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Abstract: There exists a wide range of constraint programming (CP) problems defined on Boolean
functions depending on binary variables. One of the approaches to solving CP problems is using
specific appropriate solvers, e.g., SAT solvers. An alternative is using the generic solvers for mixed-
integer linear programming problems (MILP), but they require transforming expressions with Boolean
functions to linear equations or inequalities. Here, we present two methods of such a transformation
which applies to any Boolean function defined by explicit rules giving values of the Boolean function
for all combinations of its Boolean variables. The first method represents the Boolean function as
a linear equation in the original binary variables and, possibly, binary ancillaries, which become
additional variables of the MILP problem being composed. The second method represents the
Boolean function as a set of linear inequalities in the original binary variables and one additional
continuous variable (representing the value of the function). The choice between the first or second
method is a trade-off between the number of binary variables and number of linear constraints in
the emerging MP problem. The advantage of the proposed approach is that both methods reduce
important cryptanalysis problems, such as the preimaging of hash functions or breaking symmetric
ciphers as the MILP problems, which are solved by the generic MILP solvers. Furthermore, the first
method enables to reduce the binary linear equations to quadratic unconstrained binary optimization
(QUBO), by the quantum annealer, e.g., D-Wave.

Keywords: constrained programming; quadratic unconstrained binary optimization; hash function;
cryptanalysis

1. Introduction

There exists a wide range of constraint programming problems defined on Boolean
functions of binary variables. One of the common approaches to solving CP problems is
using specific appropriate solvers, e.g., SAT solvers. Note that regardless of the SAT-to-
MILP relationships, the transformation of the Boolean expression to linear equations or
inequalities is a challenge in computing science [1–3]. A rich lore of publications presents
the variety of the systems of linear inequalities and linear equations equivalent to basic
logical bi-variant functions; see Table 1.

Returning to the SAT problems, one recalls that it targets checking the satisfiability of
“a long” Boolean expression, presented in one of two special forms: either the conjunctive
normal form (CNF) or the disjunctive normal form (DNF). If the Boolean function has
the DNF or CNF representation, then the generation of the corresponding linear inequali-
ties/equations can be done directly on the base of Table 1 because the DNF and CNF are
compositions of the elementary bi-variant Boolean operations. This, however, requires a lot
of auxiliary variables to be used for interim values of ∧ and ∨ operands. This approach
applies to all Boolean functions, because any of them can be converted into DNF or CNF.
Yet, the main disadvantageous of the “SAT-based” approach to getting the MILP represen-
tation is that it is based on the elementary DNF/CNF operands corresponding to a given
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Boolean function. The number of these operands can be much more than the number of the
function’s variables. Thus, the number of the auxiliary variables denoted by z in Table 1
(fortunately, all these z-s may be assumed continuous; they will take 0–1-values “automati-
cally”) and inequalities/equations may turn out to be very high, even for a function with a
moderate number of variables. Moreover, the resulting system will have a lot of redundant
secondary inequalities/equations following from the original ones.

Table 1. Systems of linear inequalities and linear equations for basic Boolean functions.

Formula Systems of Linear Inequalities Linear Equation

AND x∧y = z {z6 x, z6 y, z> x+y−1, z> 0} x + y− 2z− a = 0
OR x∨y = z {x6 z, y6 z, z6 x+y, z6 1} x + y− 2z + a = 0

XOR x⊕y = z {z6 x+y, z> x−y, z> y−x, z6 2−x−y} x + y− z− 2a = 0
NOR x∨y = z {x6 1−z, y6 1−z, 1−z6 x+y,−z6 0} x + y + 2z− a = 1

NAND x∧y = z {1−z6 x, 1−z6 y, −z> x+y−2, 1−z> 0} x + y + 2z− a = 2

2. Methods

Here, we describe two methods of transforming the cryptographic problem into the
MILP or QUBO. We start our presentation with the approach introduced in Section 2.1. This
approach is a novel method representing the Boolean function as one linear equation in
terms of the original binary variables and, possibly, ancillary binary variables that become
additional variables of the obtained MILP problem. The innovative feature of the approach
is its increase in the number of binary variables of the ILP problems. Ordinarily, it is
believed to even rise the computational complexity of the ILP problem, at least for the
generic ILP solvers. However, the emerging quantum annealers (QA) have inspired an
upsurge in the interest for constraints in the “equation form” because they may be directly
converted to summands of the objective function of the QUBO problems, which suit the
QA [4,5]. For a given Boolean function, this method is based on solving the special CP
programming problems with the quadratic objective function. On the contrary, the second
method formulated in Section 2.2 provides a uniform approach to generating an irreducible
system of linear inequalities for any Boolean function.

In contrast to the past study [6], based on the Grover algorithm [7] allowing for
quadratic improvement, where a pre-image attack on hash functions using gate-based
approach on universal quantum computers was touched upon, we propose to solve the
same problem using quantum annealing devices, which offers an advantage of the possibil-
ity of utilizing more qubits.

For a Boolean function depending on the big number of binary variables, both methods
may become rather time consuming. The approach enabling the speeding up both methods
in the case where a given Boolean function is a composite of the set of Boolean functions
defined on a smaller number of variables is described in Section 2.4. Computing the
complexity of building the system of linear equations and inequalities for Boolean functions
is not a crucial obstacle for the approach. The point is that every cryptography algorithm is
based on a fixed set of Boolean functions and building the linear inequalities for them should
be done only once. In other words, for creating the system of equations or inequalities, we
use numerical approaches for every considered algorithm.

Both proposed methods may be used for representing important cryptanalysis prob-
lems, such as the pre-imaging of hash functions or breaking symmetric ciphers, as the MILP
problems, which are solved by the generic MILP solvers. For the case of the first method
using emerging quantum solvers, more details will be given in Section 2.5. In Section 3, the
first, “equation and binary ancillas”, method is demonstrated for the MD5 and SHA-265
hash functions. Moreover, we consider the symmetric block cipher AES in Section 3.4.
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2.1. Transformation to One Equation with Binary Ancillaries

Let us consider Boolean function f (~x) = y, where~x ∈ {0, 1}Nx and denote~z = (~x, y) ∈
{0, 1}Nx+1. Our goal is to find the linear equation with binary ancilla (let Na be the number
of ancillas) and continuous coefficients:

~cz
T~z + ~ca

T~a = b, (1)

such that it satisfies two conditions:{
∀~z ∈ F ∃~a ∈ {0, 1}Na : ~cz

T~z + ~ca
T~a = b

∀~z 6∈ F ∀~a ∈ {0, 1}Na : ~cz
T~z + ~ca

T~a 6= b
, (2)

where F is the feasible region ( f (x) = y). The converting is committed using a constraint
programming (CP) solver (e.g., CPLEX). The aim of the CP solver is to find ~cz, ~ca, b coeffi-
cients; after obtaining them, we can easily build Equation (1). For the running solver, we
have to reduce the problem from Equation (2) into a CP problem. For this purpose, we
consider each constraint separately. In the beginning, imagine the simplest CP problem,
which has no objective function or constraints. In the first property, each feasible pair (~x, y)
adds the new constraint with a new ancilla:

