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Abstract: Clustering constitutes a well-known problem of division of unlabelled dataset into disjoint
groups of data elements. It can be tackled with standard statistical methods but also with meta-
heuristics, which offer more flexibility and decent performance. The paper studies the application
of the clustering algorithm—inspired by the territorial behaviors of predatory animals—named
the Predatory Animals Algorithm (or, in short: PAA). Besides the description of the PAA, the results
of its experimental evaluation, with regards to the classic k-means algorithm, are provided. It is
concluded that the application of newly-created nature-inspired technique brings very promising
outcomes. The discussion of obtained results is followed by areas of possible improvements and
plans for further research.

Keywords: clustering; nature-inspired algorithms; metaheuristics

1. Introduction

The past few years have brought the increasing role of data science and machine
learning as universal research domains allowing to get valuable insights from data coming
from a variety of fields. Learning paradigms can be classified as supervised and unsu-
pervised. The supervised learning model assumes the availability of the information
on the class membership of each training instance [1]. Unsupervised learning corresponds
to the task of extracting useful information from unlabelled data. It does not assume any
prior knowledge, and it is usually associated with the problems of clustering and outlier
detection [2]. Clustering or cluster analysis corresponds to the task of data division into
coherent structures, named clusters, which are grouping similar data elements.

While numerous approaches to clustering based on statistical modeling have already
been proposed, the use of metaheuristics has become an alternative strategy. It allows not
only to achieve substantial clustering quality but also a possibility of including additional
factors, such as the variable number of clusters, multiple objectives, etc. [3,4].

The aim of this paper is to provide a new method of clustering based on natural
inspiration. It mimics the territorial behaviors of predatory animals. Unlike most of the ex-
isting algorithms, it does not use a centroid-based representation of clustering solutions.
At the same time, it focuses on forming natural local clusters without employing tradi-
tional evaluation criteria based on internal validation indices. We demonstrate here that
the proposed approach can bring high quality of clustering solutions, especially for multi-
dimensional problems, with multiple clusters potentially present in the data.

The paper is organized as follows. The following section is dedicated to the description
of related results and methods. It overviews the problem of clustering and nature-inspired
techniques used to solve it. In Section 3, the description of the proposed algorithm, in both
descriptive and more formal (pseudo-code) way are provided. Section 4 provides the results
of numerical experiments aimed at evaluating the performance of the introduced algorithm
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and comparing it to the standard k-means clustering technique. The paper concludes
in Section 5 with final comments and plans for further research.

2. Methodological Background
2.1. Task of Clustering

Let us denote Y = [y1, y2, ..., yM] as the dataset under consideration. The task of clus-
tering is equivalent to finding an assignment of data elements y1, ..., yM to one of the sets
(clusters) CL1, CL2, ..., CLC. This assignment should ascertain that elements designated
to the same cluster should be similar to each other.

Typical examples of clustering algorithms include the partitional approach of k-
means [5], hierarchical grouping also known as agglomerative clustering [6] and density-
based algorithms such as DBSCAN [7], or more recent clustering with density peaks [8].

Clustering quality can be measured with a variety of quantitative indicators. So-called
internal validity indices are the ones using only labeled results of clustering, and they
measure geometrical properties of clustering structures. Among many indices of this
type one can name Davies–Bouldin index [9], Calinski–Harabasz index [10] or Silhouette
index [11]. Experimental comparison of these indices can be found in [12,13].

2.2. Nature-Inspired Algorithms in Clustering

Clustering approaches using heuristic optimization typically use centroid-based repre-
sentation of clustering solution. It means that solution is being represented by cluster centers:

xp = [u1, u2, ..., uC]. (1)

The problem of clustering is then presented as the standard continuous optimization
task, i.e., to find x∗ which satisfies:

f (x∗) = max
x∈S

f (x), (2)

where S ⊂ RD, and f (x) constitutes solution’s x objective function value.
Broad range of existing nature-inspired metaheuristics have been already used for clus-

tering. It includes Particle Swarm Optimization [14], Krill Herd Algorithm [15], Gravita-
tional Search Algorithm [16] or Social Spider Optimization [17].

