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Abstract: Motivation: Precise tracking of individual cells—especially tracking the family lineage,
for example in a developing embryo—has widespread applications in biology and medicine. Due
to significant noise in microscope images, existing methods have difficulty precisely tracking cell
activities. These difficulties often require human intervention to resolve. Humans are helpful because
our brain naturally and automatically builds a simulation “model” of any scene that we observe.
Because we understand simple truths about the world—for example cells can move and divide, but
they cannot instantaneously move vast distances—this model “in our heads” helps us to severely
constrain the possible interpretations of what we see, allowing us to easily distinguish signal from
noise, and track the motion of cells even in the presence of extreme levels of noise that would
completely confound existing automated methods. Results: Here, we mimic the ability of the human
brain by building an explicit computer simulation model of the scene. Our simulated cells are
programmed to allow movement and cell division consistent with reality. At each video frame, we
stochastically generate millions of nearby “Universes” and evolve them stochastically to the next
frame. We then find and fit the best universes to reality by minimizing the residual between the
real image frame and a synthetic image of the simulation. The rule-based simulation puts extremely
stringent constraints on possible interpretations of the data, allowing our system to perform far
better than existing methods even in the presense of extreme levels of image noise. We demonstrate
the viability of this method by accurately tracking every cell in a colony that grows from 4 to over
300 individuals, doing about as well as a human can in the difficult task of tracking cell lineages.

Keywords: ensemble simulation; data assimilation; cell tracking; image analysis; cell lineage trees;
stochastic simulation

“What I cannot create, I do not understand.”
—Richard P. Feynman (Nobel Prize in Physics, 1965)

1. Introduction and Motivation

A human watching a video of closely-packed cells can usually identify each individual
and reconstruct events far better than existing algorithms, which is why armies of biology
students spend an inordinate amount of time tagging individual cells one-at-a-time, frame-
by-frame in videos of cell cultures. Though expensive, this method is used because humans
are good at interpreting what is happening in a scene based upon our common-sense
knowledge of what is physically possible; we effectively simulate the scene “in our heads”,
allowing us to readily distinguish signal from noise and eliminate interpretations that are
physically implausible. Accordingly, in this paper we introduce Cell Universe, a simple
proof-of-concept algorithm that builds a physics-based simulation model (the “universe”)
of all the members of a colony of cells; like a human, our model is based on simple common-
sense rules of what cells can do across the short interval of time between frames: they
can move a bit, rotate a bit, grow a bit, and occasionally split into two daughter cells.
They cannot disappear into thin air, appear out of nowhere, or jump great distances in
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a short amount of time. These simple physical rules tightly constrain what is possible
and what is not, greatly increasing the robustness of Cell Universe’s output compared to
existing algorithms.

We represent a single bacterium as a rectangle with rounded ends; each cell thus has
a length, width (with the rounded ends being semi-circles with a diameter equal to the
width), and an orientation; if sufficiently long, it is allowed one “bend” near the middle
which requires two rectangles with joined ends. An example synthetic image of such
bacteria is depicted in the top image of Figure 1.

Figure 1. Fitting a synthetic image to the corresponding video frame. We use Frame 26
(cf. Figure 2). (Top) synthetic image derived from the positions, sizes, and orientations of the
bacteria in one of the many stochastically simulated “universes”at the time of Frame 26, drawn as
a binary image of equal dimensions to the real video image. (Second image) the “clean” image of
Figure 2. (Residual image) the pixel-by-pixel difference, in absolute value, between the real and
synthetic images; black is zero difference. (Bottom) the outline, drawn in red, of the synthetic bacteria
of the top image, overlaid on top of the “clean” video frame of Figure 2.