~cz
T~z + ~ca

T~az = b . (3)

In the second property, for each pair (~x, y) from unfeasible configurations, we add
new 2Na constraints:

∀~av ∈ {0, 1}Na : ~cz
T~z + ~ca

T~av 6= b . (4)

Eventually, we have |F|+ 2Na |F∗| constraints (|F|, |F∗|—number of feasible and un-
feasible configurations) and Nx + Na + 1 + |F| · Na variables. This “homogeneous” CP has
many solutions (multiplying all the coefficients by the same number also gives a solution).
We prefer integer coefficients with a small absolute value; therefore, let ~cz, ~ca, b be integers
with a range of −100–100 (as we will see later, it is enough for finding coefficients). For
obtaining the small absolute value from the CP solver, we add into the objective function in
the minimization problem the following term:

g += ~cz
2 . (5)

In addition, we would like obtain a positive value for the first element in ~cz[0], so we
add a new term as follows:

g −= ~cz[0] . (6)

Moreover, we expand the cost function with a large fine (λ� 1) for ancilla coefficients:

g += λ · ~ca
2 . (7)

This term is added because linear Equation (1) with the minimum number of ancillaries
is much more preferable. Finally, we can write the full CP problem (with bi-linear equation
constraints in ~ca, ~az) for finding the linear equation:

~cz
2 − ~cz[0] + λ · ~ca

2 → min
~cz ,~az

subject to

~cz
T~z + ~ca

T~az = b (|F| constraints) ,

~cz
T~z + ~ca

T~av 6= b (2Na |F∗| constraints) ,

(8)

where ~av are the fixed values of variables ~az. Problem (8) is the mixed-integer CP and
CPLEX CP optimizer can handle this problem. However, the problem with the chosen
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number of ancillary variables may be infeasible. In this case, we add one more ancilla and
try to solve the updated problem again. If the new problem is also infeasible, we add one
more ancilla and so on. We continue to increase the number of ancillary variables until a
feasible solution is found.

Consider, for example, AND gate (y = x1 AND x2) for which we will find the corre-
sponding linear equation. It has the following truth table:

x1 x2 y
0 0 0 feasible
0 1 0 feasible
1 0 0 feasible
1 1 1 feasible
0 0 1 infeasible
0 1 1 infeasible
1 0 1 infeasible
1 1 0 infeasible

(9)

All feasible combinations generate four constraints, whereas infeasible configurations
add eight inequalities. In total, the CP problem is as follows:

min
(

cx1
2 + cx2

2 + cy
2 − cx1 + λ · ca

2
)

such that

cx1 · 0 + cx2 · 0 + cy · 0 + caa0 = b

cx1 · 0 + cx2 · 1 + cy · 0 + caa1 = b

cx1 · 1 + cx2 · 0 + cy · 0 + caa2 = b

cx1 · 1 + cx2 · 1 + cy · 1 + caa3 = b

Feasible part

cx1 · 0 + cx2 · 0 + cy · 1 + ca · 0 6= b

cx1 · 0 + cx2 · 0 + cy · 1 + ca · 1 6= b

cx1 · 0 + cx2 · 1 + cy · 1 + ca · 0 6= b

cx1 · 0 + cx2 · 1 + cy · 1 + ca · 1 6= b

cx1 · 1 + cx2 · 0 + cy · 1 + ca · 0 6= b

cx1 · 1 + cx2 · 0 + cy · 1 + ca · 1 6= b

cx1 · 1 + cx2 · 1 + cy · 0 + ca · 0 6= b

cx1 · 1 + cx2 · 1 + cy · 0 + ca · 1 6= b



Infeasible part

(10)

Each of the new variables, a0, a1, a2, a3, ensures that there exists at least one value of
ancilla which satisfies the linear equation. After solving this CP problem, we obtain the
following linear equation:

x1 + x2 − 2y− a = 0. (11)

By this approach, we can get linear equations for basic bi-variant Boolean functions:

Formula Linear equation
AND x ∧ y = z x + y− 2z− a = 0
OR x ∨ y = z x + y− 2z + a = 0

XOR x⊕ y = z x + y− z− 2a = 0
NOR x ∨ y = z x + y + 2z− a = 1

NAND x ∧ y = z x + y + 2z− a = 2

(12)
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2.2. Transformation to a System of Linear Inequalities

Let us take the Boolean function f : Bn→{0, 1} of n binary variables ~x = (x1, x2, . . ., xn).
Here Bn .

={~x : xi∈{0, 1}}, Bn⊂Rn is a set of all 2n vertices of an n-dimensional unit cube
Un .

= {~x : 0 6 xi 6 1}, i.e., the set of all 0–1 arguments of n-variant Boolean function.
For a given Boolean function f , we consider (as in the previous section) the set F of 2n

vectors in Rn+1 (a kind of graph of function f ) and their convex hull:

F .
= {(~x, f (~x)):~x∈Bn},

U[F] .
= conv(F).

(13)

From the definitions, we have F⊂Bn+1 and U[F]⊂Un+1.
Let us establish important properties of vectors from F and polyhedron U[F].

Theorem 1. Let F and U[F] be defined by (13). Then, we have the following:

(a) Every vector (~x, f (~x))∈F is an extreme point of convex hull U[F] (i.e., (~x, f (~x)) is a vertex of
polyhedron U[F]);

(b) If (~x, y)∈U[F] and ~x∈Bn then y = f (~x).

Proof. Let us take any (~xk, f (~xk))∈F. If it is not an extreme point of U[F], then there exists
a nontrivial convex combination (hereinafter ~xq∈Bn(q = 1:2n))

(~xk, f (~xk)) = ∑
q=1:2n

λq(~xq, f (~xq)), λq > 0, λk = 0, ∑
q=1:2n

λq = 1. (14)

However, (14) implies impossible equation

~xk = ∑
q=1:2n

λq~xq, λq > 0, λk = 0, ∑
q=1:2n

λq = 1,

because ~xk∈Bn is a vertex of unit cube Un and cannot be represented as a convex combina-
tion of other vertices of U[F]. So, item (a) is proved.

The proof of item (b) is quite similar. Let ~xk∈Bn. If (~xk, y)∈U[F], then

(~xk, y)) = ∑
q=1:2n

λq(~xq, f (~xq)), λq > 0, ∑
q=1:2n

λi = 1. (15)

So, we have
~xk = ∑

q=1:2n
λq~xq, λq > 0, ∑

q=1:2n
λq = 1,

which implies λk = 1 and y = f (~xk) (see (15)). Theorem 1 is proved.

Thus, the function f may be uniquely defined by corresponding convex polyhedron
U[F]. For example, see in Figure 1 examples of polyhedrons of Boolean functions on
two variables.

As it is well known in the convex analysis (e.g., see the classical book [8], Section 19)
any polyhedron may be uniquely represented either by the set of its vertices, the so-called
V-representation, or by the system of linear inequalities, the so-called H-representation.
The sought system of the linear inequalities is the H-representation of the polyhedron U[F].
Therefore, there exists a system of linear inequalities of n + 1 variables (~x, xn+1):

S(~x, xn+1) = {ai + li(~x) + bixn+1 > 0 : i = 1, . . . , m} (16)

(where ai, bi, bi 6= 0 are scalars, and li(~x) are linear functions of n variables) such that

U[F] = {(~x, xn+1) : ai + li(~x) + bixn+1 > 0 : i = 1, . . . , m}.