The well-known K-means algorithm uses within-cluster variance as an optimiza-
tion criterion. Using metaheuristics allows us to employ a variety of other indicators.
Internal validation indices constitute a natural choice for the objective function in clus-
tering [12]. With this respect, among others, Davies–Bouldin index (e.g., in [9]), Calinski–
Harabasz index (e.g., in [18]), were already under investigation. The summary of algorithms
and optimization criteria used in metaheuristic clustering can be found in [19].

The algorithm introduced in this paper is not conventional in that respect, as it does
not employ internal validation indices for performance evaluation. It also does not limit
the shape of the clusters to the spherical ones. It makes the solution being worked-out here
attractive for solving real-world clustering problem instances.

3. Proposed Approach

Observing solitary, territorial predators, for example, tigers (Panthera tigris), can yield
interesting results concerning the shape of their territories and hunting areas. Female
tigers tend to form separate, convex territories around areas densely populated with their
prey, which can be intuitively considered a natural example of clustering of prey. Each
territory is marked unambiguously by a single female individual by their scent and other
marks they left, but should an individual left an area for a time long enough, and those
marks will fade, leaving the territory ownerless. In this paper, the approach imitating
the behavior of tigers (or other similar solitary, territorial predators such as lynxes) is
proposed. The generalization of their behavior is proposed as follows:
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1. Clustering is done by the set of (individuals). Each individual has their single position
in the given space of instances. This point is always the position of one of the instances
and represents the prey the individual is currently hunting. Each individual aims
to create a cluster representing their territory.

2. Individuals perform jumps between the prey during consecutive turns. On each turn,
each individual jumps to a semi-randomly chosen point in the set from the fraction
of their closest points, unmarked by other individuals.

3. Upon a jump, the individual marks the point they jumped to. From now, it is consid-
ered a part of their territory (i.e., their cluster).

4. After an individual performs a vast number of jumps far from a point they marked,
the traces they left fade, and the location becomes unmarked once again.

5. After all points are marked by individuals, small adjustments are made to simulate
fading of areas left behind and making their shape more convex and condensed.

The algorithm generally consists of two phases—the search phase and the correction
phase. During the search, individuals create their initial territories (clusters), that are
later corrected to simulate the changes that occur in nature. The general pseudo-code
of the algorithm can be expressed as in Algorithm 1.

In the formulation of the algorithm the following notation was used:

• dataSet consists of N points, each having their position and cluster (initialized as null);
• k is the number of clusters to partition the set into—it has to be predetermined

in advance;
• tsearch is a fraction of the set that will be taken into consideration while determining

the next jump of an individual;
• tcorrect is a is a fraction of the set that will be taken into consideration while determining

if it should be corrected;
• b, M0 and S are the parameters of the exponential function used in determining

the jump weights;
• alpha is the multiplier factor for correction that simulates the reluctance of changing

a set during the correction phase;
• correctionRuns is the number of times the correction phase is applied;
• F is correction function. Its arguments are Dmean; the mean distance of points from

a given cluster and p, the percentage amount of points from a certain cluster in total
points surrounding a point;

• t determines how long does an individual needs to stray from a point it marked
for it to become an unmarked point again;

• the algorithm requires the initialization of k; individuals. In this example, their
numbers are also the number of their clusters, while the ID of a point is its index.

The first phase (search phase) is performed in turns, during which individuals perform
’jumps’ between unmarked points. An example of few first steps for a simple, small set is
shown in the Figure 1. During this phase, the following steps are performed:

1. Each individual Ii considers tsearch ∗N closest points. For each of those points, the indi-

vidual calculates weight according to the equation Pj.weight = (M0 + Su)
1

b+distance(Ii ,Pj) ,
where Pj is the point being evaluated, M0, S and b are the parameters of the algorithm,
and u is the ratio of unmarked points in the evaluated set of points.

2. After assigning weights, individuals ‘jump’ to single points they draw with weights
they calculated. Those points become their new positions.

