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Abstract: Similarity-based retrieval of semantic graphs is a core task of Process-Oriented Case-Based
Reasoning (POCBR) with applications in real-world scenarios, e.g., in smart manufacturing. The
involved similarity computation is usually complex and time-consuming, as it requires some kind of
inexact graph matching. To tackle these problems, we present an approach to modeling similarity
measures based on embedding semantic graphs via Graph Neural Networks (GNNs). Therefore, we
first examine how arbitrary semantic graphs, including node and edge types and their knowledge-
rich semantic annotations, can be encoded in a numeric format that is usable by GNNs. Given this,
the architecture of two generic graph embedding models from the literature is adapted to enable their
usage as a similarity measure for similarity-based retrieval. Thereby, one of the two models is more
optimized towards fast similarity prediction, while the other model is optimized towards knowledge-
intensive, more expressive predictions. The evaluation examines the quality and performance of
these models in preselecting retrieval candidates and in approximating the ground-truth similarities
of a graph-matching-based similarity measure for two semantic graph domains. The results show the
great potential of the approach for use in a retrieval scenario, either as a preselection model or as an
approximation of a graph similarity measure.

Keywords: Case-Based Reasoning; Process-Oriented Case-Based Reasoning; graph embedding;
Siamese Graph Neural Networks; similarity-based retrieval; neural networks; graph encoding;
MAC/FAC retrieval

1. Introduction

Case-Based Reasoning (CBR) [1,2] is used widely across different domains, e.g., for
cooking assistance [3], in smart manufacturing [4], and for data mining support [5]. CBR is
a methodology for problem solving where problems and their respective solutions (bundled
as cases in a case base) are used to solve upcoming problems (queries). This process relies on
similarity computations that are harnessed to find the best-matching case with regard to
a given query. It is assumed that the solution of a case can be reused for the given query
if the problem of the case is similar to the problem in the query. These core principles
are reflected in the CBR cycle [1], which describes four phases of CBR applications: a
case is retrieved from the case base according to a given query, reused as a candidate
solution, revised to check the fit for the current problem, and retained to be used for further
problems. A well-working similarity-based retrieval tool is especially important because,
as the first phase, it influences the results of the subsequent phases. A subfield of CBR,
which is called Process-Oriented Case-Based Reasoning (POCBR) [6–8], focuses on the
application of CBR methods and principles in process and workflow management. POCBR
particularly aims at managing procedural experiential knowledge, e.g., retrieving workflow
models from large repositories [7]. The involved processes are usually represented as
semantic graphs [4,5,9], which adds complexity to all involved tasks. For instance, in
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similarity-based retrieval, the main influential factor on performance is the definition of the
similarity measures and the underlying case representation. A simple case representation
in the form of feature vectors can be assessed in linear time, while most similarity measures
between semantic graphs rely on some form of subgraph isomorphism check, which is
computationally expensive, usually with polynomial or exponential complexity [7,10,11].
This example highlights the need for efficient similarity measures between semantic graphs
since similarity computations are ubiquitous in POCBR.

One approach to tackle this problem is to reduce the complexity of the semantic
graph case representation and to compute similarities with a simplified representation,
e.g., by using similarity measures on constructed feature vectors of graphs [12]. However,
this reveals a new challenge of identifying important features of semantic graphs, at best,
without the need for manual modeling, since it results in increased knowledge acquisition
effort [13]. To mitigate this problem and to enable automatic representation learning
for semantic graphs, Deep Learning (DL) [14] can be used. A key factor of success for
DL is the wide applicability to different types of data, ranging from simple data in the
form of one-dimensional feature vectors to more complex data such as graph-structured
objects [15,16]. A popular DL method for processing graph-structured data is referred to
as graph embedding [17,18]. Graph embedding models are neural networks that learn
to represent a graph or its elements in a low-dimensional latent space. The resulting
vector representation of embedded graphs enables downstream algorithms to work more
efficiently compared to being used on the complex graph structure. Therefore, graph
embedding methods are suitable to address the challenge of automatically learning a
simplified case representation in POCBR. Further, by adding a component to the neural
networks that transforms pairs of embedded graphs to a similarity value, these models can
also be directly used as similarity measures.

As a first step towards this goal, our previous work [19] presents the use of an embed-
ding technique in POCBR that accelerates the retrieval process while maintaining almost
the same level of retrieval quality as other manually modeled approaches (e.g., [12,20]).
The approach uses a general-purpose embedding framework that embeds graph nodes
individually, based on graph triplets of two nodes and an edge between them. Thereby,
however, only the graph structure is considered in the embedding process, with no in-
tegration of the semantic annotations of nodes and edges. Due to this shortcoming, our
subsequent approaches [21,22] pursue the idea of using Graph Neural Networks (GNNs)
for embedding in POCBR, focusing on the embedding of semantic annotations as well
as the graph structure. These publications are extended in this paper to describe graph
embedding in POCBR in a broader context. The focus is on integrating embedding methods
of semantic graphs as similarity measures in case retrieval. Our main contributions are:

• a comprehensive encoding scheme that enables the integration of semantic graphs
with their semantic annotations and structure to be used in GNNs;

• two specialized, adapted GNN architectures for learning similarities between semantic
graphs, based on GNNs from the literature [23];

• an evaluation of the GNNs in different retrieval scenarios with regard to performance
and quality.

The remainder of the paper is organized as follows: Section 2 presents the foundations
of our semantic graph format and the graph matching algorithm for similarity assessment
between these semantic graphs. In addition, two variants of similarity-based retrieval are
introduced and related work is discussed. In Section 3, we present the architecture of two
GNNs, introduced by Li et al. [23], that serve as the basis for our adapted GNNs. Section 4
then elaborates on the encoding procedure for our semantic graph format that transforms
the available semantic information into numeric vector space encodings. Furthermore,
we present how to adapt the GNNs from Section 3 to be used for predicting pairwise
graph similarities. Section 5 describes a system architecture for integrating the GNN-based
similarity measures into a POCBR framework and the underlying process of case retrieval.
Additionally, Section 6 evaluates the adapted GNNs in the context of different similarity-
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based retrieval scenarios. Eventually, the conclusions of this paper, together with future
research directions, are given in Section 7.

2. Foundations and Related Work

The prerequisite for applying graph embedding techniques in Process-Oriented Case-
Based Reasoning (POCBR) is handling the underlying data representation in the form of
semantic graphs, which is introduced in Section 2.1. In addition, we explain the similarity
assessment procedure for pairs of these semantic graphs (see Section 2.2), which plays a
key role in similarity-based retrieval (see Section 2.3). Further, related work is presented
to highlight previous and current developments in the use of embedding techniques in
Case-Based Reasoning (CBR; see Section 2.4).

2.1. Semantic Graph Representation

POCBR applications are characterized by a high degree of modeled knowledge. Our
semantic graph format allows the integration of semantic knowledge within graph struc-
tures. The format is mainly used to model processes and workflows in various domains
(e.g., [3–5,9]). We represent all cases and queries as semantically annotated directed graphs
referred to as NEST graphs, introduced by Bergmann and Gil [7]. More specifically, a
NEST graph is a quadruple G = (N, E, S, T) that is composed of a set of nodes N and
a set of edges E ⊆ N × N. Each node and each edge has a specific type from T that is
indicated by the function T : N ∪ E→ T . Additionally, the function S : N ∪ E→ S assigns
a semantic description from S (semantic metadata language, e.g., an ontology) to nodes and
edges. Whereas nodes and edges are used to build the structure of each graph, types and
semantic descriptions are additionally used to model semantic information. Hence, each
node and each edge can have a semantic description. We denote the number of nodes in a
graph as |N| ∈ R and the number of edges as |E| ∈ R.

Figure 1 shows a simple example of a NEST graph that represents a cooking recipe
for making a sandwich. The mayonnaise–gouda sandwich is prepared by executing the
cooking steps coat and layer (task nodes) with the ingredients mayonnaise, baguette,
sandwich dish, and gouda (data nodes). All components are linked by edges that indicate
relations, e.g., mayonnaise is consumed by coat. Semantic descriptions of task nodes
and data nodes are used to further specify semantic information belonging to the recipe
components. Figure 1 shows an example of the semantic description of the task node
coat. The provided information is used to describe the task more precisely. In this case,
a spoon and a knife are needed to execute the task (Auxiliaries) and the estimated time
that the task takes is two minutes (Duration). The definition of NEST graphs [7] does not
strictly specify the contents of the semantic descriptions in S . To frame the scope of this
work regarding semantic descriptions, we refer to the definitions of the POCBR framework
ProCAKE [24] since it is widely used in the POCBR literature (e.g., [5,19,21,22,25]). Entries
of semantic descriptions in ProCAKE have a certain data type and a content (or value). For
instance, the attribute Duration within the semantic description of coat (see Figure 1)
has the content 2 and the data type Integer. The available semantic descriptions can be
divided into atomic and composite ones, denoted as Satom ⊂ S and Scomp ⊂ S . The atomic
descriptions comprise strings, numerics (integer and double), timestamps, and booleans
and represent simple base data. Composite descriptions are more complex and define a
structure (or relations) over other composite or atomic data. The composite data comprise
attribute–value pairs (dictionaries), lists, and sets. For instance, the semantic description
in our example is itself a list of attribute–value pairs, where the attribute Duration is
an integer (atomic) and the attribute Auxiliaries is a list (composite). This complexity
and flexibility in representation is not easy to handle for Deep Learning (DL) models
(see [21,26,27] for more details) and requires specific data encoding methods that will be
discussed in our approach.
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mayonnaise
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Duration: 2 (Integer)

Auxiliaries: Spoon, Knife (List)
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Figure 1. Exemplary cooking recipe represented as a NEST graph.