Finally, from Theorem 1 we have
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∀~x ∈ Bn : { f (~x) = xn+1} ⇔ {ai + li(~x) + bixn+1 > 0 : i = 1, . . . , m} , (17)

i.e., for any ~x ∈ Bn, f (~x) = xn+1 if and only if S(~x, xn+1) holds. It is important that due to
item (b) of Theorem 1, we do not need to assume that xn+1 is a discrete, 0–1, variable. For
any 0–1 vector ~x, the system S(~x, xn+1) has the only solution (~x, xn+1), where xn+1= f (~x).

(a) (b)

Figure 1. Examples of polyhedrons for bi-variant Boolean functions. (a) XOR function. (b) AND
function.

In Refs. [9–11], one can find a description of one of the known algorithms to obtain
the V-representation from an H-representation and vice versa. It is based on the pivoting
method (similar to that used in the simplex method of linear programming) of polyhedron
vertices/facets enumeration.

There are a number of licensed and free software to handle polyhedra. The following
two (free and open source) are rather popular: the CDD [12] and the LRS [13]. Both
applications have similar functionality and are compatible in data formats (input and
output ones). In particular, they can calculate V- and H-representations of convex hulls of a
finite set of points in Euclidean spaces. It is significant that the irreducible H-representation
is produced, i.e., all the redundant linear inequalities are eliminated. It decreases the
complexity of the resulting MILP representation of discrete optimization problems with
Boolean functions.

The available experience of using the CDD and LRS suggests to choose the LRS
application for practical usage of the approach. It is slightly newer and has parallel
implementation of the reverse search algorithm (on which both above applications are
based). Moreover, in the LRS, all the computations may be done without any loss of
accuracy in the case of polyhedra with integral-valued vertices (as it is with U[F]). All linear
systems for basic Boolean bi-variant functions presented in Table 1 may be obtained by the
approach outlined above. We take as an example the following Boolean function that is
used as a round function in cryptographic algorithms

J(x1, x2, x3) = (x1∧x2)∨(x1∧x3)∨(x2∧x3) = x4 (18)

to compare “handmade” and “automatically generated” systems of inequalities.
As it was mentioned in the Introduction, any Boolean function given explicitly in the

DNF or CNF form may be presented as a system of linear inequalities on the base of such
representations for elementary bi-variant Boolean functions (see Table 1). Here, we need
four ancillary continuous variables pj, qj, uj, vj. Let

pj = (x1∧x2), qj = (x1∧x3), uj = (pj∨qj), vj = (x2∧x3).
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So, we have x4 = uj∨vj. The systems for AND and OR functions from Table 1 let us
obtain the following system equivalent to (18)

pj 6 x1, pj 6 x2, pj > x1 + x2 − 1, pj > 0,

qj 6 x1, qj 6 x3, qj > x1 + x3 − 1, qj > 0,

vj 6 x2, vj 6 x3, vj > x2 + x3 − 1, vj > 0,

pj 6 uj, qj 6 uj, uj 6 pj + qj, uj 6 1,

uj 6 x4, vj 6 x4, x4 6 uj + vj, x4 6 1,

(19)

and we do not need to require that x4, pj, qj, uj, vj are binaries. Thus, the expression (18)
with a 3-variant Boolean function was represented as linear system with 5 continuous
ancillas and 20 inequalities.

The LRS gives a more compact system with eight inequalities and only one continuous
ancilla, x4. The reason is that instead of the successive construction of the final system
from elementary bi-variant Boolean functions and intermediate (continuous) ancillary
variables, the LRS application treats Boolean function as a whole, i.e., as the corresponding
polyhedron U[J] in R4.

1
1
1
0
1
0
0
0


+



−1 −1 0 1
−1 −1 −1 2

0 −1 −1 1
1 0 1 −1
−1 0 −1 1

1 1 0 −1
0 1 1 −1
1 1 1 −2




x1
x2
x3
x4

>−→[0] (20)

Let us take, for example, a more complex expression with five binary variables
x1, x2, x3, x4, x5, x6:

x1⊕x2⊕x3⊕x4⊕x5 = x6 (21)

is equivalent to the system (22) of linear inequalities (in vector-matrix form). Because
x1, x2, x3, x4, x5 are all binaries, we exclude redundant trivial inequalities (06 x1 6 1) and
those with zero coefficients for the x6 variable. As a result, we have the following 34 linear
inequalities, and an output value x6 will be binary “automatically”:
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

1
0
4
4
4
4
4
2
2
2
0
0
0
0
0
0
2
2
2
2
2
2
2
2
2
2
2
2
2
4
2
2
2
2



+



0 0 0 0 0 −1
0 0 0 0 0 1
−1 −1 −1 −1 −1 1
−1 −1 −1 −1 1 −1
−1 1 −1 −1 −1 −1

1 −1 −1 −1 −1 −1
−1 −1 1 −1 −1 −1

1 −1 −1 1 1 −1
−1 1 −1 1 1 −1

1 1 −1 −1 −1 1
1 −1 1 1 1 1
1 1 1 1 1 −1
1 1 1 1 −1 1
1 1 1 −1 1 1
1 1 −1 1 1 1
−1 1 1 1 1 1

1 1 1 −1 −1 −1
1 1 −1 −1 1 −1
1 1 −1 1 −1 −1
1 −1 1 1 −1 −1
−1 1 1 1 −1 −1
−1 −1 1 1 1 −1

1 −1 1 −1 1 −1
−1 1 1 −1 1 −1
−1 1 1 −1 −1 1

1 −1 1 −1 −1 1
−1 1 −1 −1 1 1

1 −1 −1 −1 1 1
−1 −1 1 −1 1 1
−1 −1 −1 1 −1 −1
−1 1 −1 1 −1 1

1 −1 −1 1 −1 1
−1 −1 1 1 −1 1
−1 −1 −1 1 1 1





x1
x2
x3
x4
x5
x6

>
−→
[0] (22)

There are two main disadvantageous of the demonstrated approach:

(1) To obtain polyhedron U[F] for n-variant function f : Bn→{0.1}, we need to calculate
all 2n values f (~x) for all ~x∈Bn;

(2) The complexity of the facet enumeration algorithm grows dramatically as the value
of n increases.

For example, let us take the following function of 10 variables

f (x1, x2, . . ., x10) =

{
1, if ∑

i=1:10
xi = 0 (mod 3);

0, otherwise

The LRS application gives a desired system with 2691 inequalities (with 10 binary and
one continuous variables) in 55 min of running on one half of the computing power of Intel
i7 @ 3.4 GHz (4 CPU core of 8 was used).

At this point, we cannot offer analytical evaluations neither for the upper nor for
the lower bounds of complexity of the reverse search algorithm implemented by the
LRS application, nor for the number of inequalities (i.e., number of facets of polytope
corresponding to 0–1 function of binary variables). However, numerical experiments with
the number of 10 variant functions (on the Intel i7 computer mentioned above) give a wide
range of run times (from an hour to 10 min) and various numbers of inequalities (from more
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than 2500 to 12). So, the complexity and the number of inequalities depend substantially
on the specific considered Boolean function.