We initialize the simulation using positions and orientations of cells in the first video
frame; at each frame i we duplicate and perturb the simulated universes into an ensemble
of nearly-identical universes, each member of which is advanced stochastically via simple
physics-based rules to plausible futures at frame i + 1. At frame i + 1, a synthetic image is
generated depicting the state of each simulated universe in the ensemble. These synthetic
images are each compared to the real video frame i + 1 using an objective function based
on image subtraction (cf. Figure 1). The top few universes ranked by this objective are
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kept, while the rest are discarded. This process of fitting a simulation to reality is called
“data assimilation”. Then we iterate: these top-scoring universes are duplicated, perturbed,
and propagated forward to frame i + 2. Currently our “laws of cell physics” allow only
Brownian motion, small stochastic rotations, slow linear growth, and possible cell division;
the laws are easily adaptable to other situations. As Feynman’s quote above alludes to,
our program creates universes that follow simple physics-based “laws”; those simulated
universes that are observationally compatible with the real one essentially understand
what is happening in the real Universe to a level of detail far beyond current methods:
simulation output variables can be interpreted as measurements of the current and historical
position, orientation, size, and family tree of every cell in the simulation. Since our “laws of
motion” severely constrain what is possible, our method easily ignores extreme levels of
image noise that confound other programs; for example we can account for the temporary
disappearance of cells from view—but not from the universe—so no individual is ever lost
unless it disappears from view for an extended period. Our method is readily generalizable
to three dimensions and to more general types of cells than bacteria.

Figure 2. Simple thresholding can result in significant noise as seen in Frame 26 (top right). While
Cell Universe has no problem dealing with such levels of noise—even across various choices of
threshold—most algorithms we tested against require a much cleaner preprocessed (“segmented”)
image such as the one at the bottom right. Video courtesy of YouTube https://www.youtube.com/
watch?v=UccyM8QeIeE (accessed on 1 December 2021).

2. Previous Work

A very broad outline of medical imaging is given by the recent survey [1]. In the
specific area of cell tracking, two broad categories are described in the existing literature:
tracking by detection and tracking by model evolution [2,3].

Tracking by detection is a two-stage method. The first stage involves processing each
frame of a cell video to identify individual cells, segmenting on the basis of gradient,
intensity, textures, etc. The second stage involves applying an optimization strategy to
determine cell correspondence from frame to frame [4]. There are numerous tracking-
by-detection methods detailed in the literature. Most algorithms use some variation of
intensity of the image. For example, Ref. [5] use an adaptive threshold of intensity, opti-
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mized at each pixel via integer programming into a binary cell detection at that pixel [5].
Seeded watershed algorithms primarily use intensity and its gradient to isolate probable
locations of cells [6], while a two-stage “split and merge” has recently been proposed [7].
Gradient-based edge-detection attempts to isolate the boundary between a cell and its sur-
roundings [8]. Shift-invariant wavelet frame transformations can isolate cells by optimizing
coupled minimum-cost flow tracking [9]. Most open-source, readily-available software falls
within this paradigm, including CellTrack [10], CellCounter [11], and most prominently,
CellProfiler [12,13].

Tracking-by-detection methods can be computationally inexpensive, but many of
them require the user to estimate the gating threshold [6,14]. Some advancements in
the tracking-by-detection paradigm directed at remedying these problems include SAM-
TRA [15], which attempts to automatically determine gating thresholds, and Lineage
Mapper [16], which uses segmented masks to bypass dependency on any particular seg-
mentation method. Some tracking-by-detection methods do not require the user to estimate
the gating threshold (for example, [9]), but these methods typically have less robust noise-
handling techniques [4,15].

Many of the above methods are designed to work on a single image, and fail to
leverage the extra information available in a sequence of video frames, where information
in adjacent (or even distant) frames can add significant value to interpretation of the current
frame. Tracking by model evolution involves simultaneously segmenting and tracking cells
in each frame of a cell video; the results of each frame are used to initialize the analysis of
the following frame. This paradigm more easily accommodates morphological features
of cells or user information about cell behavior. For example, models may be designed
to allow cell division but prevent cell fusion [17]. Most model evolution methods evolve
the contours of the cells [18–20]. Other approaches rely on topology-constrained level set
methods [2,21].

Although our method falls squarely within the model evolution paradigm, we make
use of ensemble simulation rather than contour tracking or similar methods. Ensemble
simulation involves building a realistic computer simulation of some system, and then
initializing an ensemble of simulations of various states of the real system, all within the ob-
servational uncertainty of the real system. The simulations are then propagated, following
approximately the same path as the real system for some nontrivial duration. The process
of choosing which simulations best approximate the real system and re-synchronizing the
real and simulated systems when necessary is called data assimilation. Ensemble simulation
combined with data assimilation is heavily used in weather prediction, where it has a
diverse array of applications, including global [22] and regional [23] weather forecasting,
flood forecasting [24], and carbon dioxide emissions simulations [25].