2.2. Similarity Assessment of Semantic Graphs

Determining the similarity between two NEST graphs, i.e., a query graph QG and
a case graph CG, requires a similarity measure that assesses the structure of nodes and
edges as well as the semantic descriptions and types of these components. Bergmann
and Gil [7] propose a semantic similarity measure that determines a similarity based
on the local–global principle [28]. A global similarity, i.e., the similarity between two
graphs, is composed of local similarities, i.e., the pairwise similarities of nodes and edges.
The similarity between two nodes with identical types is defined as the similarity of the
semantic descriptions of these nodes. The similarity value between two edges with identical
types is not only composed of the similarity between the semantic descriptions of these
edges, but, in addition, the similarity of the connected nodes is taken into account. For
instance, the similarity between the data node baguette from Figure 1 and an arbitrary
node from another graph is determined by first checking if their node types are equal. If
this is the case, the similarity between both nodes is defined as the similarity between the
semantic descriptions of both nodes. The similarity of the node baguette is also part of
the similarity assessment of all connected edges, e.g., the dataflow edge to the task node
coat. The local–global principle [28] is also harnessed to compute similarities between
semantic descriptions of nodes and edges. This means that the global similarity between
two semantic descriptions is composed of the local similarities according to the structure of
atomic and composite data of these semantic descriptions. When considering the task node
coat from Figure 1 as an example, the global similarity between coat and another arbitrary
task node with the same structure is composed of the local similarities between the values
of Duration and Auxiliaries. The similarity of Auxiliaries is, in turn, dependent on the
similarities of individual list items. To make use of the local–global principle for similarity
assessment, similarity measures for all components of the semantic descriptions are part of
the similarity knowledge associated with the domain. This knowledge usually stems from
domain experts and specifically takes into account the type of data [29], e.g., Levenshtein
distance for strings and Mean Absolute Error (MAE) for numerics. A common domain
model is also required for all graphs and their elements in order to allow the definition of
similarity measures between objects that have a comparable structure. The global similarity
of the two graphs sim(QG, CG) is finally calculated by finding an injective partial mapping
that maximizes the aggregated local similarities of all pairs of mapped nodes and edges.

The possible node mappings between an excerpt of the graph from Figure 1 and
another arbitrary graph are visualized in Figure 2. It highlights the algorithm’s property
that nodes and edges with different types are not allowed to be mapped (depicted with
bold crosses). That is, the mapping process is constrained according to the types of nodes
and edges. Additionally, the figure points out the increase in complexity that comes with
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the number of nodes and edges, as every node and edge can be mapped onto many other
nodes and edges. The complexity of finding a mapping that maximizes the global similarity
between a query QG and a single case CG is tackled by utilizing an A* search algorithm, also
introduced by Bergmann and Gil [7]. However, A* search is usually time-consuming and
can lead to long retrieval times [11,19,21,30]. Therefore, the algorithm features an adjustable
parameter for setting the maximum number of partially mapped solutions (called MaxPMS).
Adjusting MaxPMS serves as a trade-off between the optimality of the mappings and the
time required for finding them, i.e., reducing MaxPMS results in solutions that are not
optimal at a lower computation time and vice versa. In most practical applications of the
A* search, the search space is very large, which makes it unfeasible to search for a solution
to the mapping problem if MaxPMS is unlimited.

baguette
coat layer

ciabatta
cut bake

Query

Case

Figure 2. Mapping procedure of nodes with illegal mappings.

2.3. Similarity-Based Retrieval of Semantic Graphs

While the similarity assessment that is shown in Section 2.2 can be used to determine
a single similarity between two semantic graphs, it is more common to use it in the retrieve
phase of CBR. A retrieval aims to find the most similar cases from a case base CB for a given
query QG. The most similar cases are determined by computing the pairwise similarity
between the query and each case from the case base, before ranking the cases in descending
order according to the computed similarities. Many CBR applications only consider the
k-most similar cases as result of the retrieval, which is similar to the well-known k-nearest
neighbors (kNN) algorithm. Although the retrieval algorithm itself has a computational
complexity of O(|CB |), the retrieval time is usually dominated by the similarity measure
that is used to compare the cases. For instance, measures that perform any kind of inexact
subgraph matching (such as the similarity measure introduced in Section 2.2) belong to the
class of NP-complete algorithms [7,10,11] and thus have a great impact on performance. To
overcome possible performance issues in retrieval situations, the approach of MAC/FAC
(“Many are called but few are chosen”), introduced by Forbus et al. [31], can be used.
MAC/FAC is a two-staged retrieval approach that aims to decrease the computation time
by pre-filtering the case base in the MAC phase to reduce the number of cases that have
to be evaluated by a (potentially) computationally complex similarity measure in the
subsequent FAC phase. The MAC phase is parameterized by giving a specific similarity
measure and a filter size. The approximating similarity measure of the MAC phase usually
has low computational complexity and is knowledge-poor, thus introducing the trade-off
between quality and performance of the similarity assessment. The filter size is a parameter
of the MAC/FAC algorithm that can be used to control how many of the most similar cases
according to the MAC similarity measure are transferred to the FAC phase. In general, the
results from the MAC stage can be seen as candidates that might be part of the most similar
cases regarding the query. With the pre-filtered cases as an input, the FAC phase applies
the computationally intensive similarity measure on these candidates. The result is a list of
the same length as the filter size that is not guaranteed to contain the most similar cases
of the case base according to the query graph. Further truncation to the k-most similar
cases can be performed analogously to the standard retrieval. Eventually, MAC/FAC is
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a trade-off between retrieval quality and retrieval time. The (possibly) decreased quality
results from the pre-filtering that might not return the same graphs that a standard retrieval
would have returned. The decreased retrieval time is due to a smaller amount of graph
pairs that have to be evaluated by the computationally complex, knowledge-intensive
similarity measure in the FAC phase. This points out the importance of a well-designed and
well-integrated MAC phase as it significantly influences the results of using a MAC/FAC
implementation [31,32]. Related MAC/FAC approaches in the context of POCBR use
similarity measures that are defined on clustered representations of the case base [20],
manually modeled graph features [12], and embeddings of graph triplets [19].

2.4. Related Work

Several approaches have been proposed in CBR research that use DL methods as a
key component. There is also strong interest in the combination of DL and CBR methods in
the community [26]. To the best of our knowledge, only the work of Klein et al. [19] utilizes
a DL-based embedding procedure in the subfield of POCBR. They use a general-purpose
embedding framework to learn vector representations in an unsupervised manner, based
on the structural properties of semantic graphs, such as the relation between task and data
nodes. The approach is evaluated as a similarity measure in retrieval scenarios, where it
outperforms other automatically learned approaches and achieves comparable performance
to other approaches that are manually modeled. Our approaches in this paper and previous
work [21,22] differ from the work of Klein et al. [19] as we not only consider structural
graph information for the embedding procedure but also the semantic information of nodes
and edges. Outside of POCBR, Mathisen et al. [33] and Amin et al. [34] use embedding
techniques and Siamese neural networks in CBR retrieval. The approaches train neural
networks to learn similarity measures that are applied in the domains of aquaculture and
customer support management, respectively.