2.3. Comparison of Two Ways of Reducing Boolean Expressions to MILP Problem

So, we have two approaches of reducing the cryptography problem to the MILP
problem:

1. By equations with binary ancillaries, see Section 2.1—Boolean expressions of cryptog-
raphy algorithms are reduced to equations with binary ancillaries; CPLEX-solver is
used to obtain coefficients of the desired equation for a given Boolean expression;

2. By inequalities without binary ancillaries, see Section 2.2—Boolean expressions are
replaced with systems of linear inequalities without any extra binary variables;
polyhedra-handling application LRS [13] is used to generate these inequalities in
explicit form.

The first approach is suited mainly to quantum annealers (such as D-Wave) because all
equations may be directly converted to summands of the QUBO criterion (just by squaring).
At the same time, both MILP and QUBO problems may be (theoretically) solved by classical,
generic solvers (CPLEX, Gurobi, SCIP, CBC, etc.). However, extra binary ancillaries may
increase the computing complexity of the problem for classical solvers.

It is important to mention that in the context of the transformation of the equation with
a Boolean function to a summand of QUBO objective function (as a penalty for violating that
equation), another approach exists. For example, it is known [14] that equation x1∧x2 = y
is equivalent to bi-linear penalty P(x1, x2, y) = x1x2−2x1y−2x2y+3y (without any binary
ancilla, which appears in the equation for XOR in (12)) in the following sense:

(x1∧x2 = y)⇔ (P(x1, x2, y) = 0),
(x1∧x2 6= y)⇔ (P(x1, x2, y)> 1).

(23)

The second approach is suited to classical MILP solvers only. Theoretically, the
absence of binary ancillaries may give an easier MILP problem than that obtained by the
first approach. The number of binary variables of the resulting MILP problem will be
equal to the number of unknown bits in the hash pre-image problems. However, it is
still impossible to evaluate the number of linear inequalities. Comparison of the first and
second approaches requires intensive computing experiments. For some Boolean function,
there is another, hybrid, method based on the equation with binary ancillas and on a couple
of inequalities. This method enables replacing one binary variable with a continuous one.

Assume that we have representation of the Boolean function f : Bn→{0, 1} as a linear
equation defined in (1) and (2). Let us rewrite linear Equation (1) to pick out the summand
with the y variable, keeping the value of the function

cyy + ~cx
T~x + ~ca

T~a = b (24)

The method is based on the following simple statement.

Theorem 2. Let, in (24),
∣∣cy
∣∣ = 1; all components of vectors ~cx, ~ca and scalar b are all integers.

Let the following inequalities hold also
06 y6 1. (25)

Then Equation (24) and inequalities (25) imply that y is binary “automatically”. In other
words, in (2), we can drop the constraint that y must be binary variable.

Proof. The proof is very simple. The assumption that ~cx, ~ca and b are all integers means
that if (24) holds, then y is an integer. From inequality (25), we obtain that y can be either 0
or 1.

Theorem 2 enables us to reduce the complexity of the corresponding MILP by replac-
ing one binary variable with a continuous one at the extent of two additional inequalities.
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Unfortunately, of the elementary Boolean function, only the ⊕ satisfies this statement.
Another example is the round function H(B, C, D), presented further in Table 2.

Table 2. Nonlinear functions in MD5 hash function.

Boolean Formula Linear Equation

F(B, C, D) (B ∧ C) ∨ (¬B ∧ D) B + 3C + 2D− 6F + 2a0 − 3a1 + 2a2 = 0
G(B, C, D) (B ∧ D) ∨ (C ∧ ¬D) 3B + 2C + D− 6G− 3a0 + 2a1 + 2a2 = 0
H(B, C, D) B⊕ C⊕ D B + C + D− H − 2a = 0
I(B, C, D) C⊕ (B ∨ ¬D) B + 2C− D− 2I + a0 − 4a1 = 0

2.4. The Case of Boolean Functions with Many Binary Arguments

Both methods of representation of the Boolean function, either as one linear equation
with original variables and binary ancillaries, or as a system of linear inequalities without
binary ancillaries, may require a long computing time. If so, the following workaround
may be used, based on the representation of Boolean function as a composition of Boolean
functions with fewer arguments.

Take the Boolean function f (~x) : Bn→{0, 1}, which may be represented as composition
of K Boolean functions with fewer arguments:

f (~x) = f (x1, x2, . . . , xn) = Φ(~Y(~x)) = Φ
(

Y1(~ξ1(~x)), Y2(~ξ2(~x)), . . ., YK(~ξK(~x))
)

, where

∀k∈{1 . . . K} :
(

Yk(~ξk) : Bnk→{0, 1},~ξk(~x) =
{

xν(k,j):j ∈ {1 . . . nk}
}

, nk�n
)

.
(26)

2.4.1. Linear Equations with Binary Ancillaries for Composition of Boolean Functions

Let the function Φ(~Y) have the following representation as a linear equation with
binary ancillaries: (

~Y∈BK, Φ(~Y) = z
)
⇔
(
∃~α∈BM : E(~Y,~α, z) = 0

)
, (27)

where E(~Y,~a, z) is an affine function (there may be some nonzero constant) on original
binary variables ~Y; a set of M binary ancillaries~a; and binary scalar z is a value of Φ(~Y).

Then, let us assume that we know the similar representation for all “sub-functions”
Yk (k = 1:K): (

~ξk∈Bnk , Yk(~ξk) = yk

)
⇔
(
∃~ak∈Bmk : ek(~ξk,~ak, yk) = 0

)
, (28)

where ek(~ξk,~ak, yk) is an affine function on a subset of original binary variables ~ξk(~x); a set
of mk binary ancillaries~ak; and binary scalar yk is a value of Yk(~ξk).

Now we can represent original function f (·) (26) as a system of K+1 linear equa-

tions and K+M+
K
∑

k=1
mk binary ancillaries (components of vectors ~Y∈BK, ~α∈BM and

~ak∈Bmk , k =1 :K):

(
~x∈Bn, f (~x)=Φ(~Y(~x))=z

)
⇔



∃~α∈BM : E((y1, y2, . . . , yK),~α, z) = 0;

∃~a1∈Bm1 : e1(~ξ1(~x),~a1, y1) = 0;

∃~a2∈Bm2 : e2(~ξ2(~x),~a2, y2) = 0;

· · ·

∃~aK∈BmK : ek(~ξK(~x),~aK, yK) = 0.

(29)
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2.4.2. Linear Inequalities without Binary Ancillaries for Composition of Boolean Functions

Let function Φ(~Y) have the following representation as a system of linear inequalities
without auxiliary binary variables (see (16) and (17)):(

~Y∈BK, Φ(~Y) = z
)
⇔
({

αi + Li(~Y) + βiz > 0 : i = 1, . . . , M
})

, (30)

where Li(·) are linear functions. Let the similar representation hold for all functions
Yk (k=1 . . . K):(

~ξk∈Bnk , Yk(~ξk) = yk

)
⇔
({

ak,i + lk,i(~ξk) + bk,i yk > 0 : i = 1, . . . , mk

})
, (31)

where lk,i(~ξk), i = 1 . . . mk, k = 1 . . . K, are all linear functions.

