
configuration V to a final configuration {v∗} in pit(G, k + 1) with |N({v∗})| ≤ k. We argue
inductively on q.

• If q = 0, the path P does not use any universal edges. Let π = π1, . . . , πs be any
classical directed path from the initial configuration V to some winning configuration
{v∗} in pit(G, k + 1) that only uses vertices from P. As the initial configuration is
π1 = V, the winning configuration is πs = {v∗}, and there are only existential edges
(C, C′) with |C′| = |C| − 1 in pit(G, k + 1), we know that |πi| = |V| − i + 1, and thus
s = |V|. We say that vertex v ∈ V is removed at time i, if v ∈ ⋂i

j=1 πj and v 6∈ ⋃|V|j=i+1 πj.
We also say that v∗ was removed at time |V|. For i = 1, . . . , |V|, let vi be the vertex
removed at time i.
We will now construct a 0-branched tree decomposition (T, ι), i. e., a path decompo-
sition. As T is a path, let t1, . . . , t|V| be the vertices on the path in their respective
ordering with root t1. We set ι(ti) = N(πi) ∪ {vi}. For i = 1, . . . , |V| − 1, there is an
existential edge leading from πi to πi+1 and thus |N(πi)| ≤ k. As π|V| = {v|V|} is a
winning configuration, we also have |N(π|V|)| ≤ k. Hence, the resulting decomposi-
tion T has width at most k. As T is a path, it is also 0-branched.
We now need to verify that (T, ι) is indeed a valid tree decomposition. As every vertex
v is removed at some time i, we have v = vi and thus v ∈ ι(ti). Hence, every vertex is
in some bag. Let {vi, vi′} be any edge with i < i′. As vi′ ∈ πi′ and vi 6∈ πi′ , we have
vi ∈ N(πi′) and thus {vi, vi′} ⊆ N(πi′) ∪ {vi′} = ι(ti′). Hence, every edge is in some
bag. Finally, let vi ∈ V. Clearly, as vi ∈ π1, vi ∈ π2,. . . , vi ∈ πi−1, the first bag where
vi might appear is ι(ti). Let vi′ ∈ N(vi) be the neighbor of vi that is removed at the
latest time. If i′ < i, we have N(vi) ∩

⋃|V|
j=i+1 πj = ∅ and vi thus only appears in ι(ti).

If i < i′, then vi ∈
⋂i′

j=i+1 N(πj) and hence vi ∈
⋂i′

j=i+1 ι(tj).
• Now, assume that q ≥ 1 and that we can construct for every q′ < q a q′-branched tree

decomposition of width at most k from any q′-branched edge-alternating path P in
pit(G, k + 1). Consider the directed acyclic subgraph H in pit(G, k + 1) induced by P.
A configuration C ∈ V(H) is called a universal configuration, if NA(C) ⊆ V(H) and
a top-level universal configuration with respect to some directed path π if C is the first
universal configuration on π. Note that we can reduce P in such a way that all directed
paths π from the initial configuration V to some winning configuration {v∗} in H
have the same top-level universal configuration, call it C∗. Let V = π1, . . . , πi = C∗

be the shared existential path from V to C∗ in H and let NA(C∗) = {C1, . . . , C`} be
the universal children of C∗. Note that {C1, . . . , C`} ⊆ P due to the definition of
an edge-alternating path. For each child Cj, the edge-alternating path P contains a
directed path π(j) from Cj to some final configuration in pit(G, k + 1). Furthermore,
each π(j) contains at most q′ ≤ q − 1 universal edges (otherwise, P would not be
q-branched). Hence, by induction hypothesis, we can construct a q′-branched tree
decomposition (T(j),ι(j)

) for the subgraph induced by the vertices contained in the
path π(j) with root r(j).
Now, we use the same construction as above to construct a path (T′ = (t′1, . . . , t′i), ι′)
from π1, . . . , πi and for each path π(j) we add the root r(j) of the q′-branched tree
decomposition (T(j), ι(j)) as a child of bag ti to obtain our final tree decomposition
(T, ι). As there is a universal edge from C∗ to Cj, we know that Cj is a component of
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C∗. As all (T(j), ι(j)) are valid q− 1-branched tree decompositions of width at most k,
we can thus conclude that (T, ι) is a valid q-branched tree decomposition of width k.

This concludes the proof of the claim.

Combining the above claim with Theorem 1 for computing the pit, we conclude that
we can check whether a graph G has q-branched-treewidth k in time O(|pit(G, k + 1)|2 ·
|V|2). We note that the algorithm is fully constructive, as the obtained path (and, hence,
the winning strategy of the searchers) directly corresponds to the desired decomposition.
Since we have tw(G) = tw∞(G) and pw(G) = tw0(G), the above results immediately
imply the same statement for treewidth and pathwidth by checking d(V(G), k) < ∞ or
d(V(G), k) = 0, respectively.