Our method is somewhat reminiscent of the method of multi-hypothesis tracking de-
scribed by [14,26]. Ref. [14] write that the most accurate solution to single-particle tracking
is provided by the method of multi-hypothesis tracking (MHT). In MHT, given particle
positions in every frame, all particle paths within the bounds of expected particle behavior
are constructed throughout the whole movie. The largest non-conflicting ensemble of paths
is then chosen as the solution; Ref. [14] attempt to approximate MHT by solving a two-
stage linear assignment problem. Even so, they describe this method as computationally
prohibitive even with tens of particles tracked over tens of frames.

Fortunately, modern-day computers are sufficiently powerful to track millions of
independent universes, each containing dozens or hundreds of cells. Parallelization further
reduces the computational burden. Our method is trivially parallelizable—each universe
evolves separately from all the others and can be placed in a separate thread. Thus, we are
able to track up to hundreds of cells over as many frames with little difficulty.
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Novelty

Here we highlight the novel aspects of our cell tracking algorithm compared to
existing work.

• We maintain a physically-based model of the “universe” so we “know” where every
bacterium is at any given moment.

• The model has tight physical constraints over what changes are allowed between
frames, so the model effectively “understands” what is possible and what is not.

• These constraints allow us to easily disregard large amounts of noise in the image if
they reflect changes that are physically impossible within the constraints of the model.

• Since each and every bacterium has a physical “presence” in our model, it’s highly
unlikely to “lose track” of any individual unless even a human would have difficulty
tracking the individual (e.g., if it moves off screen or becomes blurred and difficult to
distinguish from closely-packed neighbors).

3. Methods
Initialization and Simulation Rules

Our input is preprocessed so that each video frame is binarized into a 0–1 image,
using a simple binary threshold. Other methods call this image segmentation, and ex-
pend enormous effort to create high-quality segmented images in this prepossessing step
(Figure 2). We label the binarized frames of the video from 0 through k, representing times
t0 through tk at equally spaced intervals ∆t. These represent the Universe (the capital U
distinguishes the real Universe from simulated universes in our ensemble). Within our
simulation, each cell c in the system has a position xc(t), orientation θc(t), and length lc(t).
We simulate the evolution of these variables between two nearby, discrete times t and
t + δt (δt� ∆t) by insisting that all state variables are continuous in time: xc, lc, and θc can
each change by some small stochastic amount bounded by O(δt), between t and t + δt. In
addition, each cell c is allowed one “bend” point of angle φc if it is longer than a global
constant C. Cells that grow beyond the specified maximum length or bend-constant B are
presumed to have split. Each cell furthermore has a small probability of splitting into two
daughter cells; this probability can be constant, or depend upon parameters such as its
current length. Finally, cells are discouraged from overlapping using a simple Hooke’s
law-based repulsion when their borders overlap. No other transitions are allowed.

Since the simulation evolves stochastically, it will diverge from the real Universe.
To feasibly track the real Universe we we need to create a relatively large ensemble E of
simulated universes in the hopes that some fraction of them will remain close to the real
Universe; this also requires that ∆t, the time between video frames, is not too large. The
simulation is initialized with an ensemble E0 containing one universe u0 at time 0 which
resembles the real Universe in video frame 0. We assume that at each time tk, we start with
a relatively small ensemble Ek of simulations that satisfy the following properties: (a) they
are all within the observational uncertainty of video frame k; (b) they are numerous enough
and dispersed from each other enough to reflect the range of possibilities represented by
frame k. Then, the simulation progresses from time tk to tk+1 = tk + ∆t as follows: we set
time t = tk; each universe u in the ensemble Ek evolves independently of all the others from
t to t + δt using our stochastic, physics-based rules, duplicating as necessary to represent
the range of near-futures at t + δt. We then set t := t + δt and continue until t = tk + ∆t.

At this point, the ensemble Ek(tk+1) will contain many more universes u than it
started with at Ek(tk). As depicted in Figure 1, for each universe u ∈ Ek(tk+1) we generate
a synthetic binarized image Iu depicting the state of the simulation for universe u(tk+1),
and compute the residual left after subtracting Iu from the binarized video frame k + 1. We
retain only those universes u from Ek(tk+1) whose residual from the image subtraction falls
below some threshold, subject to the same constraints (a) and (b) listed above.