Now we have the representation of the original function as a system of M+
K
∑

k=1
mk

linear inequalities and original n-vector of binary variables~x, and K+1 continues ancillaries
yk (k = 1 . . . K) and z:

(
~x∈Bn, f (~x)=Φ(~Y(~x))=z

)
⇔



{
αi + Li(~Y) + βiz > 0 : i = 1, . . . , M

}
;{

a1,i + l1,i(~ξ1(~x)) + b1,i y1 > 0 : i = 1, . . . , m1

}
;{

a2,i + l2,i(~ξ2(~x)) + b2,i y2 > 0 : i = 1, . . . , m2

}
;

· · ·{
aK,i + lK,i(~ξK(~x)) + bK,i yK > 0 : i = 1, . . . , mK

}
.

(32)

2.5. Transform Subproblems from the MILP to QUBO

In this section, we consider converting our MILP problem into the QUBO. The QUBO
representation provides an opportunity to run the problem at quantum annealers (e.g., at
the D-Wave computer) or at other machines capable of finding the ground state of the Ising
model. Let us take the following linear system:

A~x =~b⇔∑
j

aijxj = bi (∀i ∈ {0 . . . M− 1}), (33)

where A ∈ RM×N ,~b ∈ RM,~x ∈ {0, 1}N . Move all terms from the right-hand side to the left:

∑
j

aijxj − bi = 0 (34)

Square all terms in the lhs and sum up all of them:(
∑

j
a0jxj − b0

)2

+

(
∑

j
a1jxj − b1

)2

+ · · ·+
(

∑
j

a(M−1)jxj − bM−1

)2

(35)

One can see that minimizing the expression (35) is equivalent to finding the solution of
Equation (33). Summing up, we write the equivalent form for MILP and QUBO as follows:

A~x =~b⇔ min
~x

(∑
j

a0jxj − b0

)2

+

(
∑

j
a1jxj − b1

)2

+ · · ·+
(

∑
j

a(M−1)jxj − bM−1

)2
 (36)
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3. Results
3.1. Transform Addition Modulo into the MILP

The addition modulo can be represented in the MILP form as well. Let us take the
following addition modulo with the multiply input terms:

K

∑
i=0

ai = b
(

mod 2N
)

(37)

where ai, b ∈ Z. Consider each bit in the equation. Let us take ai = ∑K
j=0 aij2j, b = ∑K

j=0 bj2j

(aij or bj are j-th bit of ai or b number respectively). Then, we can write the system of
equations that is equivalent to the previous Equation (37):

N

∑
i=0

ai0 = b0 +
C0

∑
i=0

ξi,02i

1−1

∑
i=0

ξCi−1,i +
N

∑
i=0

ai1 = b1 +
C1

∑
i=0

ξi,12i

2−1

∑
i=0

ξCi−1,i +
N

∑
i=0

ai2 = b2 +
C2

∑
i=0

ξi,22i

...
K−1

∑
i=0

ξCi−1,i +
N

∑
i=0

aiK = bK +
CK

∑
i=0

ξi,K2i

(38)

where Ci is a number of carried bits for the i-th bit of a or b. As one can see, Equation (38) is
the MILP problem.

3.2. The MD5

In this subsection, we consider converting a pre-image attack on hash functions into
an optimization problem. The hash functions, H(x), possesses two features:

1. For any x number, there is easy to compute H(x).
2. For any y number, there is hard to find x such that H(x) = y.

The pre-image attack tries to break the second feature. There is a paper in which
researchers tried to commit this attack [15]. They used local collision, partial fixing and
other classical cryptography techniques. The final complexity in the mentioned paper is
2123.4. Unfortunately, this is not practical at all.

Another approach based on the SAT for the MD-family hash functions was considered
in Refs. [16,17]. In these papers, they used an idea similar to what we use in this work, but
they converted the pre-image attack to the SAT problem as we convert it into the MILP
problems. In Ref. [16], they successfully committed an attack on the MD4 with 39 rounds
under Dobbertin’s conditions [18].

Here, we develop an efficient technique to obtain the solution. Namely, we divide the
MD5 hash function into simple operations, which we can easily convert to the MILP or
QUBO (Figure 2). Each circle depicts an operation; the white rectangle is a 32 bit number. At
a first step, we note that all round functions make the same operations, except a nonlinear
function. Therefore, the MILP or QUBO will appear in the similar way. Taking a closer look
at the round function, we notice that it consists of the following types of operations: the
nonlinear function, addition modulo and shift. Nonlinear functions are used in the MD5 to
act on 32 bit numbers separately, and thus, we can find the MILP/QUBO representation
for each bit separately. Table 2 gives all nonlinear functions in the MD5 and the respective
linear equations for them.
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Figure 2. Dividing MD5 hashing to “simple” problems. The circles denote operations and rectangles
indicate integer numbers.

The addition modulo is considered in Section 3.1. For implementing a shift operation
(left or right bit rotation), one should just rename the corresponding variables. Let us
consider the linear system ~Φ(~x,~y) = ~b, where ~x and ~y are vectors of variables, and ~b
is a fixed vector of parameters. We need to add a shift operation to ~x and to leave ~y
unchanged. We denote by ~x ′ the “shifted” ~x. By definition, ~x = (x1, x2, . . . , xN), then
~x ′ = (xs+1, xs+2, . . . , xN , x1, x2, . . . , xs) in the case of right rotation (x′ = x >>> s) and
~x ′ = (xN−s, xN−s+1, . . . , xN , x1, x2, . . . , xN−s−1) in the case of left rotation (x′ = x <<< s).
So, the new linear system (after shift) is just the system of simple equations (“reindexing”)
~Φ′(~x,~y) =~b⇔ ~Φ(~x ′,~y) =~b.

After converting all types of operations in the MILP, we are ready to build it for the
whole MD5. Before doing that though, let us shortly revise the definition of MD5. The
hash function transforms the 512 bit input message into the hash value. The given message
divides into 16 pieces of 32 bit numbers, Mi(i ∈ 0 . . . 15). In addition, the MD5 has four
32-bit constants, which we define as A0, B0, C0, D0, respectively. The calculating of the
hash value consists of rounds. The MD5 has 64 rounds. In each round, we calculate some
intermediate hash value as follows:

Ak = Dk−1, Bk =
(

Fk(Bk−1, Ck−1, Dk−1) + Ak−1 + Mµ(k) + Kk

)
<<<sk + Bk−1,

Ck = Bk−1, Dk = Ck−1

(39)

where k ∈ 1 . . . 64 is the number of rounds, Kk and sk are given constant numbers, and µ(k)
are as follows:

1. µ(k) = k− 1 (k ∈ 1 . . . 16);
2. µ(k) = 5k− 4(mod 16) (k ∈ 17 . . . 32);
3. µ(k) = 3k + 2(mod 16) (k ∈ 33 . . . 48);
4. µ(k) = 7k− 7(mod 16) (k ∈ 49 . . . 64).