3. Each marked point is assigned a Time-to-Live value that begins at 0. Each time any
of the individuals others than the one that marked the point is the closest individual
to that point, the Time-to-Live is incremented. As it reaches t N

k , the point becomes
unmarked again. Should the individual that marked it become the closest individual,
the Time-to-Live value is set to 0 again.

4. Individuals perform their jumps in turns until there are no unmarked points. After
each turn Time-to-Live values are evaluated for all points in the dataset.
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Algorithm 1 Clustering with Predatory Animals Algorithm.

1: procedure FINDCLUSTERS(dataSet, k, tcorrect, tsearch, b,M0, S, α, correctionRuns, F,T)
2: MAXTOL← N

k ∗ T
3: Initialize I1, ...Ik as individuals at positions of random points from the set
4: Set TTL of all points to 0
5: Set cluster numbers of all points in dataSet as null
6: for all Ii ∈ indvididuals do
7: randomNumber ← randomIntegerFrom(0, dataSet.size)
8: Ii.position← dataSet[randomNumber].position
9: dataSet[randomNumber].cluster = Ii.clusterId

10: Remove randomNumber from futher random integer generation in this loop
11: end for
12: while there exists at least one point with cluster = null do
13: for i ∈ [1, k] do
14: points← set of tsearch ∗ dataSet.size closest points to Ii

15: u← numberO f (points.unmarked)
tsearch∗dataSet.size

16: for all Pj ∈ points do

17: Pj.weight← (M0 + Su)
1

b+distance(Ii ,Pj )

18: end for
19: pointToJumpTo ← randomizeWithWeights(points)
20: Ii.position← pointToJumpTo.position
21: pointToJumpTo.cluster ← Ii.clusterId
22: end for
23: for all Pj ∈marked points do
24: if There exists individual that is closer to Pj than the one that marked it then
25: TTLj ← TTLj + 1
26: if TTLj > MAXTOL then
27: Pj.cluster← null
28: end if
29: end if
30: Else TTLj ← 0
31: end for
32: end while
33: for iter = 1, 2, ..., CR do
34: newClusterNumbers← dataSet.clusterNumbers
35: for all Pi ∈ dataSet do
36: points← set of tcorrect ∗ dataSet.size closest points to Pi
37: Initialize table of weights weights, its size being the number of clusters
38: for all c ∈ 1, 2, ..., k do
39: Dmean ←mean distance to all points from cluster c from points
40: p← number of points from cluster c in points divided by size of points
41: weight[c]← F(Dmean, p)
42: if c 6= Pi.cluster then
43: weight[c]← weight[c] ∗ α
44: end if
45: end for
46: maxWeight← indexO f MaxElement(weight)
47: newClusteNumbers[i]← maxWeight
48: end for
49: dataSet.clusterNumbers← newClusterNumbers
50: end for

return dataSet.clusterNumbers
51: end procedure

The second phase is focused on slight corrections to the clustered set—it aims to correct
points that are surrounded by points from other clusters and not by the points from their
own cluster. This is performed in the following way:

1. During the correction phase, all points are evaluated separately.
2. tcorrection ∗ N nearest points to the evaluated one are considered.
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3. For each point, for each cluster, values Dmean and p are calculated. Dmean is the mean
normalized distance between the point and points from the currently evaluated cluster
and p is the percentage of points from this cluster in the neighbors of the evaluated
point.

4. Weights determining the cluster to which the given point should be assigned are
calculated using correction function F : [0, 1]2 → R. A cluster with maximum
weight is chosen. Function F should be nondecreasing for increasing values of p
and not increasing for increasing values of Dmean. In practice a simple formula
F(p, Dmean) = Dmean/(1.1−−− p) can be used.

Figure 1. Example behaviour of four individuals randomly initialized in a small dataset during first
four steps.

It can be seen that the algorithm is based on the natural formation of clusters into dis-
joint territories. Unlike standard partitional metaheuristic clustering it does not use centroid-
based representation and does not rely on internal validation of clusters. The following
Section provides an experimental evaluation of this strategy.