Due to stochastic noise, even our “best” universes may not be very close to the real
Universe. Thus, we attempt to improve these remaining universes by “pulling” them
as close to reality as possible (cf. Figure 3). We accomplish this by iterating over each
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universe and checking whether we can lower its residual cost by perturbing the position,
orientation, and size each of its bacteria, iterating this process until each universe converges
to a local minimum residual. This tends to produce universes in the new space Ek+1 of
the highest possible quality. One might think that all the simulated universes converge
to the same point, which would defeat the goal of maintaining sufficient diversity among
our population of universes, but this is not observed, for two reasons: our Hooke’s law
repulsion disallows all bacteria to simultaneously move to an ideal position; and each
universe may have a different number of bacteria since, if a real bacterium has split into
two daughter cells between frames i and i + 1 and the split is not clear, some universes may
choose to model this as one bent bacterium and others may decide a split has occured, and
the two cases may equally well fit the observations. This step may require modification for
more complex systems.

Figure 3. Schematic diagram of method: We depict moving from frame 40 to frame 41 of the video,
with time t labeled along the horizontal axis. The disk represents a small volume element inside the
high-dimensional “phase space” containing all relevant measures of the system being tracked. The
green dot in the center of the disk represents “reality” (e.g., positions + orientations of all cells), and
the size of the disk represents the extent of observational error (e.g., video resolution). All points
inside the disk thus represent plausible measurements of the real system to within observational
uncertainty. The black dots are the “ensemble” of simulated universes, all assumed to be within
observational uncertainty of the real system. The second, largest disk represents the expansion of
the ensemble to many plausible futures—many more universes than we had at frame 40, all of them
plausible future trajectories of the system, and now occupying a space much larger than the video
uncertainty. Between the 2nd and 3rd disks, we perform a “pulling” operation on all the universes,
by performing a preliminary fit of each one to video frame 41, which pulls them all “closer” to the
reality depicted in frame 41. However, even after this pulling stage, some members of the ensemble
remain implausible—outside the measurement uncertainty of video frame 41. These are discarded,
giving the smaller disk at the end of the pulling stage, which is then propagated to frame 41. Finally,
if there are too many members of the ensemble that remain at frame 41, we take a final sample of the
“best-fitting” members to initialize the process at frame 41.

Because of the design of our simulation, the best-fitting universe at tk+1 may not have
come from the best-fitting universe at time t. This means that the sequence of best-fitting
universes may not form a consistent set representing the evolution of one possible universe.
In particular, we have observed that, while following a sequence of best-fitting universes
from frame-to-frame, it can sometimes occur that two bacteria at time tk reunite into one
bacterium in frame tk+1; this is, of course, impossible in the real world (and therefore never
happens in any one of our simulated universes), and visually happens only because the best
frame at tk+1 did not come from the best-fitting one at time tk. However, every universe at
time tk+1 came from some universe at tk, so continuity can be constructed by following a
universe backwards in time. Accordingly, so as to be able to generate consistent lineage
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trees, we can construct a single universe that is consistent from the beginning to the end of
the video by selecting any universe at the end and tracing it backwards through time to
frame 0.

The traceback stage also helps address ambiguity introduced by inconsistent or
poor segmentation. Suppose, for example, frame k is properly segmented, k + 1 is over-
segmented, and k + 2 is properly segmented. In that case, the “correct” universe—that is,
the universe most closely corresponding to reality—will simply fail to be the best universe
at k + 2. However, its overall cost at the end of the simulation will be lower than that of any
other universe, and thus we can consistently trace back the best-scoring universe even if
individual frames were poorly segmented.

The simulation takes the most time when generating new universes and their costs,
so runtime complexity is based on the total time the simulation spends creating universes.
The runtime complexity may be calculated as follows: let the number of bacteria be N and
the runtime complexity of the initial cost function be O(N). For each frame at time t, we
generate about F future universes per bacterium, containing N bacteria per universe. There
are K universes in the space S. Thus, the total time for generating universes is FKN, and
the total runtime complexity is O(FKN2).