The following approaches are related to our work in the broader sense due to their
integration of DL components into CBR or vice versa. Most of the approaches automatically
learn a similarity measure, similar to our approach. Corchado and Lees [35] integrate a
neural network into CBR retrieval and reuse phases, where the network is dynamically
retrained during runtime with regard to the current query. The application is used to predict
water temperatures along a sea route. Dieterle and Bergmann [36] use neural networks
for several tasks within their CBR application that predicts prices of domain names, e.g.,
for the feature weighting of case attributes. Mathisen et al. [37] investigate methods for
learning similarity measures from data. They propose two different strategies with different
levels of required manual effort, where the measure with minimal manual modeling
outperforms other methods. The application of DL methods in case adaptation is discussed
by several other approaches, e.g., [38,39]. These two exemplary approaches pursue the idea
of using neural networks for case adaptation by learning to transfer differences between
case problems to the respective case solutions. Leake and Ye [40] advance this idea by
taking into account that retrieval knowledge and adaptation knowledge are related in
CBR. Therefore, they use a specific algorithm to optimize according to both aspects when
training neural networks. Furthermore, several papers, such as Gabel and Godehardt [41]
and Keane and Kenny [42], tackle a major drawback of DL applications when compared to
CBR applications: the reduced explainability. The former approach addresses the problem
by projecting DL predictions onto real cases before using them. The latter approach tries to
explain the predictions of DL methods with CBR components in a twin-systems approach.

3. Neural Networks for Graph Embedding

For embedding semantic graphs, we rely on Graph Neural Networks (GNNs) that
process graph nodes and edges to represent the graph in a low-dimensional latent space.
The specific GNN architecture that our approach is based on is presented by Li et al. [23].
Although there are several different GNN architectures presented in the literature (see [27]
for an overview of some approaches), that of Li et al. is chosen as a foundation, since
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they specifically describe and evaluate their approach for the task of similarity-based
search, which is closely related to our domain. They describe two GNN variants that
are called Graph Embedding Model (GEM) and Graph Matching Network (GMN). Both
neural networks work with message-passing between nodes and their features along the
edge structure [15,16] as core learning mechanisms. In addition, both neural networks
have a Siamese architecture [43,44] that is used to embed two graphs with shared weights
and apply a vector similarity measure on the embedding vectors of both graphs. In the
following, we introduce the general structure of GEM and GMN (see Section 3.1) and
explain the specific components in more detail (see Sections 3.2–3.4).

3.1. General Neural Network Structure

The general setup of the neural networks is composed of four main components that
are put together in successive order (see Figure 3).

Aggregator

Propagation 
Layer

Embedder

Graph 
Similarity 0.65

OR

G1 G2

G1 G2

Figure 3. Graph Embedding Model (GEM; left branch) and Graph Matching Network (GMN; right
branch) (derived from [23]).

These components are the embedder, the propagation layer, the aggregator, and the
graph similarity. The embedder transforms the raw graph input data into an initial vector
representation, resulting in a single embedding vector for each node and edge, respectively.
During propagation, the vector-based node information is iteratively merged according
to the edge structure of the graphs. Thereby, the node embedding vectors are updated
via element-wise summations according to the information of all incoming edges and
the nodes that are connected via these edges. This captures information about the local
neighborhood of each node in its embedding vector. After propagating information for a
certain number of rounds, the aggregator combines the embeddings of all nodes from each
graph to form a single whole-graph embedding. The final component computes a single
scalar similarity value with the embedding vectors of both graphs by utilizing a vector
similarity measure such as the cosine similarity. The difference between both models comes
from a different propagation strategy. The GEM uses an isolated propagation strategy
that only propagates information within a single graph. In contrast, the GMN uses an
attention-based cross-graph matching component that propagates information across both
graphs in an early state of similarity assessment. In the following, all four components are
described more formally and in more detail. The inputs of each neural network are two
graph structures G1 = (N1, E1) and G2 = (N2, E2), although a general graph G = (N, E)
with nodes N and edges E ⊆ N×N is used as a placeholder for components in the Siamese
architecture that operate on a single graph.
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3.2. Embedder

The embedder computes an initial embedding for all nodes v, w ∈ N and edges
(v, w) ∈ E to be used in the propagation phase. It is assumed that all nodes and edges have
a numeric feature vector that expresses the contained information of a node or an edge. The
functions featnode : N → Rln and featedge : E → Rle map nodes and edges to their vector
encoding in the ln-dimensional and le-dimensional real space, respectively. For instance,
when dealing with NEST graphs, these functions should encode the type and the semantic
description of a node or an edge. We discuss the implementation of these functions for
our case in Section 4.1 and stick to the generic definition at this point. The embedding
procedure can be defined as follows:

h(0)v = MLPnode(featnode(v)), ∀v ∈ N
hv,w = MLPedge(featedge(v, w)), ∀(v, w) ∈ E

(1)

Each node v is mapped to an embedding vector h(0)v ∈ RlnEmb that is part of an
lnEmb-dimensional vector space. This embedding vector has the value of transformation
step 0 (i.e., the initial embedding), which is depicted by the superscript 0. The mapping
is performed by a Multi-Layer Perceptron (MLP) that can be configured in terms of the
number of layers, number of hidden neurons, and so on. The edges are mapped in
the same fashion. The feature vector of each edge is embedded into hv,w ∈ RleEmb by a
separate MLP. The resulting edge embedding is located in the leEmb-dimensional vector
space. In contrast to node embeddings, edge embeddings do not have an associated
transformation step (i.e., superscript 0), because edge representations remain unchanged
after the embedding by the embedder. The embeddings of node features are simultaneously
used as the initial representation for nodes in the following propagation component (see
Section 3.3). They are constantly updated by the neural network, which is indicated by the
assigned transformation step, e.g., h(1)v after the first update and h(5)v after the fifth update.
Furthermore, the values of lnEmb and leEmb (referred to as embedding size) can be used to
parameterize the MLPs. The larger the embedding size, the more information can be stored
in the particular embedding vector but the more time it takes to compute these vectors.

3.3. Propagation Layer

With the initial embeddings of all nodes and edges, the propagation layer can be
applied. This layer differs significantly for GEM and GMN. Therefore, the propagation
concept of the GEM will be explained first, and the propagation concept of the GMN
afterwards. The propagation layer of the GEM uses edges between nodes to iteratively
update the representation of these nodes. In a single one of the K propagation steps, the
representation of each node is updated.

mw,v = NNmessage([h
(k)
v , h(k)w , hv,w]), ∀(v, w) ∈ E (2)

mw,v is the representation of a single message between nodes. It is composed of
the concatenated inputs of the node representation of v, w, and the representation of the
edge ev,w, transformed by the neural network layer NNmessage. The type of this layer can
be freely chosen but an MLP is recommended by Li et al. [23]. As follows, the message
representation mw,v is used to update all node representations from the current state h(k)v to
the next state h(k+1)

v :

h(k+1)
v = NNnode

[h(k)v , ∑
(w,v)∈E

mw,v

], ∀v ∈ N (3)

The neural network layer NNnode from Equation (3) takes as inputs a concatenation of
the current node state of node v, i.e., h(k)v , and an aggregation of the message representations
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of all incoming edges of node v (see Equation (2)). This aggregation can be any commutative
element-wise vector operator, e.g., sum, mean, maximum, or minimum. The layer NNnode
can either be an MLP or a recurrent layer core such as a Gated Recurrent Unit (GRU) [45]
and a Long Short-Term Memory (LSTM) [46]. The GMN approaches propagation from a
different point of view to the GEM. Whereas the GEM only considers messages (in the
form of edges) within a single graph, the GMN matches nodes from both graphs at an early
stage of the similarity assessment.

att(h(k)v , h(k)w ) =
evsim(h(k)v ,h(k)w )

∑
w′∈N:N3w

evsim(h(k)v ,h(k)
w′ )

(4)

Equation (4) shows the computation of the function att that computes attention weights
using a softmax attention (see [47,48] for a comprehensive explanation of attention in neural
networks). In this case, the softmax function can be interpreted as the indication of relevance
that the node representation h(k)w has for matching with the node representation h(k)v . The
function vsim can be any vector similarity measure, e.g., cosine similarity, that yields a scalar
value. To indicate the attention weights of a node from one graph to all nodes of another
graph, the descriptor attmat is used. For instance, attmat(v ∈ G1) represents a matrix where
each row contains the pairwise attention weights (as computed by the function att) of the
node v from graph G1 to other nodes from graph G2.

h(k+1)
v = NNnode

[h(k)v , ∑
(w,v)∈E1

(mw,v), h(k)v 	 ∑
w′∈N2

attmat(v) · h(k)w′

] (5)

These attention weights are then used in the process of constructing node represen-
tations for the next transformation step, i.e., h(k+1)

v , by extending the update process of
the GEM (see Equation (5)). The extended function NNnode of the GMN takes a third pa-
rameter that adds a cross-graph matching component. The cross-graph matching component
is made up of the attention weights introduced by Equation (4). The matrix of attention
weights of node v, i.e., attmat(v) is multiplied with the representation vector of all nodes
from G2, i.e., attmat(v) · h(k)w′ . The resulting vectors are finally aggregated and subtracted
element-wise from the node representation of node v. Taking the difference in this case
intuitively expresses the distance between node v and the closest neighbor in the other
graph [23].