4. Experimental Results

During the experimental runs, the proposed algorithm was compared to the standard
k-means approach, which is widely used both in research and technical applications.

For the comparison, selected labeled datasets taken from UCI Machine Learning
Repository have been used [20]. We have also employed two-dimensional datasets known
as s-sets in this experiment [21]. They are characterized by different ratio of clusters overlap.
The list of benchmark data used for the experiments can be found in Table 1.

Both algorithms were executed 100 times. For the newly-introduced PAA we have
used the parameters set provided in Table 2.

Table 3 provide the results of experiments, with mean of Rand index [28], calculated
versus class labels, being used as a performance indicator. The RPAA represents the average
value obtained by the proposed algorithm, while RK the average value obtained using
K-Means algorithm. In both cases, the results were taken from 100 repetitions. The last
column displays the results of t-test, with significant performance advantage (at α = 0.05
significance level) of PAA denoted with +, of K-means with−, and not significant difference
with 0.
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Table 1. Datasets used in the experiments.

Name Dimensionality Number
of Clusters

Number
of Instances Source

wine 13 3 178 [22]
glass 10 7 214 [23]

anuran calls 22 10 7195 [24]
gestures 33 5 1000 [25]

libras 90 15 360 [26]
yeast 8 10 1484 [27]

s1 2 15 5000 [21]
s2 2 15 5000 [21]
s3 2 15 5000 [21]
s4 2 15 5000 [21]

Table 2. Parameters of PAA used in the experiments.

Parameter Value

tsearch 0.05
tcorrect 0.05

M0 2
S 1
α 0.8
b 0.001
T 0.3

F(Dmean, p) Dmean
1.1−p

It can be observed that while PAA-based clustering in terms of performance reaches
the level of k-means, or it under-performs for simple data division problems (such as s1 or
wine) it becomes more competitive for datasets with higher dimensionality. It also offers
better performance for clustering instances with overlapping clusters and a more significant
number of groups.

Table 3. Values of Rand index for PAA and K-means and results of the t-test.

RPAA RK Significant Diff.

wine 0.646324 0.658763 0
glass 0.60919 0.506494 0

anuran calls 0.682589 0.471739 +
gestures 0.7235056 0.6380335 +

libras 0.856796 0.8072391 +
yeast 0.621127 0.627 0

s1 0.871717 0.934503 −
s2 0.869067 0.924032 0
s3 0.840887 0.896415 −
s4 0.876354 0.874768 +

Figure 2 illustrates the result of clustering obtained for a dataset consisting of 100
randomly generated points. The positions of the points in the set were created randomly
with Gaussian distribution around one point and along three line segments. It has an irreg-
ular structure of clusters which are overlapping each other and vary in the density of points.
In such a case, the use of PAA is again highly recommended, as it can be observed that
a classic algorithm (K-means) yields poor results.
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Figure 2. Comparison of an irregular set clustered by the proposed algorithm (upper figure) and K-
means algorithm (bottom figure).

We have also studied the performance of the proposed technique in comparison with
the one of the well-know density-based DBSCAN algorithm. In our investigation, we tuned
DBSCAN parameters in order to obtain the same number of clusters as for PAA. Table 4
contains the results of this experiment. Again, proposed algorithm is superior, in terms
of higher Rand index values, for nine out of ten datasets.

Table 4. Values of Rand index for PAA and DBSCAN.

RPAA RDBSCAN DBSCAN Parameters

wine 0.646324 0.408029 eps = 4.7, min_samples = 2
glass 0.60919 0.59830 eps = 1.35, min_samples = 2

anuran calls 0.682589 0.749186 eps = 0.33, min_samples = 5
gestures 0.7235056 0.1193016 eps = 2.9, min_samples = 5

libras 0.856796 0.74157 eps = 0.9, min_samples = 4
yeast 0.621127 0.394240 eps = 0.068, min_samples = 4

s1 0.871717 0.7987187 eps = 2840, min_samples = 20
s2 0.869067 0.8243575 eps = 2650, min_samples = 20
s3 0.840887 0.7602578 eps = 2200, min_samples = 20
s4 0.876354 0.7737063 eps = 1900, min_samples = 20
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It is noticeable that the algorithm’s behavior is controlled by multiple parameters.
First of all, it requires the number of clusters k to be provided. As the algorithm has
a tendency to considerably reduce sizes of final clusters, providing slightly more clusters
than expected as the value of k can be beneficial.