4. Results
4.1. Bacterial Counting

To evaluate the quality of our simulation’s counts, we ran our simulation on two
sets of binarized frames: a “noisy” set and a “clean” set. We used both sets in order to
demonstrate that our software is not impeded even by high amounts of noise as depicted
at the top of Figure 2. Then, we compared the frame-by-frame bacterial counts produced
by our simulation to frame-by-frame bacterial counts we conducted manually on the
original video and to the counts produced by a variety of other cell counting and lineage
tracking programs, including established programs like CellProfiler [12,13] and more recent
programs like SuperSegger [27]. Results are presented in Table 1 and depicted in Figure 4.

Table 1. Absolute and relative bacteria count errors for each tested program compared to manual
counts, sorted best to worst. A “—” indicates that we were unable to get the program to work on our
video. Note: CPU times for all programs other than Cell Universe are only approximate, because each
program used its own specific environment (MacOS, Windows, Linux, Matlab, with or without a GUI,
etc.). Thus, these tests were run on a highly heterogeneous set of machines with various amounts of
RAM, cores, CPU clock speeds, etc.

Program Err. %Err. CPU (s) Comment

SuperSegger [27] 0.80 2.24 ∼2400 10 min ×4 cores on 2.9 GHz Mac
CellProfiler [12,13] −2.20 −6.17 ∼3600 15 min ×4 cores on 3.2 GHz Lenovo G500s i5-3230M
Lineage Mapper [16] 2.84 7.95 ∼300 Required enormous effort (days) to tune its parameters
Cell Universe “Clean” 2.85 7.99 9900 20 min ×8 cores on CentOS 2.4 GHz Opteron 6378
TLM-Tracker [28] −3.55 5.41 ∼300 5 min; very sensitive to noise; clean images only.
Cell Universe “Noisy” 5.85 16.40 17,000 35 min ×8 cores on CentOS 2.4 GHz Opteron 6378
ImageJ Reg. Count. −10.99 −30.80 ∼10,000 20 min ×8 cores on CentOS 2.4 GHz Opteron 6378
CellCounter [11] 14.56 40.82 ∼1000
Oufti [29] −29.08 −89.50 ∼1000
TrackMate/Fiji [30,31] 37.11 104.30 ∼1000
TimeLapseAnal. [32] — — ?
LEVER [33] — — ?
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Our simulation was able to precisely count the number of cells in each frame at
least until Frame 66. Between Frames 1–66, any deviations from the manual count were
simply because our simulation counted cells as having split into two daughters one frame
before they actually did, not because any cells were lost. However, starting in Frame 67
(see Figure 5), problems with the real video began to impact the quality of not only our
simulation’s count and the counts of the other techniques, but also our “gold standard”
manual count. The real video became blurry as crowding at the center of the colony began
to push certain individual bacteria off the camera’s focal plane under the mass of the
colony. As a result, neither our simple “clean” nor “noisy” binarizations were entirely able
to capture all of the bacteria actually “in” the frame. The combination of blurring and
crowding made it difficult for the cost function to measure the difference between reality
and the synthetic images created from our simulated universes. However, it is still true that
our simulation “knows” some cells are hidden, since they still exist in the simulation even
if they are difficult or impossible to discern in the image.
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Figure 4. The comparison of the counts returned by the top four methods.

4.2. Cell Lineage Trees

As Table 1 makes evident, Cell Universe is neither the best or the worst at cell counting,
although it is significantly better than most, and it was capable of precisely counting
up until the point where even a human observer would have begin to have difficulty
pinpointing cells. However, simply being able to count individuals without knowing who
they are or where they come from is a weak criterion for measuring the success of a tracking
algorithm. A stringent, meaningful standard for tracking requires the algorithm to be able
to actually track not only the motion of every single individual cell, but also each cell’s
entire motion history and family lineage all the way back to the first frame. Cell Universe
handily meets this standard, while to our knowledge no other package does.
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(a) Video Frame 67 (b) Video Frame 68

(c) “Clean” Frame 67 (d) “Clean” Frame 68

(e) “Noisy” Frame 67 (f) “Noisy” Frame 68

Figure 5. Between Frames 67 and 68, our algorithm (as well as all of the other techniques) begins to
encounter difficulty tracking cell movements in the center of the colony as cells move off of the focal
plane (a,b). Some cells removed by our more aggressive “clean” thresholding (c,d) are visible in our
lenient, “noisy” thresholding (e,f).