3.4. Aggregator and Graph Similarity

The next step after the propagation layer is the aggregator. The aggregator aggregates
all node representations from graph G that result from the K-th iteration of propagation to
form a single whole-graph representation hG.

hG = MLPG

(
∑

v∈N

(
σ
(

MLPgate(h
(K)
v )

)
�MLPstate(h

(K)
v )

))
(6)

The aggregation approach in Equation (6) originates from Li et al. [49]. It describes a
weighted sum that uses gating vectors as a method to differentiate relevant from irrelevant
node representations. At the single node level, the function MLPgate transforms the node

representation h(K)v to a gating vector. This gating vector is then activated with the softmax
function σ (similar to Equation (4)). MLPstate transforms the node representation into a new
vector that can then be used in an element-wise multiplication (indicated by the symbol
�), resulting in the final single-node representation. The representations of all individual
nodes are afterwards combined by an element-wise sum (indicated by the sum symbol Σ)
to form a single vector. This single vector finally acts as an input for MLPG, leading to the
whole-graph representation hG. hG is an element of Rlg , whereas the vector length lg can be
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parameterized and contributes to a trade-off between representation quality (i.e., increased
lg) and computation time (i.e., decreased lg).

To obtain a single scalar from the whole-graph representation of the two graphs,
represented as the final similarity fsim(hG1 , hG2), it is necessary to apply a vector similarity
measure on the graph vectors (see Equation (7)).

fsim(hG1 , hG2) = vsim(hG1 , hG2) (7)

Li et al. [23] do not specify the type of vector similarity measure. Common candidates
are cosine similarity, dot product, and Euclidean distance. To have a similarity value that is
bounded between [0, 1], it is recommended to use the cosine similarity in combination with
a ReLU activation of MLPG.

4. Neural-Network-Based Semantic Graph Similarity Measure

To apply the Graph Embedding Model (GEM) and the Graph Matching Network
(GMN) (introduced in Section 3) as a similarity measure in a retrieval scenario, the neural
networks have to be suitable for handling the involved data, i.e., pairs of semantic graphs
as input data and a similarity value as output data. To establish a proper integration,
we first define an encoding scheme for our semantic graphs that involves encoding the
semantic descriptions and types (see Section 4.1). The GEM and the GMN are then adapted
to process the encoded semantic graphs and be used as a similarity measure in similarity-
based retrieval (see Section 4.2).

4.1. Encoding Semantic Graphs

An arbitrary NEST graph [7] to encode G has the following four components: the
nodes N, the edges E, the semantic descriptions S , and the types T . When looking
at the introduced neural networks in Section 3, it is apparent that they are capable of
handling the structure of nodes and edges but are not designed to process the rich semantic
information and the types of nodes and edges. Li et al. [23] assume nodes and edges to
be represented by a feature vector, which is expressed by the functions featnode : N → Rln

and featedge : E → Rle . Since they do not specify how this feature vector is generated,
our approach describes specific encoding methods for the types T (see Section 4.1.1) and
the semantic descriptions S (see Section 4.1.2) in the following. Together with the graph
structure that is natively integrated into both Graph Neural Networks (GNNs), this makes
it possible to process our semantic graph format.

4.1.1. Encoding Node and Edge Types

The types of nodes and edges (see Section 2.1) are encoded as they are an integral part
of semantic graphs. This is also crucial because the types are used to distinguish nodes and
edges in terms of similarity. Only nodes and edges with identical types are mapped during
similarity computation (see Section 2.2). Each node and each edge has exactly one type,
whereas the amount of possible different types, for both nodes and edges, is small. Hence,
the types are encoded in the form of one-hot encodings, which is represented by the function
enctype : T → Rltype . According to the NEST definition (see Section 2.1 and [7]), there are,
in total, nine different node and edge types, which leads to ltype = 9. The exemplary graph
contains six of these nine different type encodings that are specified by all types in the
legend of Figure 1. Nodes or edges with the same type always have the same type of
encoding.

4.1.2. Encoding Semantic Descriptions

When encoding semantic descriptions, it is important to describe the underlying
structure of these data. As introduced in Section 2.1 and illustrated by the task node coat
from Figure 1, semantic descriptions are composed of atomic and composite data with a
data type and the respective data content. The possible arrangement of composite types
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holding atomic types, other nested composite types holding more nested types, and so on
can be visualized as a hierarchical tree structure.

Figure 4a shows our semantic description used as a running example in tree form. The
depiction distinguishes between leaf nodes (ovals) and inner nodes (rectangles), as well as
child-of (dashed lines) and parent-of (dotted lines) relations. The relations between these
nodes are defined according to the hierarchical structure of the semantic description, e.g.,
the item Spoon is a child of the list of Auxiliaries. More formally, the tree representation
of the semantic description can be redefined as a graph Gsem = (Ncomp ⊆ Scomp, Natom ⊆
Satom, Esem ⊆ (Ncomp ∪ Natom) × (Ncomp ∪ Natom)) with two sets of nodes and edges
between these nodes. The encoding procedure covers the encoding data type and content
of entries within the semantic description. This enables the neural network to learn to
distinguish different semantic information with regard to both aspects. For instance, in the
semantic description of coat, the integer 2 is used as a Duration of type integer. The same
number could also be used in a different context (e.g., as the required skill of this task on a
0 to 5 scale), which makes encoding the data type in combination with the content crucial.

Root: coat

Duration: 2 List:
Auxiliaries

Item: KnifeItem: Spoon

leaf node inner node child-of parent-of

1

0
0

0

0

0
0
0

1

0
0

1

0
0

0

0

0
0
0

1/3

1
1/2

1

0
0

0

0

0
0
1

0

1
1

atom
ic data encodings (latom  + lsem

Type )

matrix of vectors with (lcomp)

(a) (b)

Figure 4. Encoding of composite types: (a) Tree encoding (b) Sequence encoding

We encode the data type as a one-hot vector with the function encsemType : S →
RlsemType . Given a total of five atomic types and three composite types, all vectors have a
common vector length of lsemType = 8 elements. Please note that we are referring to the
number of data types of the Process-Oriented Case-Based Reasoning (POCBR) framework
ProCAKE [7] with these numbers. In general, the approach is generic and it allows the
use of any other framework, as well. This encoding procedure can be extended in certain
ways: First, it is possible to encode other atomic or composite data types in the same way.
If the atomic types are extended by a data type for timestamps, for instance, it is possible
to add a new one-hot encoding for this extension. Second, only encoding the base types,
i.e., string, float, list, etc., can be insufficient in certain scenarios where the domain model
is very complex (see [4,5] for examples of such domains). The proposed approach can be
extended in these cases to use individual one-hot encodings for specific data types in the
domain model. For instance, the string entries in the list of Auxiliaries might be defined
in a taxonomy, which motivates the use of an individual one-hot vector instead of the
generic type vector that is used for all strings.

The second part of encoding semantic descriptions deals with their content. Due to the
variety of different types of data, it is difficult to encode these data into a common vector
space. This requirement also hinders the use of established existing methods out of the box,
e.g., one-hot encoding for string vocabularies [50] or a single scalar value for numerics. We
propose to encode the content of one atomic data entry as a single vector with a common
vector length latom by the function encatom : Satom → Rlatom . The elements of this vector are
set by a specific encoding method for each data type. Due to space restrictions in this paper,
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the specific encoding methods cannot be presented in detail. In total, our implementation
contains the following specific encoding methods for atomic types: strings that are defined
by an enumeration, strings that are defined by a taxonomy, integers, doubles, booleans, and
timestamps. Please note that the length of the vector latom has to be equal for all encoding
procedures to maintain a tensor structure and to allow processing by a neural network.

Encoding composite data mainly focuses on encoding the structure of the atomic data.
To be more flexible with defining the architecture of our GNNs, we present two means of
encoding composite data that vary in their complexity and require different neural networks
for processing: tree encoding to be processed by a GNN and sequence encoding to be processed
by a Recurrent Neural Network (RNN; e.g., a Long Short-Term Memory (LSTM) [46] or a
Gated Recurrent Unit (GRU) [45]). The tree encoding method preserves the hierarchical
structure of the semantic descriptions as modeled in Gsem = (Ncomp, Natom, Esem). This
means that we encode the information provided by both types of nodes, as well as the
information provided by the edges. Regarding the nodes from Natom, we can reuse the
functions encsemType and encatom for encoding the data type and the content of the respective
node. The content of the nodes of Ncomp is usually characterized by the atomic vectors that
they are composed of. For instance, the list of Auxiliaries is described by the items in
this list. Nevertheless, it can be useful to consider content encodings for composite types
in case there is specific information to encode, e.g., the number of list items or their order.
We still omit encoding the content and, thus, elements of Ncomp are only encoded with the
function encsemType. The encoding of relations between nodes (Esem) represents the type
of relation, i.e., parent-of or child-of. Consequently, it is encoded as a one-hot encoding of
length two, given by the function encedge : Esem → R2.