Appendix A.2. Computing Treedepth Decompositions

In order to show the statement for treedepth, we will require another claim for different
weight functions. The proof idea is, however, very similar.

Claim A2. Let G = (V, E) be a graph and k ∈ N. Define wE as (x, y) 7→ 1 and wA as (x, y) 7→ 0,
and c0 = 1. Then we have d(V(G), Q) ≤ k in pit(G, k) if, and only if, td(G) ≤ k.

Proof. To prove the claim, we use an alternative representation of treedepth [58]. Let
G = (V, E) be a graph with connected components C1, . . . , C`, then:

td(G) =


1 if |V| = 1;
max`i=1 td(G[Ci]) if ` ≥ 2;
minv∈V td(G[V \ {v}]) + 1 otherwise.

Let us reformulate this definition a bit. Let C ⊆ V be a subset of the vertices and let
C1, . . . , C` be the connected components of G[C]. Define:

td∗(C) =


1 if |C| = 1;
max`i=1 td∗(Ci) if ` ≥ 2;
minv∈C td∗(C \ {v}) + 1 otherwise.

Obviously, td(G) = td∗(V). We proof that for any C ⊆ V we have d(C, Q) = td∗(C) in
pit(G, k) for every k ≥ td(G) and d(C, Q) ≥ td∗(C) for all k < td(G).

For the first part, we consider the vertices of pit(G, k) in inverse topological order
and prove the claim by induction. The first vertex C0 is in Q and thus d(C0, Q) = c0 = 1.
Since the vertices in Q represent sets of cardinality 1, we have d(C0, Q) = td∗(C0). For the
inductive step, consider Ci and first assume it is not connected in G. Then

d(Ci, Q) = max
Cj∈N∀(Ci)

(
d(Cj, Q) + wA(Ci, Cj)

)
= max

Cj∈N∀(Ci)
d(Cj, Q)

= max
Cj is a component in G[Ci ]

td∗(Cj)

= td∗(Ci).

Note that there could, of course, also be existential edges leaving Ci. However, since the
universal edges are “for free”, for every shortest path that uses an existential edge at Ci,
there is also one that first uses the universal edges.
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For the second case, that is Ci is connected, observe that Ci is not incident to any
universal edge. Therefore, we obtain:

d(Ci, Q) = min
v∈Ci

(
d(Ci \ {v}, Q) + wE(Ci, Ci \ {v})

)
= min

v∈Ci

(
d(Ci \ {v}, Q) + 1

)
= min

v∈Ci

(
td∗(Ci \ {v}) + 1

)
= td∗(Ci).

This completes the part of the proof that shows d(C, Q) = td∗(C) for k ≥ td(G). We are left
with the task to argue that d(C, Q) ≥ td∗(C) for all k < td(G). This follows by the fact that
for every k′ < k we have that pit(G, k′) is an induced subgraph of pit(G, k). Therefore, the
distance can only increase in the pit for a smaller k—in fact, the distance can even become
infinity if k < td(G).

Again, combining the claim with Theorem 1 yields the statement of the theorem
for treedepth.

Appendix A.3. Computing Dependency Treewidth

This parameter can be characterized by an adaption of the graph searching game [12]:
In addition to the graph G and the parameter k, one is also given a partial ordering l on the
vertices of G. For a vertex set V′, let µl(V′) = { v ∈ V′ | ∀w ∈ V′ \ {v} : (w, v) 6∈ l } be
the minimal elements of V′ with regard to l. If C ⊆ V(G) is the contaminated area, we are
only allowed to put a searcher on µl(C), rather than on all of C. The dependency-treewidth
dtwl(G) is the minimal number of searchers required to catch the fugitive in this version
of the game. Therefore, we just need a way to permit only existential edges (C, C′) with
C \ C′ ⊆ µl(C). We show the following stronger claim:

Claim A3. Consider a variant of the search game in which at some configurations Ci some fly-moves
are forbidden, and in which, furthermore, at some configurations Cj no reveals are allowed. Whether
k searcher have a winning strategy in this game can be decided in time O(|pit(G, k)|2 · |V|2).

Proof. First observe that, if the k searcher has a winning strategy S, this strategy corre-
sponds to a path in pit(G, k). The reason is that searchers that are allowed to use all fly-
and reveal-moves (and for which all winning strategies correspond to paths in pit(G, k))
can, of course, use S as well. We compute the pit with Theorem 1.

Now, to find the restricted winning strategy, we initially set wE and wA to (x, y) 7→ 0.
Then, for any existential edge (Ci, Cj) that we wish to forbid, we set wE(Ci, Cj) = ∞.
Furthermore, for any node C at which we would like to forbid universal edges, we set
wE(Ci, Cj) = ∞ for all Cj ∈ N∀(Ci). Finally, we search a path from V(G) to Q of weight
less than ∞ using Lemma 4.

This completes the proof of Theorem 2.
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