In the simulation, we give each bacterium a name which is a binary string, and
whenever it splits the two daughters inherit the parent’s name with a 0 or 1 appended.
For example, a bacterium named ‘10’ will split into two children named ‘100’ and ‘101’.
We output the name, position, and orientation of every bacterium in a universe in a
corresponding text file. This naming system enables us to construct a lineage tree of all
bacteria at the end of the simulation. This tree appears in Figure 6a alongside the best
comparison trees from the programs we tested. Observe that our method does not lose
any members, tracks every cell that existed at the beginning of the simulation completely
until the end of the simulation, and captures binary splits—the only kind of split that is
biologically possible. Contrast our lineage tree with the lineage trees produced by the best
of the current methods. In (b,c), cells disappear completely from the simulation or appear
spontaneously from nowhere, and in (d), some cells divide into more than two daughters,
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while (e,f) both losses and over-splitting. We think it worth reiterating that by virtue of our
reliance on physical rules, our model does not make any of these mistakes. We are thus able
to accurately track bacterial lineages even when the bacteria are packed edge-to-edge, a
feat that essentially requires a physical understanding of both the scene and of the plausible
events that can occur between frames.

(a) (b) (c)

(d) (e) (f)

Figure 6. A comparison of six lineage trees. They were generated from the parent-child relationship
provided for each cell found in each frame. Gaps in the lineage trees, resulting from cells being
temporarily untracked for several frames, were filled in. Time starts at the center of the disk and
proceeds outwards. (a) Cell Universe Lineage Tree; (b) SuperSegger Lineage Tree; (c) Lineage Mapper
Lineage Tree; (d) CellProfiler Lineage Tree; (e) TrackMate Lineage Tree; (f) TLM-Tracker Lineage Tree.

4.3. Precise Motility Measurements

Our detailed knowledge of both the current state and the time-line of historical events
allows us to extract information about cell behavior, both individually and in conglomerate,
that is otherwise impossible to get. For example, we can make a plot of distance of a
bacterium from the center of its colony as a function of time where it splits (Figure 7) and
correlate this with which generation a bacterium is in when it splits. Consider Figure 7
beyond frame 70: it is clear that bacteria far from the center of the colony are reproducing
before those near the center; furthermore, our linear tree informs us that the bacteria along
the periphery of the colony near frame 74 are one full generation ahead of the rest of the
colony. Thus, reproduction is consistently occurring faster near the periphery by about
14–17% (since frame 70 contains bacteria in both the 6th and 7th generations). This could be
due to resource depletion near the center of the colony, or genetic programming telling the
closely-packed cells near the center to “slow down” their reproductive rates, or for some
other reason—but the fact that reproduction is occurring faster near the periphery would
be difficult to discern otherwise, and certainly warrants further investigation.
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Figure 7. Scatter plot showing how far each bacterium was from the center of the image as a function
of the time that it split. Red dots represent whichever bacterium is furthest from the center. Past
frame 70 it can be seen that splitting is occurring at the periphery before it does closer to the center,
because beyond frame 70 there are 12 splits occuring at 40 pixels or more from the center, and zero
occurring closer than 40 pixels. Our detailed lineage tree tells us that the resulting daughter cells are
in the 7th generation while those closer to the center are only in the 6th, suggesting bacteria near
the periphery are are reproducing faster than those near the center—an observation that would be
impossible without a correct, detailed family tree.

The ability to directly measure reproduction rates along family lineages illustrates how
our method could conceivably help detect the most aggressively growing individual cells in a
cancer tumor. For instance, researchers working on single-cell genomic sequencing of cancer
cells [34] could use Cell Universe to accurately identify cell lineages inside a tumor that are
reproducing the fastest, and then sequence them to measure correlations between mutations
and cancer aggression. This effect would be virtually impossible to detect without reliable
tracking of every individual in the colony and the resulting highly-accurate family tree, since
without the family tree it would be difficult to impossible to determine each cell’s generation,
in turn making it difficult to discern which cell lines are reproducing fastest.