The tree encoding method aims at preserving as much semantic and structural infor-
mation from the semantic descriptions and the underlying domain model as possible. The
drawbacks of its usage are the complex encoding procedure and the need for processing
the semantic descriptions with complex GNNs. To mitigate these drawbacks, we provide
an alternative encoding method where Gsem is encoded as a sequence of atomic types that
can be processed by RNNs. The function encseq : Ncomp → Rlcomp×latom+lsemType is used for
this purpose. Each vector in this sequence of atomic data is a concatenation of the data
type and the content. Figure 4b shows the encoded sequence of our running example. It
contains three atomic encoding vectors that represent the three atomic types of the semantic
description given by Natom. Since the sequence encoding does not explicitly model the
structure of the semantic description, it is represented by the order of the atomic encoding
vectors in the sequence. Therefore, it is necessary to define an ordering scheme for the
sequence of each composite type. The only requirement for this ordering scheme is that the
atomic vectors are always ordered deterministically. This is important to produce the same
encodings for the same semantic descriptions when randomness is present, e.g., for atomic
types of an unordered set type. In total, our implementation contains the following specific
encoding methods for composite types: attribute–value pairs, lists, and sets.

4.2. Adapted Neural Network Structure

We adjust the architecture of GEM and GMN by Li et al. [23] (see Section 3) for our
purpose of similarity-based retrieval in POCBR. The adjusted models are further denoted
as Semantic Graph Embedding Model (sGEM) and Semantic Graph Matching Network
(sGMN). Resulting from the specific encoding scheme of semantic graphs (see Section 4.1),
we present an adjusted embedder (see Section 4.2.1). In addition, the propagation layer (see
Section 4.2.2) and the final graph similarity of the GMN (see Section 4.2.3) are also adapted
to create a more guided learning process that closely resembles the similarity assessment
between semantic graphs. Eventually, we present the loss function that is used for training
the neural networks to predict similarities (see Section 4.2.4).
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4.2.1. Adapted Embedder

Introduced in Section 3.2, the embedder creates initial embeddings for nodes and
edges. Li et al. [23] assume nodes and edges to be represented by a simple feature vector,
which is expressed by the functions featnode : N → Rln and featedge : E→ Rle . The challenge
for processing our semantic graph format with sGEM and sGMN is how to bridge the gap
between our more complex encoded information, i.e., one-hot encoded types and tree- or
sequence-encoded semantic descriptions, to the simple one-dimensional feature vector. To
achieve this, the adapted embedder embeds the information of semantic descriptions and
types separated from each other and concatenates both vectors to form a single feature
vector for a node or an edge.

featnode(v) = h(0)v =
[
htype

v , hsem
v
]
, ∀v ∈ N

featedge(v, w) = hv,w =
[
htype

v,w , hsem
v,w
]
, ∀(v, w) ∈ E

(8)

Equation (8) shows how the embeddings of types, i.e., htype
v and htype

v,w , and semantic
descriptions, i.e., hsem

v and hsem
v,w , are combined for each node and edge. This shows how

the features of nodes and edges are put together from the available information. In the
following, the embedding of types and semantic descriptions is described. The types are
embedded as shown in Equation (9):

htype
v = MLPnType(enctype(T(v))), ∀v ∈ N

htype
v,w = MLPeType(enctype(T(v, w))), ∀(v, w) ∈ E

(9)

The equation shows the process of embedding node types (htype
v ) and edge types

(htype
v,w ). Nodes and edges utilize separate Multi-Layer Perceptrons (MLPs) in this process,

i.e., MLPnType for node types and MLPeType for edge types, which are applied to the one-
hot encoded type vectors. The second part of the combined feature vectors deals with
embedding the semantic description of a node or an edge. Since we propose two different
encoding methods for semantic descriptions, i.e., a sequence encoding and a tree encoding
(see Section 4.1.2), these two encodings are also handled differently.

hsem
v = RNNnSem(encseq(S(v))), ∀v ∈ N

hsem
v,w = RNNeSem(encseq(S(v, w))), ∀(v, w) ∈ E

(10)

Equation (10) shows the embedding of semantic descriptions of nodes (hsem
v ) and edges

(hsem
v,w ) that are encoded as a sequence. The sequence structure of the semantic description’s

encodings is processed by an unrolled RNN (e.g., [45,46]). An RNN can handle sequences of
inputs with different lengths, as they are present in the encodings of semantic descriptions.
We use the output state of the last step as the result of the unrolled RNN, which is a single
vector. Please note that the sequence contains concatenations of content and data type of
semantic description entries (see Section 4.1.2) such that the respective embedding vector
captures this information.

When using semantic descriptions that are encoded with the tree encoding method,
the embedding step is not implemented with RNNs. Instead, we process the graph Gsem =
(Ncomp, Natom, Esem) (introduced in Section 4.1.2) by utilizing a simple GNN that is similar
to the GNN architecture that also processes the entire semantic graph. Therefore, the
reader can consult the explanations in Section 3 for more details on certain steps. The GNN
consists of several trainable components: a component that embeds composite nodes from
Ncomp, i.e., NNcomp, a component that embeds atomic nodes from Natom, i.e., NNatom, a
component that embeds edges from Esem, i.e., NNedge, a component that performs message
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propagation, i.e., NNprop, and a component that aggregates the node information to a single
graph representation vector, i.e., NNagg. The embedding process is defined as follows:

htree(0)v = NNcomp(encsemType(S(v))), ∀v ∈ Ncomp

htree(0)v = NNatom([encsemType(S(v)), encatom(S(v))]), ∀v ∈ Natom
htreev,w = NNedge(encedge(v, w)), ∀(v, w) ∈ Esem

(11)

In the first step (see Equation (11)), all nodes and edges are embedded, which results
in the initial embedding vectors htree(0)v for each node v ∈ Natom ∪ Ncomp and htreev,w for
each edge (v, w) ∈ Esem. Thereby, we use the data type and content for embedding nodes
from Natom and only the data type for embedding nodes from Ncomp. Embedding vectors
of edges from Esem capture the encoded information of the edge representing a child-of or
a parent-of relation. The propagation component passes messages between the nodes and
updates their state vector accordingly.

mtreew,v =[htree(k)v , htree(k)w , htreev,w], ∀(v, w) ∈ Esem

htree(k+1)
v =NNprop

[ htree(k)v , ∑
(w,v)∈Esem

mtreew,v

], ∀v ∈ Ncomp ∪ Natom
(12)

Equation (12) shows the propagation process, where an updated state vector htree(k+1)
v

is computed for each node v ∈ Ncomp ∪ Natom in each propagation step k ≤ Ktree. This
specifies the message-passing step of the GNN, where node information is shared across
the edges within the graph. We propose to set the maximum number of propagation steps
to 5 based on recommendations from the literature [16,23], i.e., Ktree = 5.

htreeG = NNagg

 ∑
v∈Ncomp∪Natom

h(Ktree)
v

 (13)

The final step of the GNN is the aggregation of all node vectors to a single embedding
vector that represents the embedded information of the semantic description, i.e., htreeG.
Equation (13) shows the aggregation where the state vectors of all nodes after the final
propagation step Ktree are summed up with a commutative element-wise vector function
(e.g., sum, mean, etc.) to a single vector. This vector is eventually passed through the neural
network NNagg. Please note that the embedding procedure of semantic descriptions in the
tree encoding representation is identical for the semantic descriptions of nodes and edges.
Thus, the explanations of Equations (11) to (13) hold for nodes as well as edges and htreeG
is a representative for hsem

v and hsem
v,w . Together with the embedded nodes, this completes

h(0)v and hv,w from Equation (8).

4.2.2. Constrained Propagation in the Semantic Graph Matching Network

The propagation layer of the GMN uses a cross-graph matching method between the
nodes of the two graphs G1 and G2 (see Section 3.3). Each node of G1 is compared with
each node of G2 through their softmax-activated cosine vector similarity (ranging between
0 and 1). In this way, information is propagated between the nodes of the two graphs with
regard to their pairwise attention. According to the definition of the used graph matching
algorithm (see Section 2.2 and [7]), only nodes and edges with the same type are allowed to
be matched. That is, the matching process is constrained according to the types of nodes
and edges. These constraints can be integrated as an alternative means of message-passing
into the cross-graph propagation component of sGMN by only allowing a cosine similarity
greater than zero for nodes of the same type. All pairs of nodes with different types are
assigned a similarity of 0, representing maximum dissimilarity. Thus, their attention is
close to 0, which leads to almost no information propagation between nodes of different
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types. This extension of GMN’s original cross-graph propagation component can be seen
as a form of informed machine learning [51], where prior knowledge is used within a machine
learning setup such as our sGMN. See our previous work [22] for a discussion and an
application scenario of informed machine learning in POCBR.