Here Fk is one of the nonlinear round functions. Depending on the round number, we
have the following:
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1. Fk(B, C, D) = F(B, C, D) = (B ∧ C) ∨ (!B ∧ D) (k ∈ 1 . . . 16);
2. Fk(B, C, D) = G(B, C, D) = (B ∧ D) ∨ (C∧!D) (k ∈ 17 . . . 32);
3. Fk(B, C, D) = H(B, C, D) = B⊕ C⊕ D (k ∈ 33 . . . 48);
4. Fk(B, C, D) = I(B, C, D) = C⊕ (B∨!D) (k ∈ 49 . . . 64).

The final hash value of the MD5 is compound of A64, B64, C64, D64 blocks. Comparing
with the notation from the beginning (H(x) = y), x is divided into Mk blocks, y is the
compound of A64, B64, C64, D64 blocks. More details can be found in [19].

In the Table 2, we specified all nonlinear functions used in MD5. Denote by
Lk(Bk−1, Ck−1, Dk−1, FFk, αk) = 0 the linear system of equations for nonlinear operations in
the k-th round. This system consists of the linear equation for each bit of Bk−1, Ck−1, Dk−1
and is chosen from Table 2 in accordance with the hash function round. Here, FFk is the
output number of Fk(Bk−1, Ck−1, Dk−1), and αk is a vector variable which denotes all ancilla
bits. For example, let us consider the 33-rd round and let all the numbers in the blocks be
2 bit for simplicity’s sake. In the 33-rd round, H(B, C, D) is used from Table 2. Then, the
linear system L33(B32, C32, D32, FF33, α33) = 0 becomes

L33(B32, C32, D32, FF33, α33) = 0 :=

{
B32,0 + C32,0 + D32,0 − FF33,0 − 2α33,0 = 0
B32,1 + C32,1 + D32,1 − FF33,1 − 2α33,1 = 0

(40)

For the addition modulo, we use another notation, Σ(A, B, . . . , D, R, ξ), where A, B, . . . , D
are input numbers, R is the output one and ξ is a vector variable of all ancilla bits as in
the nonlinear function case. Let us write an explicit formula for Σ in the simple case. For
example, consider two 2-bit summands, then Σ is as follows:

Σ(A, B, R, ξ) = 0 :=

{
A0 + B0 = R0 + 2ξ0

ξ0 + A1 + B1 = R1 + 2ξ1
(41)

Using the MD5 round definition and Figure 2, we can write the linear system for one
round. Consider the k-th round:

Lk(Bk−1, Ck−1, Dk−1, FFk, αk) = 0

Σ
(

FFk, Ak−1, Mµ(k), Kk, FMk, ξk,1

)
= 0

Σ(FMk <<< sk, Bk−1, Bk, ξk,2) = 0
Ak = Dk−1, Ck = Bk−1, Dk = Ck−1

(42)
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Combining all of Equation (42), we obtain the MILP for the whole MD5:

L1(B0, C0, D0, FF1, α1) = 0

Σ
(

FF1, A0, Mµ(1), K1, FM1, ξ1,1

)
= 0

Σ(FM1 <<< s1, B0, B1, ξ1,2) = 0

A1 = D0, C1 = B0, D1 = C0

. . .

Lk(Bk−1, Ck−1, Dk−1, FFk, αk) = 0

Σ
(

FFk, Ak−1, Mµ(k), Kk, FMk, ξk,1

)
= 0

Σ(FMk <<< sk, Bk−1, Bk, ξk,2) = 0

Ak = Dk−1, Ck = Bk−1, Dk = Ck−1

. . .

L64(B63, C63, D63, FF64, α64) = 0

Σ
(

FF64, A0, Mµ(64), K64, FM64, ξ64,1

)
= 0

Σ(FM64 <<< s64, B63, B64, ξ64,2) = 0

A64 = D63, C64 = B63, D64 = C63

(43)

with the final hash value A64, B64, C64, D64.
Now, we calculate the number of binary variables in the MILP of the MD5

hash function. In the zeroth round, we have A0, B0, C0, D0 and all Mi(i ∈ 0 . . . 16). They are
(4 + 16) · 32 = 640 bits. Each Lk adds Fk and αk variables, and Fk in each round consists of
32 bits, whereas the number of bits in αk depends on a round. From 1 to 32 rounds, αk has
3 · 32 = 96 bits; from 33 to 48, αk has 32 bits; and from 49 to 64, αk has 64 bits. Finally, all Lk
have 32 · 64 + 96 · 32 + 32 · 16 + 64 · 16 = 6656 new bits.

Each ξk,1 has only 2 bits. One can easily check that because four terms generate 2 carry
bits and in the next addition, six terms (4 + 2) also produce 2 carry bits. Taking into account
a new bit for FMk and 32 bits, we conclude that Σ adds 3 · 32 = 96 bits in the case of
Σ
(

FFk, Ak−1, Mµ(k), Kk, FMk, ξk,1

)
= 0. Even easier is with ξk,2, which always has only

1 bit. Therefore, Σ(FMk <<< sk, Bk−1, Bk, ξk,2) = 0 adds 64 bits. In total, all Σ in all rounds
generate 10,240 new bits. Taking into consideration A0, B0, C0, D0 and all Mk and excluding
A64, B64, C64, D64, we get 17,408 bits in total.

3.3. The SHA-256

The SHA-256 hash function has a similar structure as well as the MD5 (see Section 3.2)
and also has 64 rounds of the similar transformation; see Figure 3. However, there are some
differences (for more details, see [20]), namely the following:

1. Each intermediate hash value has 256 bits, which is divided into 8 blocks with 32 bits.
2. A round has four nonlinear functions (Ch, Ma, Σ1, Σ2).
3. The input message has 512 bits (16 blocks with 32 bits), and it is extended to 64 blocks

using right circular shift and XOR.

Nevertheless, we can convert the SHA256 into MILP (QUBO) as well. In Table 3, we
specified all nonlinear functions used in SHA256 and the relevant linear equation. All the
MILPs were built by the method from Section 2.1.
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Figure 3. Schematic round of SHA-256 hash function.

Table 3. Non-linear functions in SHA-256 and relevant linear equations.