Recall that our simulation model maintains a precise location and orientation of every
bacterium. Since our synthetic image is precisely fit to the real image (cf. Figure 1), these
positions tend to be extraordinarily precise. For example, since each cell occupies dozens
of pixels, the mean location of the cell’s “center” can be determined to sub-pixel accuracy.
This allows us to infer detailed statistics on cell motility simply by outputting the positions
and orientations of our simulated bacteria, since these are good approximations to that of
the real bacteria they represent. Figure 8 plots histograms of per-frame individual bacteria
movement, rotation, and growth between video frames. We can see that all the movement
and rotation distributions seem to fit a Gaussian curve, while growth in length is more
constant at about 2 pixels per frame. We allow slight negative growth not because it is
feasible in real life, but because it allows the simulation to correct minor over-estimates in
length that can occasionally accumulate over a few consecutive frames.
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(a) (b)

(c) (d)
Figure 8. Distribution of per frame changes in position, orientation, and length, derived from fitting
our synthetic universe images to the corresponding actual video frame. We see that the motion
in the x and y directions tend to be about 1 pixel in magnitude per frame, while rotation average
about 20 degrees and growth about 1–3 pixels per frame. (a) Movement in x-direction (pixels);
(b) Movement in y-direction (pixels); (c) Rotation (degrees); (d) Growth (pixels).

As evidence of how accurate our per-frame motion measurements are, note that the
histogram of motion in the y-direction has a very pronounced skew to the left; motion
in the x direction is also skewed left, though is less pronounced. Keep in mind that
these distributions are measuring microscopic, sub-pixel sized motions of each and every
individual bacterium in each frame, and that these motions are frequently less than a pixel in
size between frames. Together, this population average across the motion of individual
bacteria suggests that, on average, the colony is moving both downwards and to the
left of the image as the video progresses. Interestingly, this conglomerate motion can be
easily observed by comparing Figure 2—in which the few bacteria near the beginning
of the video are close to the center of the frame—and Figure 5, by which time the entire
colony has clearly migrated significantly downwards and to the left in the frame of the
camera—exactly as our per-frame distributions suggest. The fact that minuscule, per-frame
motion of individual bacteria amounting to only about a pixel per frame, averaged across
the population, can easily detect conglomerate motion of the entire colony, attests to the
frame-by-frame accuracy of our model colony compared to the real one.

5. Summary, Conclusions & Future Work

We have introduced Cell Universe, which maintains an internal model of the “universe”
of cells it is tracking—essentially a complete simulation of the relevant variables of the
system being observed—enabling it to “understand” what is happening in the scene,
greatly facilitating accuracy and robustness in tracking every single cell that remains clearly
visible in the video, without losing track of any individual or its pedigree.

History has shown that learning how to simulate a system can aid making predictions
of that system; one could imagine how simulations like those in Cell Universe could aid
prediction. For example, we noted that in Figure 8, the per-frame motion in both the x and
y directions is skewed slightly towards the negative, allowing us to effectively measure the
long-term, large-scale mean motion of the entire colony based on the averaged, short-term
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and small-scale frame-by-frame motions of its individuals. Thus, the statistical properties
of the per-frame motility distributions depicted in Figure 8 have detected a very subtle
effect that even we, as the authors, did not notice in the video until we asked ourselves why
the distributions were skewed. The next question, of course, is why did the culture grow
more quickly towards the bottom left? It could be random, but other possibilities include:
was the glass plate tilted? was there a gradient in the density of nutrients on the glass
plate? If the latter, then we could potentially derive an empirical relationship between the
gradient of nutrient density, and cell movement. Such empirically-derived “laws” could
then be used in other contexts to make statistical predictions about cell motility in the large
as a function of the environment.

Although Cell Universe offers highly accurate tracking and considerable detail about
individual cells, there are several obvious ways in which it could be improved.

• Some systems can capture three-dimensional images whereas Cell Universe currently
only handles two dimensions. This will require 3D models of cells to be developed,
which adds to the size of the parameter space to be searched. In the case of simply-
shaped cells such as bacteria, a model consisting of a cylinder with hemispherical
ends would readily extend the current 2D rectangle with semi-circular ends.

• Cells can have more complex shapes than bacteria, and higher resolution images
may also display interior structure of the cells. Simulating these aspects may require
significantly more parameters that need to be optimized; efficiently dealing with a
larger number of optimization parameters per cell could be challenging, though the
increasing availability of parallel processing may alleviate some of the cost.

• The speed of Cell Universe could be greatly improved by using less costly algorithms
such as simulated annealing to optimize just one universe in place of ensemble simu-
lation.

• Its speed could also be greatly increased by moving from Python to a compiled
language such as C++.
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