4.2.3. Trainable Graph Similarity of Semantic Graph Matching Network

In the definition of GEM and GMN, a vector similarity measure being applied on the
vector representations of two graphs G1 and G2, i.e., vsim(hG1 , hG2), computes the final
similarity value. Such a vector similarity measure is purely syntactic and not trainable
regarding patterns in these vectors. Therefore, an MLP-based approach is used to compute
the pairwise similarity of two graphs in the sGMN. This emphasizes the nature of the
sGMN as a more knowledge-intensive measure (compared to the sGEM) [23] and trades a
higher computation time for a better-quality similarity assessment.

fsimsGMN(hG1 , hG2) = σ(MLPfsim([hG1 , hG2 ])) (14)

The approach (see Equation (14)) applies an MLP on the concatenated vector represen-
tations of the two graphs. The result of this transformation is lastly activated by a logistic
function (σ) to keep the final similarity in the range of [0,1]. It is important to note that
this MLP-based pairwise graph similarity is not symmetrical, which means that, for most
graph pairs, fsimsGMN(hG1 , hG2) 6= fsimsGMN(hG2 , hG1). This is also a property of the graph
matching algorithm (see Section 2.2) and other similarity measures in POCBR [29] that is
only reflected by this MLP-based graph similarity and not by the cosine vector similarity
measure used in the sGEM.

4.2.4. Training and Optimization

Whereas Li et al. [23] assume their training examples to be pairs of graphs that are
labeled as similar or dissimilar for training, our training examples are graph pairs with
ground-truth similarity values. Hence, each of our training graph pairs is labeled with the
ground-truth similarity value, in the range of [0, 1]. This yields a regression-like problem
where the neural network aims to predict similarities that are close to the ground-truth
similarities. For this regression problem, the use of a Mean Squared Error (MSE) loss is
suitable. When given a batch B of graph pairs (G1, G2) ∈ B, the ground-truth similarity of
each graph pair sim(G1, G2) ∈ [0, 1], and the predicted similarity from one of our models
for each graph pair fsim(hG1 , hG2), the MSE loss Lmse is computed as follows:

Lmse =

∑
(G1,G2)∈B

(sim(G1, G2)− fsim(hG1 , hG2))
2

|B| (15)

The MSE sums up all squared differences in predicted similarity fsim(hG1 , hG2) and
labeled similarity sim(G1, G2), and then divides this value by the number of all batched
training examples to obtain the average deviation. As originally proposed by Li et al. [23],
sGEM and sGMN also use the Adam optimizer [52] to optimize the networks’ weights
according to the MSE loss value.

5. Application of Semantic Graph Embedding Model and Semantic Graph Matching
Network in Similarity-Based Retrieval

The Semantic Graph Embedding Model (sGEM) and the Semantic Graph Matching
Network (sGMN) are designed to be used as trainable similarity measures—that is, learning
how to predict the similarities of pairs of NEST graphs. The possible application scenarios
of sGEM and sGMN in Process-Oriented Case-Based Reasoning (POCBR) are widespread
since similarity measures are used in several different tasks, e.g., for retrieving, adapting,
or retaining cases [1,2]. We restrict ourselves to the application of the embedding models
for retrieving the k-most similar cases according to a query (case retrieval) in this work.



Algorithms 2022, 15, 27 16 of 25

Thereby, the integration of the neural networks into a standard retrieval scenario and a
MAC/FAC retrieval scenario is examined (see Section 2.3 for an introduction to retrieval
and [19,21] for previous work on MAC/FAC in POCBR).

Figure 5 shows the retrieval process, which makes use of two frameworks, i.e., a
POCBR framework (e.g., ProCAKE [24]), and a Deep Learning (DL) framework (e.g.,
TensorFlow [53]). These two frameworks interact while training the neural network in an
offline phase (see Section 5.1) and predicting pairwise graph similarities in a retrieval with
the neural network. A MAC/FAC retrieval, additionally, performs a subsequent similarity
computation with a knowledge-intensive similarity measure (see Section 5.2).
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Figure 5. Retrieval by using a neural-network-based similarity measure.

5.1. Offline Training

The offline training phase has the goal of making the neural network learn how to
predict similarities between graphs. The phase is initiated by the POCBR framework that
encodes the training data and exports them to be used for training. The training data
are composed of a case base of semantic graphs, encoded according to the procedure in
Section 4.1, and the ground-truth pairwise similarities of these cases. The encoded graphs
act as the input data to the neural network and the ground-truth similarities are used as
training targets. These target values can be taken from various sources, e.g., computed by
the graph similarity measure (see Section 2.2) as in previous work [21,22], or determined
by human expert experience. The generated training data are further exported and made
available for the training session in the DL framework. The DL framework imports the
training data, trains a neural network model (sGEM or sGMN), and exports the trained
model. The exported model can be used to resume training at a later point in time, which is
helpful to reduce training time in scenarios where dynamic case bases are used (e.g., [5,54]).
There are several factors to consider for the training session, e.g., training time and network
configuration. Depending on the use case, these settings influence the training success and,
eventually, the retrieval quality. Consequently, hyperparameter optimization should be
performed for the training process with each case domain. When preparing the trained
model to be used in the POCBR framework, it is possible to cache embeddings for all cases
of the case base. However, this is only possible with the sGEM since the sGMN has to
compute the cross-graph matching component for every pair of the query and the cases
(see Section 3.3).
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5.2. Retrieval

The data that are utilized during retrieval comprise the case base of NEST graphs, the
query NEST graph, and the trained neural network. All cases as well as the query have to
be encoded in order to be used with the neural network. Given the encoded graphs, the DL
framework is used to predict the similarity of each pair of the query and the cases from
the case base. The cached graph representation of each case can be utilized to calculate
these similarities if applicable. In this way, only the query graph has to be embedded by the
neural network. Hence, the result of the prediction is a list of pairwise similarities that can
further be used to determine the nearest neighbors of the query in the case base. A standard
retrieval is finished after the k-nearest neighbors are determined. However, sGEM and
sGMN are also applicable in a MAC/FAC retrieval (see Section 2.3). The main difference
between a standard retrieval and a MAC/FAC retrieval is the use of two consecutive
retrieval phases (MAC and FAC phase), where different similarity measures are used.
Neural-network-based similarity measures such as the sGEM and the sGMN can be used
in both phases, as other approaches demonstrate [19,21]. However, applying a neural
network in the MAC phase is usually more reasonable, since the predicted similarities are
only an approximation of the true similarities. This can lead to problems with the candidate
set, which, on the one hand, might contain cases whose true similarity is lower than the
fs-threshold or, on the other hand, might not contain cases whose true similarity is higher
than the fs-threshold. The cases from the possibly wrong set of candidates are then used to
compute the final similarity values according to the query. The FAC similarity measure is
usually one that is guaranteed to compute the true similarities, e.g., our A* graph matching
algorithm (see Section 2.2), since the final similarities directly specify the k-most similar
cases, which are returned to the user.

6. Experimental Evaluation

We evaluate the Semantic Graph Embedding Model (sGEM) and the Semantic Graph
Matching Network (sGMN) by applying them as similarity measures in standard retrieval
and MAC/FAC retrieval scenarios. Thereby, we compare different variants of the embed-
ding models and different retrieval scenarios. The variants are marked with subscripts in
our terminology, with a total of six different variants:

sGEM sGEM used with sequence encoding;
sGEMtree sGEM used with tree encoding;
sGMN sGMN used with sequence encoding;
sGMNtree sGMN used with tree encoding;
sGMNconst sGMN used with matching constraints;
sGMNtree,const sGMN used with tree encoding and matching constraints.

As ground-truth similarities for training the neural networks and comparing their
predictions, we use similarities computed by the A*-similarity measure by Bergmann
and Gil [7] (A*M; see Section 2.2). The ground-truth similarities are computed with a
configuration of the measure that uses a very high parameter value for MaxPMS, to allow a
good solution to be found in the mapping process. Additionally, we also use this measure
with a lower value of MaxPMS in the evaluation to measure the deviations from the
ground-truth similarities. This allows us to see how much the computed similarities of
A*M deviate from the ground-truth similarities if MaxPMS is reduced. Another evaluated
measure is the feature-based measure by Bergmann and Stromer [12] (FBM), which uses a
manually modeled feature representation of NEST graphs, specifically designed to be used
in combination with a lightweight similarity measure in MAC/FAC retrieval situations.
It is included in order to achieve a comparison between automatically learned measures
and manually modeled ones, but comparison with this measure is not the main focus.
Furthermore, the embedding-based measure of Klein et al. [19] (EBM) is evaluated. It is
also designed for MAC/FAC retrieval and utilizes learned graph embeddings and a vector-
based similarity (see Section 2.4 for more details). EBM will be the main measure to compare
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sGEM and sGMN against since it is also automatically learned and embedding-based. We
investigate the following hypotheses in two experiments:

Hypothesis 1 (H1). Using the sGEM variants as MAC similarity measures of a MAC/FAC
retrieval leads to improved retrieval results compared to using EBM as a MAC similarity measure;

Hypothesis 2 (H2). The sGMN variants can approximate the ground-truth graph similarities
better than A*M, considering a reduced MaxPMS value such that the retrieval time of both retrievers
is comparable.