Boolean Formula Linear Equation

Ch(E, F, G) = (E∧ F)⊕ (¬E ∧G) E + 3 F + 2G− 6Ch + 2a0 − 3a1 + 2a2 = 0

Σ0(A2, A13, A22) = A2 ⊕ A13 ⊕ A22 A2 + A13 − A22 + Σ0 − 2a0 = 0

Σ1(A−6, A−11, A−25) = A−6 ⊕ A−11 ⊕ A−25 A−6 + A−11 − A−25 + Σ1 − 2a0 = 0

Ma(A, B, C) = (A∧ B)⊕ (A∧C)⊕ (B∧C) A + B + C− 2Ma− a0 = 0

The same is with the section about the MD5 (Section 3.2), where we can write the MILP
for one round as follows:

LCh(Ek−1, Fk−1, Gk−1, CHk, αk,1) = 0,
LΣ1(Ek−1, SIGk,1, αk,2) = 0,
LΣ0(Ak−1, SIGk,0, αk,3) = 0,
LMa(Ak−1, Bk−1, Ck−1, MAk, αk,4) = 0,
Σ(Hk−1, SIGk,1, CHk, Wk, Kk, Sk,1, ξk,1) = 0,
Σ(Dk−1, Sk,1, Ek, ξk,2) = 0,
Σ(Sk,1, MAk, Ak, ξk,3) = 0,
Bk = Ak−1, Ck = Bk−1, Dk = Ck−1, Fk = Ek−1, Gk = Fk−1, Hk = Gk−1 ,

(44)

where LCh, LΣ1 , LΣ0 , LMa are linear systems for nonlinear functions from Table 3, Σ is a sys-
tem for the addition modulo operation, all α and ξ are vectors of binary ancillas for nonlinear
and addition transformations, respectively, Wk is a block of extended an input message, Kk
is a given round constant, and Ak−1, Bk−1, Ck−1, Dk−1, Ek−1, Fk−1, Gk−1 and Hk−1 are blocks
of intermediate hash values from the previous round, whereas Ak, Bk, Ck, Dk, Ek, Fk, Gk and
Hk are hash values of the current round.
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For extending an input message SHA-256, we use the iterative process, where the
first 16 blocks are the same as the input message Wk = Mk (k ∈ 1 . . . 16), and the next
Wk (k ∈ 17 . . . 64) is computed as follows:

βk,0 = (Wk−15 >>> 7)⊕ (Wk−15 >>> 18)⊕ (Wk−15 >> 3) (45)

βk,1 = (Wk−2 >>> 17)⊕ (Wk−2 >>> 19)⊕ (Wk−2 >> 10) (46)

Wk = Wk−16 + βk,0 + Wk−7 + βk,1

(
mod 232

)
(47)

Denote by Lω0 and Lω1 the linear system for operation in Equations (45) and (46),
respectively. They are built as Σ0 or Σ1 in Table 3. γk,0 and γk,1 are ancilla vector bits for
these linear systems. So let us write the full linear system for SHA-256:

W1 = M1, W2 = M2, . . . , W16 = M16,
Lω0(W2, β17,0, γ17,0) = 0,
Lω1(W15, β17,1, γ17,1) = 0,
Σ(W1, β17,0, W10, β17,1, W17, ξ17,0) = 0,
. . .
Lω0(W49, β64,0, γ64,0) = 0,
Lω1(W62, β64,1, γ64,1) = 0,
Σ(W48, β64,0, W57, β64,1, W64, ξ64,0) = 0,

LCh(E0, F0, G0, CH1, α1,1) = 0,
LΣ1(E0, SIG1,1, α1,2) = 0,
LΣ0(A0, SIG1,0, α1,3) = 0,
LMa(A0, B0, C0, MA1, α1,4) = 0,
Σ(H0, SIG1,1, CH1, W1, K1, S1,1, ξ1,1) = 0,
Σ(D0, S1,1, E1, ξ1,2) = 0,
Σ(S1,1, MA1, A1, ξ1,3) = 0,
B1 = A0, C1 = B0, D1 = C0, F1 = E0, G1 = F0, H1 = G0,
. . .
LCh(E63, F63, G63, CH64, α64,1) = 0,
LΣ1(E63, SIG64,1, α64,2) = 0,
LΣ0(A63, SIG64,0, α64,3) = 0,
LMa(A63, B63, C63, MA64, α64,4) = 0,
Σ(H63, SIG64,1, CH64, W64, K64, S64,1, ξ64,1) = 0,
Σ(D63, S64,1, E64, ξ64,2) = 0,
Σ(S64,1, MA64, A64, ξ64,3) = 0,
B64 = A63, C64 = B63, D64 = C63, F64 = E63, G64 = F63, H64 = G63,

(48)

where union of A64, B64, C64, D64, E64, F64, G64, H64 is final hash value of SHA-256.
In a similar way as in the previous section (Section 3.2), we calculate the number of

bits in MILP. For SHA-256, the linear system (Equation (48)) has 46,080 bits.

3.4. The AES

The AES is a symmetric-key cryptography algorithm, meaning that the same key
is used for both encrypting and decrypting data [21]. The AES has three different sizes
of the key (128, 192 and 256 bits) and the fixed block size of an input message (128 bits).
Depending on the key size, the algorithm has a different number of rounds (10, 12 or 14).
Then, the protocol decomposes into several parts:
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1. KeyExpansion—round keys are derived from the cipher key using the AES key
schedule. AES requires a separate 128-bit round key block for each round plus
one more.

2. Initial round key addition:

(a) AddRoundKey—each byte of the state is combined with a byte of the round
key using bitwise XOR.

3. 9, 11 or 13 rounds:

(a) SubBytes—a non-linear substitution step where each byte is replaced with
another according to a lookup table.

(b) ShiftRows—a transposition step where the last three rows of the state are
shifted cyclically a certain number of steps.

(c) MixColumns—a linear mixing operation which operates on the columns of
the state, combining the four bytes in each column.

(d) AddRoundKey

4. Final round (making 10, 12 or 14 rounds in total):

(a) SubBytes;
(b) ShiftRows;
(c) AddRoundKey.

The first part prepares the key for encoding. Two to four parts are applied sequentially
to an input message. An input message has 128 bits and is represented as 4× 4 with one
byte element, termed the state. For instance, let b be the input message with 128 bits or
equivalently 16 bytes, and b0, b1, . . . , b15 are represented as this two-dimensional array:

b0 b4 b8 b12

b1 b5 b9 b13

b2 b6 b10 b14

b3 b7 b11 b15

 (49)

As we mentioned before, we divide the algorithm into smaller parts, transform to
linear equations (or QUBO) and merge all parts. Note that the mentioned steps consist of
XOR, shifting and operations in Rijndael’s finite field. The first two transformations are
considered in Section 3.2. Therefore, let us take a closer look at the last one.

3.4.1. Rijndael’s Finite Field

The several steps are based on the arithmetic in Galois field GF
(
28) = GF(2)[x]/(

x8 + x4 + x3 + x + 1
)
. In AES, they use two operations in this field:

1. Inverse operation in GF
(
28);

2. Multiplication by 1, 2 and 3.

The first operation was implemented in Ref. [22]. The calculation of the inverse
operation in the GF

(
28) is a hard problem, but it is easy in the GF(2), where multiplication

is the AND operation; therefore, 1−1 = 1, 0−1 = 0. (Overall, 0 does not have the inverse
element but for definiteness, we put 0−1 = 0. This agreement is valid for any GF(2p), p > 1.)
In Refs. [22], the authors reduce sequentially the inversion in GF

(
28) into multiplication

and inversion in GF
(
24), then into GF

(
22) and, finally, into GF(2). For example, the G

element in GF
(
28) can be represented as G = γ1y + γ0 with a multiplication modulo,

an irreducible polynomial r(y) = y2 + τy + ν and γ0, γ1 ∈ GF
(
24). Making a similar

transformation with step-by-step (more details in [22]) arithmetical operations, only GF(2)
is left. So, the given logic gates are enough for making an inversion in GF

(
28): the XOR,

NAND and NOR. All these operations can be transformed into linear equations (QUBO)
using our approach from the previous Sections 2.1 and 2.2. One can see the corresponding
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linear equation in Table 4. For one byte, it requires 180 gates (XOR, NAND, and NOR) [22].
Each gate is decomposed into one additional equation and two additional bits (z and a).