Search threshold tsearch determines how many of the closets points are considered
when creating a new point (making a ’jump’). Increasing this parameter (usually beyond
0.1) makes the algorithm less stable and allows clusters to span along larger distances.
Together with M0 this parameter determines the chance for the cluster to form over far-
reaching points, thus allowing the algorithm to cross gaps and cluster non-convex points,
but also making the shape of the cluster less consistent. Values less or equal to 0.05 of this
parameter could be recommended.

Correction threshold tcorrect determines how many of the closest points are considered
when performing correction phase. With this parameter set to 0, the algorithm skips
the correction phase. With small values (so that tcorrect*N, N-size of the set is less than
10), it only considers the closest points. Increasing this number beyond 0.01 ∗ k leads
to more accurate, yet potentially dangerous correction where certain clusters sizes are
unproportionally increased. That is why a value of 0.1 could be recommended.

After obtaining values of weights used for correction of cluster assignment for each
point, the weight of other clusters are multiplied by so called correction reluctance α,
in order to to reduce chaotic switching points between clusters that are close to each other.
Setting this to 0 switches off correction phase, value of 1 makes each cluster treated equally,
and raising this value above 1 makes preference for switching cluster to the current one.
We have established that the value of α = 0.8 could be preferable from the performance
point of view.

Number of correction runs CR determines how many times correction phase is applied.
The larger this number is, the more convex and compact the clusters should be. It is due
to removal of small anomalies and points belonging to the clusters outside of them. Setting
this value above 1 may lead to smoothing of clusters along planes. During experimental
evaluation, optimal number of correction runs CR was estimated to be equal to 1. The il-
lustration for this fact was shown on Figure 3, which provides the average values of Rand
index, obtained for 100 runs of the clustering algorithm on the anuran calls dataset.

Figure 3. The impact of the number of correction runs CR on the performance of the algoritm
for anuran calls dataset measured by Rand index.
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Finally, each time a new point is chosen randomly to be a part of a cluster, its weight

is calculated as (M0 + Su)
1

b+D(Ii ,Pj) , where u is number of points where the search occurs
divided by search threshold and dataset size. At the same time, D denotes distance
between the ith predator and jth point of the considered set. M0 and S scale the base of this
exponential function; thus, their increase should lead to less chaotic creation of clusters.
As the sum M0 + Su approaches 1, the choice of the next point becomes less influenced by its
actual distance to a cluster, up to the limit where it becomes a random choice from uniform
distribution. The exponent is the inverse of the distance with b added there to prevent
almost-zero values from causing value explosions for small distances. Setting b provides
the maximum value the exponent can reach, therefore limiting the value of the whole
function. Consequently a values of jump weight exponent bias b, jump weight base M0
and jump weight base scaling S equal to 0.01, 2 and 1 respectively, could be suggested.

5. Conclusions

The algorithm utilizes an interesting area of animal behavior, focusing on the terri-
torial behaviour of solitary predators rather than the herding behaviour of some species.
Although the exact simulation of tigers marking their hunting areas would require in-
cluding more factors (such as a mating season, reproduction and the differences between
the territories of male and female individuals), the first results presented in this paper are
either slightly better or at least comparable to those obtained by k-means. In particular,
the algorithm seems to work very well for highly dimensional datasets and the ones where
many clusters should be identified.

The proposed algorithm can be modified in many various ways, such as studying other
weighting functions or considering more factors during the correction phase. The ’territory
dissolution’ mechanics of the algorithm can also be changed to a more complex and
potentially more effective way of simulating the natural decline of an abandoned territory.

Author Contributions: Conceptualization, M.T.; methodology, M.T., P.A.K. and S.Ł.; software, M.T.;
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