Each hypothesis refers to a dedicated experiment. The first experiment examines the
measures in a MAC/FAC setup, where the focus is placed on the suitability of sGEM as a
MAC similarity measure. We focus on evaluating sGEM against the other automatically
learned similarity measure, EBM, in H1 as it is, by design, more optimized for performance,
which fits the requirements of a MAC similarity measure (see Section 5.2). The second
experiment examines the degree to which sGMN is capable of approximating the ground-
truth A* similarities. As introduced before, A*M can be configured (by adjusting the
MaxPMS parameter) to compute solutions faster with lower quality in return. H2 aims at
comparing sGMN to a configuration of A*M with a reduced value of MaxPMS where the
deviations from the ground-truth similarities are comparable.

6.1. Experimental Setup

We perform our experiments with an implementation of the presented approach in the
Process-Oriented Case-Based Reasoning (POCBR) framework ProCAKE [24] and the Deep
Learning (DL) framework TensorFlow [53]. The source code and all supplementary data can
be retrieved with the instructions given in the Data Availability Statement on page 22. The
neural networks are trained with the help of TensorFlow and the similarity assessment is
performed in ProCAKE. Our experiments examine two case bases from different domains
that are both represented as semantic NEST graphs. The cooking processes (CB-I) contain
800 sandwich recipes with ingredients and cooking steps [3], split into 660 training cases,
60 validation cases, and 80 test cases. The processes of the data mining domain (CB-II) are
built from sample processes that are delivered with RapidMiner (see [5] for more details),
split into 509 training cases, 40 validation cases, and 60 test cases. A single training instance
is a pair of graphs with the associated similarity value to learn, leading to 6602 = 435, 600
and 5092 = 259, 081 training instances, respectively. Thereby, the training case base is used
as training input for the neural networks, while the validation case base is used to monitor
the training process and to optimize hyperparameter values. Hyperparameter tuning is
performed individually per domain with the two base models of sGEM and sGMN. The
model variants then use the same hyperparameter settings as the associated base model,
e.g., sGEMtree uses the same hyperparameter configuration as sGEM in the same domain.
The training of all models is stopped as soon as the validation loss does not further decrease
for two epochs (early stopping).

The metrics that are used to evaluate our approach cover performance and quality.
The performance is measured by taking the retrieval time, which is the entire retrieval
time including pre-processing of the data if necessary. Since all variants of sGEM and
EBM allow for caching of embedding vectors for the case base in an offline phase, these
measures only embed the query during the experiments and do not include the caching
time in the results. The quality of the results to evaluate RLeval is measured by comparing
them to the ground-truth retrieval results RLtrue in terms of Mean Absolute Error (MAE),
correctness (see [21,55] for more details), and k-NN quality (see [19–21] for more details).
The MAE (ranging between 0 and 1) expresses the average similarity error between all
pairs of query graph and case graph in RLtrue and the same pairs in RLeval. The correctness
(ranging between −1 and 1) describes the conformity of the ranking positions of the graph
pairs in RLeval according to RLtrue. Given two arbitrary graph pairs GP1 = (QG, CG1)
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and GP2 = (QG, CG2), the correctness is decreased if GP1 is ranked before GP2 in RLeval
although GP2 is ranked before GP1 in RLtrue or vice versa. The k-NN quality (ranging
between 0 and 1; see Equation (16)) quantifies the degree to which highly similar cases
according to RLtrue are present in RLeval.

quality(QG, RLtrue, RLeval) = 1− 1
|RLtrue |

· ∑
CG∈RLtrue \RLeval

sim(QG, CG) (16)

Therefore, the cases from RLtrue are compared with RLeval. Each case from RLtrue that
is missing in RLeval decreases the quality, with highly relevant cases affecting the quality
more strongly than less relevant cases.

The machine that is used for training and testing computations is a PC with an Intel
i7 6700 CPU (4 cores, 8 threads), an NVIDIA GTX 3070 GPU, and 48 GB of RAM, running
Windows 10. The measures (EBM, all sGEM variants, and all sGMN variants) that require
an offline training phase are trained on the GPU with the two training case bases, resulting
in two models per measure, i.e., one for each domain. The complete list of training and
model parameters can be found in the published source code. To summarize, the models
are parameterized such that the GMN models have larger embedding sizes (nodes, edges,
graph) than the GEM models and the models for CB-II have larger embedding sizes than
the models for CB-I. The average training time is approx. 24 h for the sGMN variants and
8 h for the sGEM variants on average. The inference of all measures is performed only by
using the CPU in order to allow a fair comparison. A retrieval is always conducted with a
query from the testing case base and with the cases from the training case base. To produce
meaningful performance and quality values, the results of the retrieval runs of all query
cases from a single domain are averaged.

6.2. Experimental Results

The first experiment aims to answer hypothesis H1 and evaluates the variants of sGEM
and sGMN as MAC similarity measures in a scenario of MAC/FAC retrieval. Different
combinations of fs, i.e., the number of candidates cases of the MAC phase, and k, i.e., the
number of retrieval results from the FAC phase, are examined. These values are chosen
to be similar to the experiments in previous work [19]. The FAC similarity measure is
an A* measure that is used in the same configuration in every retrieval. Table 1 shows
the evaluation results, which include the metrics k-NN quality and retrieval time (in
milliseconds). Besides the variants of the neural network models, we also evaluate FBM
and EBM since these two measures are specifically designed for MAC/FAC applications.
The highlighted values represent the maximum quality and minimum time, respectively,
for each combination of fs and k.

Table 1. Evaluation results of the MAC/FAC experiment.

sGEM sGEMtree sGMN sGMNtree sGMNconst sGMNtree,const FBM EBM
fs k Quality Time Quality Time Quality Time Quality Time Quality Time Quality Time Quality Time Quality Time

C
B

-I

5 5 0.508 16 0.511 14 0.489 1051 0.490 2067 0.489 1074 0.489 2169 0.557 510 0.499 17
50 5 0.613 100 0.600 95 0.522 1137 0.523 2156 0.511 1165 0.505 2263 0.836 611 0.562 100
10 10 0.520 24 0.536 22 0.502 1061 0.503 2077 0.500 1085 0.505 2180 0.585 522 0.516 25
80 10 0.623 155 0.609 151 0.581 1195 0.576 2225 0.548 1224 0.575 2330 0.862 671 0.613 158
25 25 0.545 50 0.567 48 0.534 1088 0.536 2106 0.518 1113 0.534 2208 0.652 554 0.549 53
100 25 0.606 192 0.593 187 0.646 1240 0.678 2268 0.607 1266 0.676 2373 0.833 714 0.642 195