Table 4. Linear equation for elementary operations (linear equations were found in the previous
patent; also there was the method for their generation).

Formula Linear Equation

AND x ∧ y = z E∧(x, y, a, z) .
= {x + y− 2z− a = 0}

OR x ∨ y = z E∨(x, y, a, z) .
= {x + y− 2z + a = 0}

XOR x⊕ y = z E⊕(x, y, a, z) .
= {x + y− z− 2a = 0}

NOR x ∨ y = z E∨(x, y, a, z) .
= {x + y + 2z− a = 1}

NAND x ∧ y = z E∧(x, y, a, z) .
= {x + y + 2z− a = 2}

Multiplications by 1, 2 and 3 in the GF
(
28) are also easy to implement. Multiplying

by 1 is exactly the same number (a× 1 = a(a ∈ GF
(
28)). Multiplying by 2 is equivalent to

shifting the number left by one, and then XOR’ing the value 0x1B if the high bit was one;
otherwise it has to do nothing. Let us build the linear system by steps. x = [x0, x1, . . . , x7] is
the initial number. In the beginning, we make the shifting and XOR with 0x1B (or 00011011
as the binary number). After that, we obtain z = [z0, z1, . . . , z7]. As 0x1B is constant, the
XOR gate can be simplified (a⊕ 0 = a, a⊕ 1 = a). Therefore, after shifting, we have to flip
the value if the highest bit of x is equal to 1 and the corresponding bit of 0x1B is also equal
to 1. Therefore, the full multiplication is the following linear system:

z0 = x7

z1 = x7 + x0 − 2a0

z2 = x1

z3 = x7 + x2 − 2a1

z4 = x7 + x3 − 2a2

z5 = x4

z6 = x5

z7 = x6

(50)

The equation with two variables can be eliminated because it is just the substitution.
So, multiplication by 2 requires 3 additional equations and 6 additional bits. Multiplication
by 3 can be considered as follows:

x× 3 = x× (2⊕ 1) = x× 2⊕ x (51)

The XOR operation requires one additional equation and one additional bit per bit. So,
multiplication by 3 requires 3 + 8 = 11 additional equations and 22 additional bits.

3.4.2. The Full MILP for the AES

After handling the step with Rijndael’s finite field (Section 3.4.1), other operations are
quite easy and consist of only simple gates from Table 4. So we can build the full MILP for
AES as in the MD5 case (Section 3.2).

The AES uses a key which can be longer than the message (AES-256 has 256 bits
for key and 128 bits for the message). Therefore, one raw message and its cipher are not
enough for restoring the full key. However, two known messages (with their ciphers) have
a sufficient total length. Therefore, we built two copies of the same linear system (QUBO)
for the AES with different known messages (and known) ciphers but linked with the same
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key. After optimization of these problem, we obtain the key. However, there exists another
approach based on the system of quadratic equations; see [23] and the references therein.

3.5. Summary about Cryptography

In Table 5, we calculate the required number of bits in the MILP and qubits in the
QUBO, and they are about the same. More precisely, we show the number of variables for
the system of linear equations. For inequalities, the numbers of variables differ but remain
close. For the AES, the estimates are made with the order of magnitude accuracy.

Table 5. Comparing table of problems size.

MD5 SHA-256 AES-128 AES-192 AES-256

17,280 47,808 ≈90,000 ≈2 · 100,000 ≈2 · 125,000

Unfortunately, the current D-Wave quantum annealer has limited connectivity between
the variables. Therefore, before running an experiment at the D-Wave, a user has to embed
the original graph into any of the D-Wave’s types of graphs: Chimera or Pegasus. There are
methods for embedding an arbitrary graph into these graphs [5,24] which are implemented
in the D-Wave software package. We tried to embed our graph from the hash function for
one round because the QUBO in each round is the same and connects with a small number
of qubits with the QUBO from other rounds. Therefore, embedding the full QUBO based
on the merged embeddings is a promising approach since it uses a specific structure of the
considered problem. In Table 6, one can see the difference between the number of qubits in
the original problem and their number in the problem on the specific graphs of the D-Wave.
Unfortunately, we did not implement the corresponding code for the AES yet; this will be a
subject of the forthcoming publication.

Table 6. Average number of qubits after embedding for different graphs at D-Wave for one round of
hash functions. In the SHA-256 case, D-Wave did not find embedding on the Chimera graph.

MD5 SHA-256

Original 224 415

Chimera 943.2 -

Pegasus 461.1 1205.9

4. Discussion and Conclusions

We developed the methods for representing any Boolean function as a set of constraints
in the mixed-integer linear programming and quadratic unconstrained binary optimization
problem with the binary and continuous auxiliary variables. In particular, we investigated
the possibility of applications of the developed method for the solution of the cryptographic
problems known as a pre-image attack on the hash function, such as the MD5 and SHA256.

The first method represents the Boolean function as one linear equation in the original
binary variables and, possibly, ancillary binary variables, which become additional vari-
ables of the obtained MILP problem. The method is based on the successive solving of a
set of special integer CP problems until the coefficients of the desired linear equation are
obtained. Any standard ICP solver may be used; we used the CPLEX solver.

The second method represents the Boolean function as a set of linear inequalities in the
original binary variables and one additional continuous variable (representing the value
of the function). The method is based on identifying the Boolean function (on n binary
variables) with the kind of graphical representation, i.e., the set of 2n points of the unit cube
in Rn+1. Then, these points are treated as vertices of a convex polyhedron in Rn+1. To obtain
the desired system of linear inequalities, the V-representation of this polyhedron should be
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converted into H-representation, a set of affine half-spaces of polyhedron facets, i.e., a set
of the affine inequalities (one inequality per each affine half-space). For this conversion, we
used the LRS application [13], which is a general purpose tool for polyhedron handling.

Note that the first method gives fewer constraints (only one equation per Boolean
function) but more ancillary binary variables, while the second method does not require any
additional binary variables but instead requires a number of additional linear inequalities.
The final decision on the choice between the either first or second method is a trade-off
between the number of binary variables and the number of linear constraints in the obtained
MILP problem.

Both methods can be used for reformulating the important cryptanalysis problems
(pre-imaging of hash functions or breaking symmetric ciphers) based on the Boolean
expressions for the MILP problems. Moreover, these methods are applied for formulating
the QUBO, deriving it from the given Boolean function (see also [4,5]) and can be used as
alternative methods for generating the QUBO with a low number of bits.

Note that for the quantum annealers, the first method is preferable, because most
promising quantum annealers proceed along the special type of optimization problems,
namely the quadratic unconstrained binary optimization one. The straightforward ap-
proach to transform the MILP problem into the QUBO is to convert the linear constraints
into the quadratic penalties known as summands of the QUBO problem criterion.
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