C
B

-I
I

5 5 0.392 66 0.394 84 0.381 2811 0.449 3539 0.399 2729 0.463 3666 0.646 457 0.329 57
50 5 0.557 866 0.563 895 0.629 3150 0.757 3833 0.671 3016 0.767 3928 0.922 619 0.385 295
10 10 0.432 113 0.448 123 0.467 2825 0.516 3572 0.457 2785 0.508 3690 0.667 477 0.362 84
80 10 0.625 1146 0.637 1158 0.745 3406 0.837 4064 0.749 3372 0.853 4197 0.939 744 0.444 430
25 25 0.506 281 0.511 628 0.550 3004 0.623 3683 0.547 2856 0.628 3793 0.694 533 0.416 198
100 25 0.683 1371 0.697 1303 0.799 3597 0.872 4234 0.797 3537 0.881 4320 0.907 866 0.500 518
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The results for CB-I show that the two variants of sGEM perform similarly, with
similar quality values and retrieval times. The same applies to the quality values of the
sGMN variants. The retrieval times of the sGMN variants reveal a negative influence of
the variants that use tree encoding, which is likely caused by the more complex embedding
process. The sGMN variants and the sGEM variants perform similarly in terms of quality,
despite the more expressive embedding process of sGMN. EBM shows quality values that
are on par with the values of the sGEM variants. FBM shows the highest quality values
across all combinations of fs and k. The retrieval times are higher than those of the sGEM
variants and EBM but lower than those of the sGMN variants. The results for CB-II present
a similar picture. FBM still outperforms all other measures with regard to quality. However,
some sGMN variants, such as sGMNtree,const, are performing in a similar range. It is also
important to note that the sGMN variants with tree encoding are still the slowest measures
but outperform all other automatically learned measures for CB-II. The sGMN variants also
outperform the sGEM variants for almost all combinations of fs and k, which shows that
the variants of sGMN favor retrieval situations with more complex semantic descriptions
of task and data nodes, as present in CB-II. The performance of the sGEM and sGMN
measures for retrieving graphs from a rather simple domain, such as in CB-I, is respectable
but does not consistently surpass the currently available, automatically learned approach
of EBM. When only looking at the automatically learned measures in the results of CB-II,
i.e., the variants of sGEM, the variants of sGMN, and EBM, sGEM variants are the most
suitable for a MAC/FAC scenario since they show a good combination of very low retrieval
times and high quality values. The FBM, with its manually modeled similarity measure,
still performs best for both case bases, taking into account the combination of quality and
time. However, under conditions of strict time requirements, sGEM or EBM can become
better suited than FBM. Due to their speed, the measures allow for the performance of a
MAC phase with high values of fs, which, in turn, produce better overall quality results for
the MAC/FAC retrieval. For instance, sGEM can filter with fs = 80 in less time and with
higher ultimate quality than FBM can filter with fs = 10 to obtain the results for k = 10.
Overall, H1 is partly confirmed due to the similar results of the comparison between sGEM
and EBM. None of the different measures clearly outperforms the other. However, sGEM
can improve the overall retrieval results under certain conditions (fs, k, variant, etc.), which
have to be tested for the given scenario.

The second experiment aims to answer hypothesis H2 and examines the degree to
which the variants of sGEM and sGMN as well as EBM and FBM can approximate the
ground-truth graph similarities (see Table 2). We also include a configuration of A*M with
an adjusted parameter value of MaxPMS (see Section 2.2) in the experiment. The value
for MaxPMS is chosen in such a way that the retrieval time of A*M is similar to that of the
sGMN variants. Aligning the retrieval times of A*M and sGMN enables a fair comparison
of the resulting MAE and correctness. All reported times are measured in milliseconds.

Table 2. Evaluation results of the A* approximation experiment.

Domain CB-I CB-II
Retriever MAE Correctness Time MAE Correctness Time

sGEM 0.158 0.017 1.3 0.337 0.331 1.1
sGEMtree 0.219 0.053 0.9 0.323 0.310 0.9

sGMN 0.033 0.287 1025.5 0.034 0.583 2697.8
sGMNtree 0.039 0.322 2115.1 0.026 0.724 3508.1

sGMNconst 0.029 0.330 1051.9 0.033 0.583 2643.7
sGMNtree,const 0.037 0.327 2118.3 0.024 0.732 3403.8

FBM 0.193 0.598 482.7 0.199 0.584 335.4
EBM 0.380 0.224 1.2 0.397 0.006 1.1
A*M 0.062 0.669 1265.5 0.041 0.824 3801.8
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For CB-I, sGMNconst has the lowest MAE value and A*M has the highest correctness
value. The sGEM variants report relatively high MAE values and relatively low values
of correctness. The MAE and the correctness values of all sGMN variants are in a similar
range, while all outperform the MAE of A*M but are outperformed by A*M in terms of
correctness. FBM achieves a high level of correctness but lags in terms of MAE. EBM shows
high values of MAE and low values of correctness. When comparing the results of CB-I
and CB-II, it becomes apparent that sGMNtree,const has the lowest MAE and A*M again
has the highest value of correctness. The results of the other measures are similar to the
results for CB-I. However, it is noticeable that the gap between the sGMN variants and
A*M in terms of correctness is smaller. This leads to the assumption that the suitability of
sGMN increases with more complex cases. The fact that the variants of sGMN outperform
A*M in terms of MAE is even more remarkable when considering that the neural network
learns to assess the similarity of graphs without knowing the original algorithmic context,
e.g., similarities of semantic descriptions or node and edge mappings. Additionally, this
experiment shows that FBM and EBM are not suitable for generating similarities that
are close to the ground-truth similarities. The reason for this could be the inadequate
processing of semantic annotations and the workflow structure. Thus, we partly accept
H2 since the sGMN variants consistently outperform the MAE values of A*M but do not
report higher values of correctness.

6.3. Discussion

The two experiments show the suitability of sGEM and sGMN and their different
variants in similarity-based retrieval. We would like to discuss some points in particular.
First, sGEM and sGMN present inconsistency in the effects that different variants have
on different domains. Compared to the base models, these effects can lead to completely
different results in different domains. For instance, in the second experiment, sGEMtree
shows a lower MAE than the base model for CB-II but a significantly higher MAE for
CB-I. This leads to the need for individual testing of different methods and subsequent
hyperparameter tuning. Since the hyperparameters of the models in our experiments
are only tuned for the base models, this can certainly lead to further performance im-
provements. The performance of the sGEM and sGMN variants can further be improved
by performing inference on the GPU instead of the CPU (as done in these experiments).
Since computations on the GPU are not possible for all other measures, this is a unique
characteristic of the neural-network-based models. Furthermore, it is shown that the ad-
ditional integration of the semantic information of sGEM and sGMN and the usage of
Graph Neural Networks (GNNs) can outperform the simple, structural measure, EBM. This
confirms the assumption that partly motivated this paper. The effect might be amplified
by domains that are even more complex than CB-II, such as argumentation [25] or flexible
manufacturing [4]. Additionally, it is shown that sGEM and sGMN, although integrating
rich semantic information, are not able to consistently outperform FBM in MAC/FAC
retrieval tasks. The usage of manually modeled features and the integration of expert
knowledge seems to be superior to automatic learning. Nevertheless, automatically learned
measures such as sGEM, sGMN, and EBM still have the advantage of greatly reduced effort
when adapting to changes in the similarity definition or the underlying domain models.
The overall effort of knowledge acquisition is greatly reduced when using an automatically
learned measure. Automatic learning is also helpful when dealing with user-labeled data,
since users are usually not capable of labeling cases with concrete similarity values but
rather with binary indications, e.g., similar or not similar. The neural networks can learn
similarity functions based on these labels with a modified loss function [23,37]. In contrast,
this is not straightforward for A*M and FBM as it involves manual configuration effort.

7. Conclusions and Future Work

This paper examines the potential of using two Siamese Graph Neural Networks
(GNNs) as similarity measures for retrieving semantic graphs in Process-Oriented Case-



Algorithms 2022, 15, 27 22 of 25

Based Reasoning (POCBR). The two presented neural networks, i.e., the Semantic Graph
Embedding Model (sGEM) and the Semantic Graph Matching Network (sGMN), can be
used in a similarity-based retrieval by predicting the similarities of graph pairs. Therefore,
a novel encoding scheme is presented that covers the graph structure, the types of nodes
and edges, and their semantic annotations. Given this encoding scheme, sGEM and sGMN
are constructed by adapting two neural networks from the literature to fully process pairs
of semantic graphs to predict a pairwise similarity value. Setting up the retrieval process
with these neural networks in a POCBR framework and a Deep Learning (DL) framework
is discussed as well. The experimental evaluation investigates how differently configured
variants of sGEM and sGMN perform in similarity-based retrieval. The evaluation covers
two domains with different properties, nine different similarity measures, and two different
retrieval approaches. The results show the suitability of sGEM and sGMN in the evaluated
scenarios. Thereby, sGEM is suitable for a MAC/FAC setup, due to its fast similarity
computation and reasonable retrieval quality. Furthermore, sGMN shows great potential
in approximating the ground-truth graph similarities.

A focus of future research should be on optimizing the presented approach of a GNN-
based retrieval. This optimization ranges from aspects of parameterization to adjustments
of the data encoding scheme and the usage of different neural network structures. The
neural network structures could be optimized to better process other graph domains, e.g.,
argument graphs [25], or even other types of complex similarity measures [56]. A structural
change could be, for instance, using a differentiable ranking loss function that optimizes
according to the ground-truth ordering of the retrieval results (e.g., [57]). Furthermore, the
approaches from this paper should be applied to other POCBR tasks, such as case adapta-
tion (e.g., [38]). Since adaptation is usually a knowledge-intensive process, our approaches
can help by providing expressive learning capabilities combined with possibilities for do-
main knowledge integration. Additionally, the neural networks that are used in this work
are black boxes and, thus, are not capable of explaining the results they produce. In current
research (and also in the CBR community, e.g., [42]), this lack of explainability is tackled in
the context of Explainable Artificial Intelligence (XAI). Future research should address this
issue by investigating which methods are suitable for increasing the explainability of the
presented neural networks.
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